diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..b3b07e0f6bae3eb08943fa81dd7faa4ae70f31f3 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +demos/calculator/screenshot.gif filter=lfs diff=lfs merge=lfs -text +demos/kitchen_sink/files/world.mp4 filter=lfs diff=lfs merge=lfs -text +demos/video_component/files/world.mp4 filter=lfs diff=lfs merge=lfs -text diff --git a/README.md b/README.md index 32cbb89797ffeb4758c3b376010d5fd7ead99b3a..15c9150718a693e4062ae4f854614a380c3e5f00 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,11 @@ + --- -title: Pr 8900 All Demos -emoji: ⚡ +title: pr-8900-all-demos +emoji: 💩 colorFrom: indigo -colorTo: gray +colorTo: indigo sdk: gradio sdk_version: 4.39.0 app_file: app.py pinned: false --- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..71d69cc4d6c0bd2fba6f0f004a7a4a9ad8af636c --- /dev/null +++ b/app.py @@ -0,0 +1,52 @@ +import importlib +import gradio as gr +import os +import sys +import copy +import pathlib +from fastapi import FastAPI, Request +from fastapi.templating import Jinja2Templates +import uvicorn +from gradio.utils import get_space + +os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" + +demo_dir = pathlib.Path(__file__).parent / "demos" + + +app = FastAPI() + +templates = Jinja2Templates(directory="templates") + +names = sorted(os.listdir("./demos")) + + +@app.get("/") +def index(request: Request): + names = [[p[0], p[2]] for p in all_demos] + return templates.TemplateResponse("index.html", {"request": request, "names": names, + "initial_demo": names[0][0], "is_space": get_space()}) + + +all_demos = [] +demo_module = None +for p in sorted(os.listdir("./demos")): + old_path = copy.deepcopy(sys.path) + sys.path = [os.path.join(demo_dir, p)] + sys.path + try: # Some demos may not be runnable because of 429 timeouts, etc. + if demo_module is None: + demo_module = importlib.import_module(f"run") + else: + demo_module = importlib.reload(demo_module) + all_demos.append((p, demo_module.demo.queue(), False)) + except Exception as e: + with gr.Blocks() as demo: + gr.Markdown(f"Error loading demo: {e}") + all_demos.append((p, demo, True)) + +for demo_name, demo, _ in all_demos: + app = gr.mount_gradio_app(app, demo, f"/demo/{demo_name}") + + +if __name__ == "__main__": + uvicorn.run(app, port=7860, host="0.0.0.0") diff --git a/demos/audio_debugger/cantina.wav b/demos/audio_debugger/cantina.wav new file mode 100644 index 0000000000000000000000000000000000000000..41f020438468229763ec4a2321325e5916e09106 Binary files /dev/null and b/demos/audio_debugger/cantina.wav differ diff --git a/demos/audio_debugger/run.ipynb b/demos/audio_debugger/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c0df4c4673e51c92d2f02bbadccfe9b6115cb2ef --- /dev/null +++ b/demos/audio_debugger/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: audio_debugger"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/audio_debugger/cantina.wav"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import subprocess\n", "import os\n", "\n", "audio_file = os.path.join(os.path.abspath(''), \"cantina.wav\")\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Tab(\"Audio\"):\n", " gr.Audio(audio_file)\n", " with gr.Tab(\"Interface\"):\n", " gr.Interface(\n", " lambda x: x, \"audio\", \"audio\", examples=[audio_file], cache_examples=True\n", " )\n", " with gr.Tab(\"Streaming\"):\n", " gr.Interface(\n", " lambda x: x,\n", " gr.Audio(streaming=True),\n", " \"audio\",\n", " examples=[audio_file],\n", " cache_examples=True,\n", " )\n", " with gr.Tab(\"console\"):\n", " ip = gr.Textbox(label=\"User IP Address\")\n", " gr.Interface(\n", " lambda cmd: subprocess.run([cmd], capture_output=True, shell=True)\n", " .stdout.decode(\"utf-8\")\n", " .strip(),\n", " \"text\",\n", " \"text\",\n", " )\n", "\n", " def get_ip(request: gr.Request):\n", " return request.client.host\n", "\n", " demo.load(get_ip, None, ip)\n", "\n", "if __name__ == \"__main__\":\n", " demo.queue()\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/audio_debugger/run.py b/demos/audio_debugger/run.py new file mode 100644 index 0000000000000000000000000000000000000000..0f2b78795aba6a6cfb5265e5c2ad18577810a307 --- /dev/null +++ b/demos/audio_debugger/run.py @@ -0,0 +1,40 @@ +import gradio as gr +import subprocess +import os + +audio_file = os.path.join(os.path.dirname(__file__), "cantina.wav") + + +with gr.Blocks() as demo: + with gr.Tab("Audio"): + gr.Audio(audio_file) + with gr.Tab("Interface"): + gr.Interface( + lambda x: x, "audio", "audio", examples=[audio_file], cache_examples=True + ) + with gr.Tab("Streaming"): + gr.Interface( + lambda x: x, + gr.Audio(streaming=True), + "audio", + examples=[audio_file], + cache_examples=True, + ) + with gr.Tab("console"): + ip = gr.Textbox(label="User IP Address") + gr.Interface( + lambda cmd: subprocess.run([cmd], capture_output=True, shell=True) + .stdout.decode("utf-8") + .strip(), + "text", + "text", + ) + + def get_ip(request: gr.Request): + return request.client.host + + demo.load(get_ip, None, ip) + +if __name__ == "__main__": + demo.queue() + demo.launch() diff --git a/demos/blocks_essay/run.ipynb b/demos/blocks_essay/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..b5d25834b039dfbb4a74dc926b17ed3e1dba07ba --- /dev/null +++ b/demos/blocks_essay/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_essay"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "countries_cities_dict = {\n", " \"USA\": [\"New York\", \"Los Angeles\", \"Chicago\"],\n", " \"Canada\": [\"Toronto\", \"Montreal\", \"Vancouver\"],\n", " \"Pakistan\": [\"Karachi\", \"Lahore\", \"Islamabad\"],\n", "}\n", "\n", "\n", "def change_textbox(choice):\n", " if choice == \"short\":\n", " return gr.Textbox(lines=2, visible=True), gr.Button(interactive=True)\n", " elif choice == \"long\":\n", " return gr.Textbox(lines=8, visible=True, value=\"Lorem ipsum dolor sit amet\"), gr.Button(interactive=True)\n", " else:\n", " return gr.Textbox(visible=False), gr.Button(interactive=False)\n", "\n", "\n", "with gr.Blocks() as demo:\n", " radio = gr.Radio(\n", " [\"short\", \"long\", \"none\"], label=\"What kind of essay would you like to write?\"\n", " )\n", " text = gr.Textbox(lines=2, interactive=True, show_copy_button=True)\n", "\n", " with gr.Row():\n", " num = gr.Number(minimum=0, maximum=100, label=\"input\")\n", " out = gr.Number(label=\"output\")\n", " minimum_slider = gr.Slider(0, 100, 0, label=\"min\")\n", " maximum_slider = gr.Slider(0, 100, 100, label=\"max\")\n", " submit_btn = gr.Button(\"Submit\", variant=\"primary\")\n", "\n", " with gr.Row():\n", " country = gr.Dropdown(list(countries_cities_dict.keys()), label=\"Country\")\n", " cities = gr.Dropdown([], label=\"Cities\")\n", " \n", " @country.change(inputs=country, outputs=cities)\n", " def update_cities(country):\n", " cities = list(countries_cities_dict[country])\n", " return gr.Dropdown(choices=cities, value=cities[0], interactive=True)\n", "\n", " def reset_bounds(minimum, maximum):\n", " return gr.Number(minimum=minimum, maximum=maximum)\n", "\n", " radio.change(fn=change_textbox, inputs=radio, outputs=[text, submit_btn])\n", " gr.on(\n", " [minimum_slider.change, maximum_slider.change],\n", " reset_bounds,\n", " [minimum_slider, maximum_slider],\n", " outputs=num,\n", " )\n", " num.submit(lambda x: x, num, out)\n", "\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/blocks_essay/run.py b/demos/blocks_essay/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2b2a313a9156c2a2f4a75ded74914e8823be2408 --- /dev/null +++ b/demos/blocks_essay/run.py @@ -0,0 +1,56 @@ +import gradio as gr + +countries_cities_dict = { + "USA": ["New York", "Los Angeles", "Chicago"], + "Canada": ["Toronto", "Montreal", "Vancouver"], + "Pakistan": ["Karachi", "Lahore", "Islamabad"], +} + + +def change_textbox(choice): + if choice == "short": + return gr.Textbox(lines=2, visible=True), gr.Button(interactive=True) + elif choice == "long": + return gr.Textbox(lines=8, visible=True, value="Lorem ipsum dolor sit amet"), gr.Button(interactive=True) + else: + return gr.Textbox(visible=False), gr.Button(interactive=False) + + +with gr.Blocks() as demo: + radio = gr.Radio( + ["short", "long", "none"], label="What kind of essay would you like to write?" + ) + text = gr.Textbox(lines=2, interactive=True, show_copy_button=True) + + with gr.Row(): + num = gr.Number(minimum=0, maximum=100, label="input") + out = gr.Number(label="output") + minimum_slider = gr.Slider(0, 100, 0, label="min") + maximum_slider = gr.Slider(0, 100, 100, label="max") + submit_btn = gr.Button("Submit", variant="primary") + + with gr.Row(): + country = gr.Dropdown(list(countries_cities_dict.keys()), label="Country") + cities = gr.Dropdown([], label="Cities") + + @country.change(inputs=country, outputs=cities) + def update_cities(country): + cities = list(countries_cities_dict[country]) + return gr.Dropdown(choices=cities, value=cities[0], interactive=True) + + def reset_bounds(minimum, maximum): + return gr.Number(minimum=minimum, maximum=maximum) + + radio.change(fn=change_textbox, inputs=radio, outputs=[text, submit_btn]) + gr.on( + [minimum_slider.change, maximum_slider.change], + reset_bounds, + [minimum_slider, maximum_slider], + outputs=num, + ) + num.submit(lambda x: x, num, out) + + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_group/run.ipynb b/demos/blocks_group/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..15b658417cbf526d5be9a42d01b63c200c4b16a9 --- /dev/null +++ b/demos/blocks_group/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_group"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def greet(name):\n", " return \"Hello \" + name + \"!\"\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"### This is a couple of elements without any gr.Group. Form elements naturally group together anyway.\")\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### This is the same set put in a gr.Group.\")\n", " with gr.Group():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### Now in a Row, no group.\")\n", " with gr.Row():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### Now in a Row in a group.\")\n", " with gr.Group():\n", " with gr.Row():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### Several rows grouped together.\")\n", " with gr.Group():\n", " with gr.Row():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " with gr.Row():\n", " gr.Image()\n", " gr.Audio()\n", "\n", " gr.Markdown(\"### Several columns grouped together. If columns are uneven, there is a gray group background.\")\n", " with gr.Group():\n", " with gr.Row():\n", " with gr.Column():\n", " name = gr.Textbox(label=\"Name\")\n", " btn = gr.Button(\"Hello\")\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True)\n", " gr.Number()\n", " gr.Textbox()\n", " with gr.Column():\n", " gr.Image()\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True)\n", " with gr.Row():\n", " gr.Number(scale=2)\n", " gr.Textbox()\n", "\n", " gr.Markdown(\"### container=False removes label, padding, and block border, placing elements 'directly' on background.\")\n", " gr.Radio([1,2,3], container=False)\n", " gr.Textbox(container=False)\n", " gr.Image(\"https://picsum.photos/id/237/200/300\", container=False, height=200)\n", "\n", " gr.Markdown(\"### Textbox, Dropdown, and Number input boxes takes up full space when within a group without a container.\")\n", "\n", "\n", " with gr.Group():\n", " name = gr.Textbox(label=\"Name\")\n", " output = gr.Textbox(show_label=False, container=False)\n", " greet_btn = gr.Button(\"Greet\")\n", " with gr.Row():\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True, container=False)\n", " gr.Textbox(container=False)\n", " gr.Number(container=False)\n", " gr.Image(height=100)\n", " greet_btn.click(fn=greet, inputs=name, outputs=output, api_name=\"greet\")\n", "\n", "\n", " gr.Markdown(\"### More examples\")\n", "\n", " with gr.Group():\n", " gr.Chatbot()\n", " with gr.Row():\n", " name = gr.Textbox(label=\"Prompot\", container=False)\n", " go = gr.Button(\"go\", scale=0)\n", "\n", " with gr.Column():\n", " gr.Radio([1,2,3], container=False)\n", " gr.Slider(0, 20, container=False)\n", "\n", " with gr.Group():\n", " with gr.Row():\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True, container=False, elem_id=\"here2\")\n", " gr.Number(container=False)\n", " gr.Textbox(container=False)\n", "\n", " with gr.Row():\n", " with gr.Column():\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True, container=False, elem_id=\"here2\")\n", " with gr.Column():\n", " gr.Number(container=False)\n", " with gr.Column():\n", " gr.Textbox(container=False)\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/blocks_group/run.py b/demos/blocks_group/run.py new file mode 100644 index 0000000000000000000000000000000000000000..a5c5485891417c55d20c64f27ca751a170c93e5f --- /dev/null +++ b/demos/blocks_group/run.py @@ -0,0 +1,113 @@ +import gradio as gr + +def greet(name): + return "Hello " + name + "!" + +with gr.Blocks() as demo: + gr.Markdown("### This is a couple of elements without any gr.Group. Form elements naturally group together anyway.") + gr.Textbox("A") + gr.Number(3) + gr.Button() + gr.Image() + gr.Slider() + + gr.Markdown("### This is the same set put in a gr.Group.") + with gr.Group(): + gr.Textbox("A") + gr.Number(3) + gr.Button() + gr.Image() + gr.Slider() + + gr.Markdown("### Now in a Row, no group.") + with gr.Row(): + gr.Textbox("A") + gr.Number(3) + gr.Button() + gr.Image() + gr.Slider() + + gr.Markdown("### Now in a Row in a group.") + with gr.Group(): + with gr.Row(): + gr.Textbox("A") + gr.Number(3) + gr.Button() + gr.Image() + gr.Slider() + + gr.Markdown("### Several rows grouped together.") + with gr.Group(): + with gr.Row(): + gr.Textbox("A") + gr.Number(3) + gr.Button() + with gr.Row(): + gr.Image() + gr.Audio() + + gr.Markdown("### Several columns grouped together. If columns are uneven, there is a gray group background.") + with gr.Group(): + with gr.Row(): + with gr.Column(): + name = gr.Textbox(label="Name") + btn = gr.Button("Hello") + gr.Dropdown(["a", "b", "c"], interactive=True) + gr.Number() + gr.Textbox() + with gr.Column(): + gr.Image() + gr.Dropdown(["a", "b", "c"], interactive=True) + with gr.Row(): + gr.Number(scale=2) + gr.Textbox() + + gr.Markdown("### container=False removes label, padding, and block border, placing elements 'directly' on background.") + gr.Radio([1,2,3], container=False) + gr.Textbox(container=False) + gr.Image("https://picsum.photos/id/237/200/300", container=False, height=200) + + gr.Markdown("### Textbox, Dropdown, and Number input boxes takes up full space when within a group without a container.") + + + with gr.Group(): + name = gr.Textbox(label="Name") + output = gr.Textbox(show_label=False, container=False) + greet_btn = gr.Button("Greet") + with gr.Row(): + gr.Dropdown(["a", "b", "c"], interactive=True, container=False) + gr.Textbox(container=False) + gr.Number(container=False) + gr.Image(height=100) + greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet") + + + gr.Markdown("### More examples") + + with gr.Group(): + gr.Chatbot() + with gr.Row(): + name = gr.Textbox(label="Prompot", container=False) + go = gr.Button("go", scale=0) + + with gr.Column(): + gr.Radio([1,2,3], container=False) + gr.Slider(0, 20, container=False) + + with gr.Group(): + with gr.Row(): + gr.Dropdown(["a", "b", "c"], interactive=True, container=False, elem_id="here2") + gr.Number(container=False) + gr.Textbox(container=False) + + with gr.Row(): + with gr.Column(): + gr.Dropdown(["a", "b", "c"], interactive=True, container=False, elem_id="here2") + with gr.Column(): + gr.Number(container=False) + with gr.Column(): + gr.Textbox(container=False) + + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/blocks_js_methods/run.ipynb b/demos/blocks_js_methods/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1a5195c09b6de1ce5d3510e0a47eb1d1aa1e1d65 --- /dev/null +++ b/demos/blocks_js_methods/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_js_methods"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "blocks = gr.Blocks()\n", "\n", "with blocks as demo:\n", " subject = gr.Textbox(placeholder=\"subject\")\n", " verb = gr.Radio([\"ate\", \"loved\", \"hated\"])\n", " object = gr.Textbox(placeholder=\"object\")\n", "\n", " with gr.Row():\n", " btn = gr.Button(\"Create sentence.\")\n", " reverse_btn = gr.Button(\"Reverse sentence.\")\n", " foo_bar_btn = gr.Button(\"Append foo\")\n", " reverse_then_to_the_server_btn = gr.Button(\n", " \"Reverse sentence and send to server.\"\n", " )\n", "\n", " def sentence_maker(w1, w2, w3):\n", " return f\"{w1} {w2} {w3}\"\n", "\n", " output1 = gr.Textbox(label=\"output 1\")\n", " output2 = gr.Textbox(label=\"verb\")\n", " output3 = gr.Textbox(label=\"verb reversed\")\n", " output4 = gr.Textbox(label=\"front end process and then send to backend\")\n", "\n", " btn.click(sentence_maker, [subject, verb, object], output1)\n", " reverse_btn.click(\n", " None, [subject, verb, object], output2, js=\"(s, v, o) => o + ' ' + v + ' ' + s\"\n", " )\n", " verb.change(lambda x: x, verb, output3, js=\"(x) => [...x].reverse().join('')\")\n", " foo_bar_btn.click(None, [], subject, js=\"(x) => x + ' foo'\")\n", "\n", " reverse_then_to_the_server_btn.click(\n", " sentence_maker,\n", " [subject, verb, object],\n", " output4,\n", " js=\"(s, v, o) => [s, v, o].map(x => [...x].reverse().join(''))\",\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/blocks_js_methods/run.py b/demos/blocks_js_methods/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2abb2d9d3bca4114009da9ae61ef1ebfc347da81 --- /dev/null +++ b/demos/blocks_js_methods/run.py @@ -0,0 +1,41 @@ +import gradio as gr + +blocks = gr.Blocks() + +with blocks as demo: + subject = gr.Textbox(placeholder="subject") + verb = gr.Radio(["ate", "loved", "hated"]) + object = gr.Textbox(placeholder="object") + + with gr.Row(): + btn = gr.Button("Create sentence.") + reverse_btn = gr.Button("Reverse sentence.") + foo_bar_btn = gr.Button("Append foo") + reverse_then_to_the_server_btn = gr.Button( + "Reverse sentence and send to server." + ) + + def sentence_maker(w1, w2, w3): + return f"{w1} {w2} {w3}" + + output1 = gr.Textbox(label="output 1") + output2 = gr.Textbox(label="verb") + output3 = gr.Textbox(label="verb reversed") + output4 = gr.Textbox(label="front end process and then send to backend") + + btn.click(sentence_maker, [subject, verb, object], output1) + reverse_btn.click( + None, [subject, verb, object], output2, js="(s, v, o) => o + ' ' + v + ' ' + s" + ) + verb.change(lambda x: x, verb, output3, js="(x) => [...x].reverse().join('')") + foo_bar_btn.click(None, [], subject, js="(x) => x + ' foo'") + + reverse_then_to_the_server_btn.click( + sentence_maker, + [subject, verb, object], + output4, + js="(s, v, o) => [s, v, o].map(x => [...x].reverse().join(''))", + ) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_layout/run.ipynb b/demos/blocks_layout/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..deef224dfb4132575a2a5fe9c18e7978cb742132 --- /dev/null +++ b/demos/blocks_layout/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_layout"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "\n", "demo = gr.Blocks()\n", "\n", "with demo:\n", " with gr.Row():\n", " gr.Image(interactive=True, scale=2)\n", " gr.Image()\n", " with gr.Row():\n", " gr.Textbox(label=\"Text\")\n", " gr.Number(label=\"Count\", scale=2)\n", " gr.Radio(choices=[\"One\", \"Two\"])\n", " with gr.Row():\n", " gr.Button(\"500\", scale=0, min_width=500)\n", " gr.Button(\"A\", scale=0)\n", " gr.Button(\"grow\")\n", " with gr.Row():\n", " gr.Textbox()\n", " gr.Textbox()\n", " gr.Button() \n", " with gr.Row():\n", " with gr.Row():\n", " with gr.Column():\n", " gr.Textbox(label=\"Text\")\n", " gr.Number(label=\"Count\")\n", " gr.Radio(choices=[\"One\", \"Two\"])\n", " gr.Image()\n", " with gr.Column():\n", " gr.Image(interactive=True)\n", " gr.Image()\n", " gr.Image()\n", " gr.Textbox(label=\"Text\")\n", " gr.Number(label=\"Count\")\n", " gr.Radio(choices=[\"One\", \"Two\"])\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/blocks_layout/run.py b/demos/blocks_layout/run.py new file mode 100644 index 0000000000000000000000000000000000000000..6a7f3660ffce75035d191274fecf3063f28b647d --- /dev/null +++ b/demos/blocks_layout/run.py @@ -0,0 +1,39 @@ +import gradio as gr + + +demo = gr.Blocks() + +with demo: + with gr.Row(): + gr.Image(interactive=True, scale=2) + gr.Image() + with gr.Row(): + gr.Textbox(label="Text") + gr.Number(label="Count", scale=2) + gr.Radio(choices=["One", "Two"]) + with gr.Row(): + gr.Button("500", scale=0, min_width=500) + gr.Button("A", scale=0) + gr.Button("grow") + with gr.Row(): + gr.Textbox() + gr.Textbox() + gr.Button() + with gr.Row(): + with gr.Row(): + with gr.Column(): + gr.Textbox(label="Text") + gr.Number(label="Count") + gr.Radio(choices=["One", "Two"]) + gr.Image() + with gr.Column(): + gr.Image(interactive=True) + gr.Image() + gr.Image() + gr.Textbox(label="Text") + gr.Number(label="Count") + gr.Radio(choices=["One", "Two"]) + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_multiple_event_triggers/requirements.txt b/demos/blocks_multiple_event_triggers/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..5cb63bcc8c366f4abc569ed8ef379a90d4759ff4 --- /dev/null +++ b/demos/blocks_multiple_event_triggers/requirements.txt @@ -0,0 +1,2 @@ +plotly +pypistats \ No newline at end of file diff --git a/demos/blocks_multiple_event_triggers/run.ipynb b/demos/blocks_multiple_event_triggers/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1ada4f02c5276bfb454f57e163052181e5af9d93 --- /dev/null +++ b/demos/blocks_multiple_event_triggers/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_multiple_event_triggers"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio plotly pypistats"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pypistats\n", "from datetime import date\n", "from dateutil.relativedelta import relativedelta\n", "import pandas as pd\n", "\n", "def get_plot(lib, time):\n", " data = pypistats.overall(lib, total=True, format=\"pandas\")\n", " data = data.groupby(\"category\").get_group(\"with_mirrors\").sort_values(\"date\")\n", " start_date = date.today() - relativedelta(months=int(time.split(\" \")[0]))\n", " data = data[(data['date'] > str(start_date))]\n", " data.date = pd.to_datetime(pd.to_datetime(data.date))\n", " return gr.LinePlot(value=data, x=\"date\", y=\"downloads\",\n", " tooltip=['date', 'downloads'],\n", " title=f\"Pypi downloads of {lib} over last {time}\",\n", " overlay_point=True,\n", " height=400,\n", " width=900)\n", "\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\n", " \"\"\"\n", " ## Pypi Download Stats \ud83d\udcc8\n", " See live download stats for all of Hugging Face's open-source libraries \ud83e\udd17\n", " \"\"\")\n", " with gr.Row():\n", " lib = gr.Dropdown([\"transformers\", \"datasets\", \"huggingface-hub\", \"gradio\", \"accelerate\"],\n", " value=\"gradio\", label=\"Library\")\n", " time = gr.Dropdown([\"3 months\", \"6 months\", \"9 months\", \"12 months\"],\n", " value=\"3 months\", label=\"Downloads over the last...\")\n", "\n", " plt = gr.LinePlot()\n", " # You can add multiple event triggers in 2 lines like this\n", " for event in [lib.change, time.change, demo.load]:\n", " event(get_plot, [lib, time], [plt])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/blocks_multiple_event_triggers/run.py b/demos/blocks_multiple_event_triggers/run.py new file mode 100644 index 0000000000000000000000000000000000000000..a8340d8f760e90b0ce571c751cc2c98813e1dbca --- /dev/null +++ b/demos/blocks_multiple_event_triggers/run.py @@ -0,0 +1,39 @@ +import gradio as gr +import pypistats +from datetime import date +from dateutil.relativedelta import relativedelta +import pandas as pd + +def get_plot(lib, time): + data = pypistats.overall(lib, total=True, format="pandas") + data = data.groupby("category").get_group("with_mirrors").sort_values("date") + start_date = date.today() - relativedelta(months=int(time.split(" ")[0])) + data = data[(data['date'] > str(start_date))] + data.date = pd.to_datetime(pd.to_datetime(data.date)) + return gr.LinePlot(value=data, x="date", y="downloads", + tooltip=['date', 'downloads'], + title=f"Pypi downloads of {lib} over last {time}", + overlay_point=True, + height=400, + width=900) + + +with gr.Blocks() as demo: + gr.Markdown( + """ + ## Pypi Download Stats 📈 + See live download stats for all of Hugging Face's open-source libraries 🤗 + """) + with gr.Row(): + lib = gr.Dropdown(["transformers", "datasets", "huggingface-hub", "gradio", "accelerate"], + value="gradio", label="Library") + time = gr.Dropdown(["3 months", "6 months", "9 months", "12 months"], + value="3 months", label="Downloads over the last...") + + plt = gr.LinePlot() + # You can add multiple event triggers in 2 lines like this + for event in [lib.change, time.change, demo.load]: + event(get_plot, [lib, time], [plt]) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_update/run.ipynb b/demos/blocks_update/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..31eb77c2f3c4d6997da61c5f71e58c8643da98f8 --- /dev/null +++ b/demos/blocks_update/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_update"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\n", " \"\"\"\n", " # Animal Generator\n", " Once you select a species, the detail panel should be visible.\n", " \"\"\"\n", " )\n", "\n", " species = gr.Radio(label=\"Animal Class\", choices=[\"Mammal\", \"Fish\", \"Bird\"])\n", " animal = gr.Dropdown(label=\"Animal\", choices=[])\n", "\n", " with gr.Column(visible=False) as details_col:\n", " weight = gr.Slider(0, 20)\n", " details = gr.Textbox(label=\"Extra Details\")\n", " generate_btn = gr.Button(\"Generate\")\n", " output = gr.Textbox(label=\"Output\")\n", "\n", " species_map = {\n", " \"Mammal\": [\"Elephant\", \"Giraffe\", \"Hamster\"],\n", " \"Fish\": [\"Shark\", \"Salmon\", \"Tuna\"],\n", " \"Bird\": [\"Chicken\", \"Eagle\", \"Hawk\"],\n", " }\n", "\n", " def filter_species(species):\n", " return gr.Dropdown(\n", " choices=species_map[species], value=species_map[species][1]\n", " ), gr.Column(visible=True)\n", "\n", " species.change(filter_species, species, [animal, details_col])\n", "\n", " def filter_weight(animal):\n", " if animal in (\"Elephant\", \"Shark\", \"Giraffe\"):\n", " return gr.Slider(maximum=100)\n", " else:\n", " return gr.Slider(maximum=20)\n", "\n", " animal.change(filter_weight, animal, weight)\n", " weight.change(lambda w: gr.Textbox(lines=int(w / 10) + 1), weight, details)\n", "\n", " generate_btn.click(lambda x: x, details, output)\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/blocks_update/run.py b/demos/blocks_update/run.py new file mode 100644 index 0000000000000000000000000000000000000000..423a8d3dce27590f84d1a37ec9f31f2df0bde631 --- /dev/null +++ b/demos/blocks_update/run.py @@ -0,0 +1,46 @@ +import gradio as gr + +with gr.Blocks() as demo: + gr.Markdown( + """ + # Animal Generator + Once you select a species, the detail panel should be visible. + """ + ) + + species = gr.Radio(label="Animal Class", choices=["Mammal", "Fish", "Bird"]) + animal = gr.Dropdown(label="Animal", choices=[]) + + with gr.Column(visible=False) as details_col: + weight = gr.Slider(0, 20) + details = gr.Textbox(label="Extra Details") + generate_btn = gr.Button("Generate") + output = gr.Textbox(label="Output") + + species_map = { + "Mammal": ["Elephant", "Giraffe", "Hamster"], + "Fish": ["Shark", "Salmon", "Tuna"], + "Bird": ["Chicken", "Eagle", "Hawk"], + } + + def filter_species(species): + return gr.Dropdown( + choices=species_map[species], value=species_map[species][1] + ), gr.Column(visible=True) + + species.change(filter_species, species, [animal, details_col]) + + def filter_weight(animal): + if animal in ("Elephant", "Shark", "Giraffe"): + return gr.Slider(maximum=100) + else: + return gr.Slider(maximum=20) + + animal.change(filter_weight, animal, weight) + weight.change(lambda w: gr.Textbox(lines=int(w / 10) + 1), weight, details) + + generate_btn.click(lambda x: x, details, output) + + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/calculator/examples/log.csv b/demos/calculator/examples/log.csv new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/calculator/run.ipynb b/demos/calculator/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f43bbf4ce843d1b75f8b84cba738fcd9c7ba0ace --- /dev/null +++ b/demos/calculator/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: calculator"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('examples')\n", "!wget -q -O examples/log.csv https://github.com/gradio-app/gradio/raw/main/demo/calculator/examples/log.csv"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "#from foo import BAR\n", "#\n", "def calculator(num1, operation, num2):\n", " if operation == \"add\":\n", " return num1 + num2\n", " elif operation == \"subtract\":\n", " return num1 - num2\n", " elif operation == \"multiply\":\n", " return num1 * num2\n", " elif operation == \"divide\":\n", " if num2 == 0:\n", " raise gr.Error(\"Cannot divide by zero!\")\n", " return num1 / num2\n", "\n", "demo = gr.Interface(\n", " calculator,\n", " [\n", " \"number\", \n", " gr.Radio([\"add\", \"subtract\", \"multiply\", \"divide\"]),\n", " \"number\"\n", " ],\n", " \"number\",\n", " examples=[\n", " [45, \"add\", 3],\n", " [3.14, \"divide\", 2],\n", " [144, \"multiply\", 2.5],\n", " [0, \"subtract\", 1.2],\n", " ],\n", " title=\"Toy Calculator\",\n", " description=\"Here's a sample toy calculator. Allows you to calculate things like $2+2=4$\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/calculator/run.py b/demos/calculator/run.py new file mode 100644 index 0000000000000000000000000000000000000000..9ee04812fac61aa54de6f73d6cb1baff35110149 --- /dev/null +++ b/demos/calculator/run.py @@ -0,0 +1,35 @@ +import gradio as gr +#from foo import BAR +# +def calculator(num1, operation, num2): + if operation == "add": + return num1 + num2 + elif operation == "subtract": + return num1 - num2 + elif operation == "multiply": + return num1 * num2 + elif operation == "divide": + if num2 == 0: + raise gr.Error("Cannot divide by zero!") + return num1 / num2 + +demo = gr.Interface( + calculator, + [ + "number", + gr.Radio(["add", "subtract", "multiply", "divide"]), + "number" + ], + "number", + examples=[ + [45, "add", 3], + [3.14, "divide", 2], + [144, "multiply", 2.5], + [0, "subtract", 1.2], + ], + title="Toy Calculator", + description="Here's a sample toy calculator. Allows you to calculate things like $2+2=4$", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/calculator/screenshot.gif b/demos/calculator/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..8ae0d0494adf069b4e23cf30956b43262258021c --- /dev/null +++ b/demos/calculator/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3698fb03b6507ff954de47559f6830dfff88aa66487d2029a9bcf1c2f3762e08 +size 5718090 diff --git a/demos/cancel_events/run.ipynb b/demos/cancel_events/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c45edc3da683ee40f9aeb7a706ef0c55fc0c1acc --- /dev/null +++ b/demos/cancel_events/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "import atexit\n", "import pathlib\n", "\n", "log_file = pathlib.Path(__file__).parent / \"cancel_events_output_log.txt\"\n", "\n", "\n", "def fake_diffusion(steps):\n", " log_file.write_text(\"\")\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " with log_file.open(\"a\") as f:\n", " f.write(f\"Current step: {i}\\n\")\n", " time.sleep(0.2)\n", " yield str(i)\n", "\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Change\"\n", " )\n", " cancel_on_submit = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Submit\"\n", " )\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(\n", " sources=[\"webcam\"], label=\"Cancel on clear\", interactive=True\n", " )\n", " with gr.Column():\n", " video = gr.Video(\n", " sources=[\"webcam\"], label=\"Cancel on start recording\", interactive=True\n", " )\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(\n", " fn=long_prediction, inputs=[textbox], outputs=prediction\n", " )\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(\n", " lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event]\n", " )\n", " image.clear(None, None, None, cancels=[click_event, pred_event])\n", " video.start_recording(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", " atexit.register(lambda: log_file.unlink())\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/cancel_events/run.py b/demos/cancel_events/run.py new file mode 100644 index 0000000000000000000000000000000000000000..7c2d3b73c2a05e3c83ec3ff0fcf296f2f1d13752 --- /dev/null +++ b/demos/cancel_events/run.py @@ -0,0 +1,70 @@ +import time +import gradio as gr +import atexit +import pathlib + +log_file = pathlib.Path(__file__).parent / "cancel_events_output_log.txt" + + +def fake_diffusion(steps): + log_file.write_text("") + for i in range(steps): + print(f"Current step: {i}") + with log_file.open("a") as f: + f.write(f"Current step: {i}\n") + time.sleep(0.2) + yield str(i) + + +def long_prediction(*args, **kwargs): + time.sleep(10) + return 42 + + +with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + n = gr.Slider(1, 10, value=9, step=1, label="Number Steps") + run = gr.Button(value="Start Iterating") + output = gr.Textbox(label="Iterative Output") + stop = gr.Button(value="Stop Iterating") + with gr.Column(): + textbox = gr.Textbox(label="Prompt") + prediction = gr.Number(label="Expensive Calculation") + run_pred = gr.Button(value="Run Expensive Calculation") + with gr.Column(): + cancel_on_change = gr.Textbox( + label="Cancel Iteration and Expensive Calculation on Change" + ) + cancel_on_submit = gr.Textbox( + label="Cancel Iteration and Expensive Calculation on Submit" + ) + echo = gr.Textbox(label="Echo") + with gr.Row(): + with gr.Column(): + image = gr.Image( + sources=["webcam"], label="Cancel on clear", interactive=True + ) + with gr.Column(): + video = gr.Video( + sources=["webcam"], label="Cancel on start recording", interactive=True + ) + + click_event = run.click(fake_diffusion, n, output) + stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event]) + pred_event = run_pred.click( + fn=long_prediction, inputs=[textbox], outputs=prediction + ) + + cancel_on_change.change(None, None, None, cancels=[click_event, pred_event]) + cancel_on_submit.submit( + lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event] + ) + image.clear(None, None, None, cancels=[click_event, pred_event]) + video.start_recording(None, None, None, cancels=[click_event, pred_event]) + + demo.queue(max_size=20) + atexit.register(lambda: log_file.unlink()) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/chatbot_multimodal/files/avatar.png b/demos/chatbot_multimodal/files/avatar.png new file mode 100644 index 0000000000000000000000000000000000000000..8f1df7156f0a690a2415903061e19c20e24adac4 Binary files /dev/null and b/demos/chatbot_multimodal/files/avatar.png differ diff --git a/demos/chatbot_multimodal/messages_testcase.py b/demos/chatbot_multimodal/messages_testcase.py new file mode 100644 index 0000000000000000000000000000000000000000..bb61b2113f55641dae235d812400d0a570f2a0f0 --- /dev/null +++ b/demos/chatbot_multimodal/messages_testcase.py @@ -0,0 +1,45 @@ +import gradio as gr +import time + +# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text. + + +def print_like_dislike(x: gr.LikeData): + print(x.index, x.value, x.liked) + +def add_message(history, message): + for x in message["files"]: + history.append({"role": "user", "content": {"path": x}}) + if message["text"] is not None: + history.append({"role": "user", "content": message["text"]}) + return history, gr.MultimodalTextbox(value=None, interactive=False) + +def bot(history: list): + response = "**That's cool!**" + history.append({"role": "assistant", "content": ""}) + for character in response: + history[-1]['content'] += character + time.sleep(0.05) + yield history + +with gr.Blocks() as demo: + chatbot = gr.Chatbot( + [], + elem_id="chatbot", + bubble_full_width=False, + type="messages" + ) + + chat_input = gr.MultimodalTextbox(interactive=True, + file_count="multiple", + placeholder="Enter message or upload file...", show_label=False) + + chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) + bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") + bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) + + chatbot.like(print_like_dislike, None, None) + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/chatbot_multimodal/requirements.txt b/demos/chatbot_multimodal/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..d42d0ad03bdf8ecf9756a38df5cedf8fe431db79 --- /dev/null +++ b/demos/chatbot_multimodal/requirements.txt @@ -0,0 +1 @@ +plotly \ No newline at end of file diff --git a/demos/chatbot_multimodal/run.ipynb b/demos/chatbot_multimodal/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..8ed6d1ec514e26537e83eec7dc5dca11b77d50e5 --- /dev/null +++ b/demos/chatbot_multimodal/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: chatbot_multimodal"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio plotly"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/avatar.png https://github.com/gradio-app/gradio/raw/main/demo/chatbot_multimodal/files/avatar.png\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/chatbot_multimodal/messages_testcase.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "import plotly.express as px\n", "\n", "# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.\n", "\n", "def random_plot():\n", " df = px.data.iris()\n", " fig = px.scatter(df, x=\"sepal_width\", y=\"sepal_length\", color=\"species\",\n", " size='petal_length', hover_data=['petal_width'])\n", " return fig\n", "\n", "def print_like_dislike(x: gr.LikeData):\n", " print(x.index, x.value, x.liked)\n", "\n", "def add_message(history, message):\n", " for x in message[\"files\"]:\n", " history.append(((x,), None))\n", " if message[\"text\"] is not None:\n", " history.append((message[\"text\"], None))\n", " return history, gr.MultimodalTextbox(value=None, interactive=False)\n", "\n", "def bot(history):\n", " history[-1][1] = \"Cool!\"\n", " return history\n", "\n", "fig = random_plot()\n", "\n", "with gr.Blocks(fill_height=True) as demo:\n", " chatbot = gr.Chatbot(\n", " elem_id=\"chatbot\",\n", " bubble_full_width=False,\n", " scale=1,\n", " )\n", "\n", " chat_input = gr.MultimodalTextbox(interactive=True,\n", " file_count=\"multiple\",\n", " placeholder=\"Enter message or upload file...\", show_label=False)\n", "\n", " chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])\n", " bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name=\"bot_response\")\n", " bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])\n", "\n", " chatbot.like(print_like_dislike, None, None)\n", "\n", "demo.queue()\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/chatbot_multimodal/run.py b/demos/chatbot_multimodal/run.py new file mode 100644 index 0000000000000000000000000000000000000000..5d6682bcfb9f2e1283e358a8140975f350197363 --- /dev/null +++ b/demos/chatbot_multimodal/run.py @@ -0,0 +1,48 @@ +import gradio as gr +import os +import plotly.express as px + +# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text. + +def random_plot(): + df = px.data.iris() + fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", + size='petal_length', hover_data=['petal_width']) + return fig + +def print_like_dislike(x: gr.LikeData): + print(x.index, x.value, x.liked) + +def add_message(history, message): + for x in message["files"]: + history.append(((x,), None)) + if message["text"] is not None: + history.append((message["text"], None)) + return history, gr.MultimodalTextbox(value=None, interactive=False) + +def bot(history): + history[-1][1] = "Cool!" + return history + +fig = random_plot() + +with gr.Blocks(fill_height=True) as demo: + chatbot = gr.Chatbot( + elem_id="chatbot", + bubble_full_width=False, + scale=1, + ) + + chat_input = gr.MultimodalTextbox(interactive=True, + file_count="multiple", + placeholder="Enter message or upload file...", show_label=False) + + chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) + bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") + bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) + + chatbot.like(print_like_dislike, None, None) + +demo.queue() +if __name__ == "__main__": + demo.launch() diff --git a/demos/chatinterface_streaming_echo/messages_testcase.py b/demos/chatinterface_streaming_echo/messages_testcase.py new file mode 100644 index 0000000000000000000000000000000000000000..b2b3df8c154b3d3b3b2c20f5176ec2b34d7da527 --- /dev/null +++ b/demos/chatinterface_streaming_echo/messages_testcase.py @@ -0,0 +1,15 @@ +import time +import gradio as gr + + +def slow_echo(message, history): + for i in range(len(message)): + time.sleep(0.05) + yield "You typed: " + message[: i + 1] + + + +demo = gr.ChatInterface(slow_echo, type="messages") + +if __name__ == "__main__": + demo.launch() diff --git a/demos/chatinterface_streaming_echo/run.ipynb b/demos/chatinterface_streaming_echo/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..eea4f3041ce54abd82117808736b047ff87a90b3 --- /dev/null +++ b/demos/chatinterface_streaming_echo/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: chatinterface_streaming_echo"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/chatinterface_streaming_echo/messages_testcase.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "\n", "\n", "def slow_echo(message, history):\n", " for i in range(len(message)):\n", " time.sleep(0.05)\n", " yield \"You typed: \" + message[: i + 1]\n", "\n", "\n", "demo = gr.ChatInterface(slow_echo)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/chatinterface_streaming_echo/run.py b/demos/chatinterface_streaming_echo/run.py new file mode 100644 index 0000000000000000000000000000000000000000..e1ed7a692d4b705f11e4f508aab308c13f9a7f5f --- /dev/null +++ b/demos/chatinterface_streaming_echo/run.py @@ -0,0 +1,14 @@ +import time +import gradio as gr + + +def slow_echo(message, history): + for i in range(len(message)): + time.sleep(0.05) + yield "You typed: " + message[: i + 1] + + +demo = gr.ChatInterface(slow_echo) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/clear_components/__init__.py b/demos/clear_components/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/clear_components/run.ipynb b/demos/clear_components/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..2626d2b273a8565b516e925d1f9c450332c5173f --- /dev/null +++ b/demos/clear_components/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: clear_components"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/clear_components/__init__.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from datetime import datetime\n", "import os\n", "import random\n", "import string\n", "import pandas as pd\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "\n", "def random_plot():\n", " start_year = 2020\n", " x = np.arange(start_year, start_year + 5)\n", " year_count = x.shape[0]\n", " plt_format = \"-\"\n", " fig = plt.figure()\n", " ax = fig.add_subplot(111)\n", " series = np.arange(0, year_count, dtype=float)\n", " series = series**2\n", " series += np.random.rand(year_count)\n", " ax.plot(x, series, plt_format)\n", " return fig\n", "\n", "\n", "images = [\n", " \"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80\",\n", " \"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80\",\n", " \"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80\",\n", "]\n", "file_dir = os.path.join(os.path.abspath(''), \"..\", \"kitchen_sink\", \"files\")\n", "model3d_dir = os.path.join(os.path.abspath(''), \"..\", \"model3D\", \"files\")\n", "highlighted_text_output_1 = [\n", " {\n", " \"entity\": \"I-LOC\",\n", " \"score\": 0.9988978,\n", " \"index\": 2,\n", " \"word\": \"Chicago\",\n", " \"start\": 5,\n", " \"end\": 12,\n", " },\n", " {\n", " \"entity\": \"I-MISC\",\n", " \"score\": 0.9958592,\n", " \"index\": 5,\n", " \"word\": \"Pakistani\",\n", " \"start\": 22,\n", " \"end\": 31,\n", " },\n", "]\n", "highlighted_text_output_2 = [\n", " {\n", " \"entity\": \"I-LOC\",\n", " \"score\": 0.9988978,\n", " \"index\": 2,\n", " \"word\": \"Chicago\",\n", " \"start\": 5,\n", " \"end\": 12,\n", " },\n", " {\n", " \"entity\": \"I-LOC\",\n", " \"score\": 0.9958592,\n", " \"index\": 5,\n", " \"word\": \"Pakistan\",\n", " \"start\": 22,\n", " \"end\": 30,\n", " },\n", "]\n", "\n", "highlighted_text = \"Does Chicago have any Pakistani restaurants\"\n", "\n", "\n", "def random_model3d():\n", " model_3d = random.choice(\n", " [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != \"source.txt\"]\n", " )\n", " return model_3d\n", "\n", "\n", "\n", "components = [\n", " gr.Textbox(value=lambda: datetime.now(), label=\"Current Time\"),\n", " gr.Number(value=lambda: random.random(), label=\"Random Percentage\"),\n", " gr.Slider(minimum=0, maximum=100, randomize=True, label=\"Slider with randomize\"),\n", " gr.Slider(\n", " minimum=0,\n", " maximum=1,\n", " value=lambda: random.random(),\n", " label=\"Slider with value func\",\n", " ),\n", " gr.Checkbox(value=lambda: random.random() > 0.5, label=\"Random Checkbox\"),\n", " gr.CheckboxGroup(\n", " choices=[\"a\", \"b\", \"c\", \"d\"],\n", " value=lambda: random.choice([\"a\", \"b\", \"c\", \"d\"]),\n", " label=\"Random CheckboxGroup\",\n", " ),\n", " gr.Radio(\n", " choices=list(string.ascii_lowercase),\n", " value=lambda: random.choice(string.ascii_lowercase),\n", " ),\n", " gr.Dropdown(\n", " choices=[\"a\", \"b\", \"c\", \"d\", \"e\"],\n", " value=lambda: random.choice([\"a\", \"b\", \"c\"]),\n", " ),\n", " gr.Image(\n", " value=lambda: random.choice(images)\n", " ),\n", " gr.Video(value=lambda: os.path.join(file_dir, \"world.mp4\")),\n", " gr.Audio(value=lambda: os.path.join(file_dir, \"cantina.wav\")),\n", " gr.File(\n", " value=lambda: random.choice(\n", " [os.path.join(file_dir, img) for img in os.listdir(file_dir)]\n", " )\n", " ),\n", " gr.Dataframe(\n", " value=lambda: pd.DataFrame({\"random_number_rows\": range(5)}, columns=[\"one\", \"two\", \"three\"]) # type: ignore\n", " ),\n", " gr.ColorPicker(value=lambda: random.choice([\"#000000\", \"#ff0000\", \"#0000FF\"])),\n", " gr.Label(value=lambda: random.choice([\"Pedestrian\", \"Car\", \"Cyclist\"])),\n", " gr.HighlightedText(\n", " value=lambda: random.choice(\n", " [\n", " {\"text\": highlighted_text, \"entities\": highlighted_text_output_1},\n", " {\"text\": highlighted_text, \"entities\": highlighted_text_output_2},\n", " ]\n", " ),\n", " ),\n", " gr.JSON(value=lambda: random.choice([{\"a\": 1}, {\"b\": 2}])),\n", " gr.HTML(\n", " value=lambda: random.choice(\n", " [\n", " '
I am red
',\n", " 'I am blue
',\n", " ]\n", " )\n", " ),\n", " gr.Gallery(\n", " value=lambda: images\n", " ),\n", " gr.Model3D(value=random_model3d),\n", " gr.Plot(value=random_plot),\n", " gr.Markdown(value=lambda: f\"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}\"),\n", "]\n", "\n", "\n", "def evaluate_values(*args):\n", " are_false = []\n", " for a in args:\n", " if isinstance(a, (pd.DataFrame, np.ndarray)):\n", " are_false.append(not a.any().any()) # type: ignore\n", " elif isinstance(a, str) and a.startswith(\"#\"):\n", " are_false.append(a == \"#000000\")\n", " else:\n", " are_false.append(not a)\n", " return all(are_false)\n", "\n", "\n", "with gr.Blocks() as demo:\n", " for i, component in enumerate(components):\n", " component.label = f\"component_{str(i).zfill(2)}\"\n", " component.render()\n", " clear = gr.ClearButton(value=\"Clear\", components=components)\n", " result = gr.Textbox(label=\"Are all cleared?\")\n", " hide = gr.Button(value=\"Hide\")\n", " reveal = gr.Button(value=\"Reveal\")\n", " clear_button_and_components = components + [clear]\n", " hide.click(\n", " lambda: [c.__class__(visible=False) for c in clear_button_and_components],\n", " inputs=[],\n", " outputs=clear_button_and_components\n", " )\n", " reveal.click(\n", " lambda: [c.__class__(visible=True) for c in clear_button_and_components],\n", " inputs=[],\n", " outputs=clear_button_and_components\n", " )\n", " get_value = gr.Button(value=\"Get Values\")\n", " get_value.click(evaluate_values, components, result)\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/clear_components/run.py b/demos/clear_components/run.py new file mode 100644 index 0000000000000000000000000000000000000000..92e50211e0b570705b2a17c14e40eb474dfa5ad2 --- /dev/null +++ b/demos/clear_components/run.py @@ -0,0 +1,183 @@ +import gradio as gr +from datetime import datetime +import os +import random +import string +import pandas as pd + +import numpy as np +import matplotlib.pyplot as plt + + + +def random_plot(): + start_year = 2020 + x = np.arange(start_year, start_year + 5) + year_count = x.shape[0] + plt_format = "-" + fig = plt.figure() + ax = fig.add_subplot(111) + series = np.arange(0, year_count, dtype=float) + series = series**2 + series += np.random.rand(year_count) + ax.plot(x, series, plt_format) + return fig + + +images = [ + "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80", + "https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80", + "https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80", +] +file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files") +model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files") +highlighted_text_output_1 = [ + { + "entity": "I-LOC", + "score": 0.9988978, + "index": 2, + "word": "Chicago", + "start": 5, + "end": 12, + }, + { + "entity": "I-MISC", + "score": 0.9958592, + "index": 5, + "word": "Pakistani", + "start": 22, + "end": 31, + }, +] +highlighted_text_output_2 = [ + { + "entity": "I-LOC", + "score": 0.9988978, + "index": 2, + "word": "Chicago", + "start": 5, + "end": 12, + }, + { + "entity": "I-LOC", + "score": 0.9958592, + "index": 5, + "word": "Pakistan", + "start": 22, + "end": 30, + }, +] + +highlighted_text = "Does Chicago have any Pakistani restaurants" + + +def random_model3d(): + model_3d = random.choice( + [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"] + ) + return model_3d + + + +components = [ + gr.Textbox(value=lambda: datetime.now(), label="Current Time"), + gr.Number(value=lambda: random.random(), label="Random Percentage"), + gr.Slider(minimum=0, maximum=100, randomize=True, label="Slider with randomize"), + gr.Slider( + minimum=0, + maximum=1, + value=lambda: random.random(), + label="Slider with value func", + ), + gr.Checkbox(value=lambda: random.random() > 0.5, label="Random Checkbox"), + gr.CheckboxGroup( + choices=["a", "b", "c", "d"], + value=lambda: random.choice(["a", "b", "c", "d"]), + label="Random CheckboxGroup", + ), + gr.Radio( + choices=list(string.ascii_lowercase), + value=lambda: random.choice(string.ascii_lowercase), + ), + gr.Dropdown( + choices=["a", "b", "c", "d", "e"], + value=lambda: random.choice(["a", "b", "c"]), + ), + gr.Image( + value=lambda: random.choice(images) + ), + gr.Video(value=lambda: os.path.join(file_dir, "world.mp4")), + gr.Audio(value=lambda: os.path.join(file_dir, "cantina.wav")), + gr.File( + value=lambda: random.choice( + [os.path.join(file_dir, img) for img in os.listdir(file_dir)] + ) + ), + gr.Dataframe( + value=lambda: pd.DataFrame({"random_number_rows": range(5)}, columns=["one", "two", "three"]) # type: ignore + ), + gr.ColorPicker(value=lambda: random.choice(["#000000", "#ff0000", "#0000FF"])), + gr.Label(value=lambda: random.choice(["Pedestrian", "Car", "Cyclist"])), + gr.HighlightedText( + value=lambda: random.choice( + [ + {"text": highlighted_text, "entities": highlighted_text_output_1}, + {"text": highlighted_text, "entities": highlighted_text_output_2}, + ] + ), + ), + gr.JSON(value=lambda: random.choice([{"a": 1}, {"b": 2}])), + gr.HTML( + value=lambda: random.choice( + [ + 'I am red
', + 'I am blue
', + ] + ) + ), + gr.Gallery( + value=lambda: images + ), + gr.Model3D(value=random_model3d), + gr.Plot(value=random_plot), + gr.Markdown(value=lambda: f"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}"), +] + + +def evaluate_values(*args): + are_false = [] + for a in args: + if isinstance(a, (pd.DataFrame, np.ndarray)): + are_false.append(not a.any().any()) # type: ignore + elif isinstance(a, str) and a.startswith("#"): + are_false.append(a == "#000000") + else: + are_false.append(not a) + return all(are_false) + + +with gr.Blocks() as demo: + for i, component in enumerate(components): + component.label = f"component_{str(i).zfill(2)}" + component.render() + clear = gr.ClearButton(value="Clear", components=components) + result = gr.Textbox(label="Are all cleared?") + hide = gr.Button(value="Hide") + reveal = gr.Button(value="Reveal") + clear_button_and_components = components + [clear] + hide.click( + lambda: [c.__class__(visible=False) for c in clear_button_and_components], + inputs=[], + outputs=clear_button_and_components + ) + reveal.click( + lambda: [c.__class__(visible=True) for c in clear_button_and_components], + inputs=[], + outputs=clear_button_and_components + ) + get_value = gr.Button(value="Get Values") + get_value.click(evaluate_values, components, result) + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/code/file.css b/demos/code/file.css new file mode 100644 index 0000000000000000000000000000000000000000..abc61b61cbb2045ad539bb1cc23c232a97aab8ee --- /dev/null +++ b/demos/code/file.css @@ -0,0 +1,11 @@ +.class { + color: blue; +} + +#id { + color: pink; +} + +div { + color: purple; +} \ No newline at end of file diff --git a/demos/code/run.ipynb b/demos/code/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..06f147924fcc15631e2a610b2476cfe5bfeaf9cc --- /dev/null +++ b/demos/code/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: code"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/code/file.css"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "from time import sleep\n", "\n", "\n", "css_file = os.path.join(os.path.abspath(''), \"file.css\")\n", "\n", "\n", "def set_lang(language):\n", " print(language)\n", " return gr.Code(language=language)\n", "\n", "\n", "def set_lang_from_path():\n", " sleep(1)\n", " return gr.Code((css_file,), language=\"css\")\n", "\n", "\n", "def code(language, code):\n", " return gr.Code(code, language=language)\n", "\n", "\n", "io = gr.Interface(lambda x: x, \"code\", \"code\")\n", "\n", "with gr.Blocks() as demo:\n", " lang = gr.Dropdown(value=\"python\", choices=gr.Code.languages)\n", " with gr.Row():\n", " code_in = gr.Code(\n", " language=\"python\",\n", " label=\"Input\",\n", " value='def all_odd_elements(sequence):\\n \"\"\"Returns every odd element of the sequence.\"\"\"',\n", " )\n", " code_out = gr.Code(label=\"Output\")\n", " btn = gr.Button(\"Run\")\n", " btn_two = gr.Button(\"Load File\")\n", "\n", " lang.change(set_lang, inputs=lang, outputs=code_in)\n", " btn.click(code, inputs=[lang, code_in], outputs=code_out)\n", " btn_two.click(set_lang_from_path, inputs=None, outputs=code_out)\n", " io.render()\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/code/run.py b/demos/code/run.py new file mode 100644 index 0000000000000000000000000000000000000000..7a2aa6f1ee9bad7a6d248a5951a10821499ae7d1 --- /dev/null +++ b/demos/code/run.py @@ -0,0 +1,43 @@ +import gradio as gr +import os +from time import sleep + + +css_file = os.path.join(os.path.dirname(__file__), "file.css") + + +def set_lang(language): + print(language) + return gr.Code(language=language) + + +def set_lang_from_path(): + sleep(1) + return gr.Code((css_file,), language="css") + + +def code(language, code): + return gr.Code(code, language=language) + + +io = gr.Interface(lambda x: x, "code", "code") + +with gr.Blocks() as demo: + lang = gr.Dropdown(value="python", choices=gr.Code.languages) + with gr.Row(): + code_in = gr.Code( + language="python", + label="Input", + value='def all_odd_elements(sequence):\n """Returns every odd element of the sequence."""', + ) + code_out = gr.Code(label="Output") + btn = gr.Button("Run") + btn_two = gr.Button("Load File") + + lang.change(set_lang, inputs=lang, outputs=code_in) + btn.click(code, inputs=[lang, code_in], outputs=code_out) + btn_two.click(set_lang_from_path, inputs=None, outputs=code_out) + io.render() + +if __name__ == "__main__": + demo.launch() diff --git a/demos/fake_diffusion_with_gif/run.ipynb b/demos/fake_diffusion_with_gif/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..0df082ac51f379edc3945e3f7f4b9c2be7626cd4 --- /dev/null +++ b/demos/fake_diffusion_with_gif/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fake_diffusion_with_gif"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import time\n", "import os\n", "from PIL import Image\n", "import requests\n", "from io import BytesIO\n", "\n", "\n", "def create_gif(images):\n", " pil_images = []\n", " for image in images:\n", " if isinstance(image, str):\n", " response = requests.get(image)\n", " image = Image.open(BytesIO(response.content))\n", " else:\n", " image = Image.fromarray((image * 255).astype(np.uint8))\n", " pil_images.append(image)\n", " fp_out = os.path.join(os.path.abspath(''), \"image.gif\")\n", " img = pil_images.pop(0)\n", " img.save(fp=fp_out, format='GIF', append_images=pil_images,\n", " save_all=True, duration=400, loop=0)\n", " return fp_out\n", "\n", "\n", "def fake_diffusion(steps):\n", " rng = np.random.default_rng()\n", " images = []\n", " for _ in range(steps):\n", " time.sleep(1)\n", " image = rng.random((600, 600, 3))\n", " images.append(image)\n", " yield image, gr.Image(visible=False)\n", "\n", " time.sleep(1)\n", " image = \"https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg\"\n", " images.append(image)\n", " gif_path = create_gif(images)\n", "\n", " yield image, gr.Image(value=gif_path, visible=True)\n", "\n", "\n", "demo = gr.Interface(fake_diffusion,\n", " inputs=gr.Slider(1, 10, 3, step=1),\n", " outputs=[\"image\", gr.Image(label=\"All Images\", visible=False)])\n", "demo.queue()\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/fake_diffusion_with_gif/run.py b/demos/fake_diffusion_with_gif/run.py new file mode 100644 index 0000000000000000000000000000000000000000..20b87cc1c3eed8c381385cb39c45681c92854828 --- /dev/null +++ b/demos/fake_diffusion_with_gif/run.py @@ -0,0 +1,49 @@ +import gradio as gr +import numpy as np +import time +import os +from PIL import Image +import requests +from io import BytesIO + + +def create_gif(images): + pil_images = [] + for image in images: + if isinstance(image, str): + response = requests.get(image) + image = Image.open(BytesIO(response.content)) + else: + image = Image.fromarray((image * 255).astype(np.uint8)) + pil_images.append(image) + fp_out = os.path.join(os.path.dirname(__file__), "image.gif") + img = pil_images.pop(0) + img.save(fp=fp_out, format='GIF', append_images=pil_images, + save_all=True, duration=400, loop=0) + return fp_out + + +def fake_diffusion(steps): + rng = np.random.default_rng() + images = [] + for _ in range(steps): + time.sleep(1) + image = rng.random((600, 600, 3)) + images.append(image) + yield image, gr.Image(visible=False) + + time.sleep(1) + image = "https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg" + images.append(image) + gif_path = create_gif(images) + + yield image, gr.Image(value=gif_path, visible=True) + + +demo = gr.Interface(fake_diffusion, + inputs=gr.Slider(1, 10, 3, step=1), + outputs=["image", gr.Image(label="All Images", visible=False)]) +demo.queue() + +if __name__ == "__main__": + demo.launch() diff --git a/demos/fake_gan/DESCRIPTION.md b/demos/fake_gan/DESCRIPTION.md new file mode 100644 index 0000000000000000000000000000000000000000..2eb2efc0f04eb97bb167e391ab7aa8f5dea8e3b4 --- /dev/null +++ b/demos/fake_gan/DESCRIPTION.md @@ -0,0 +1 @@ +This is a fake GAN that shows how to create a text-to-image interface for image generation. Check out the Stable Diffusion demo for more: https://hf.co/spaces/stabilityai/stable-diffusion/ \ No newline at end of file diff --git a/demos/fake_gan/run.ipynb b/demos/fake_gan/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f03cfa9dbc7bbf6b214944702ccdd874002207d9 --- /dev/null +++ b/demos/fake_gan/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fake_gan\n", "### This is a fake GAN that shows how to create a text-to-image interface for image generation. Check out the Stable Diffusion demo for more: https://hf.co/spaces/stabilityai/stable-diffusion/\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# This demo needs to be run from the repo folder.\n", "# python demo/fake_gan/run.py\n", "import random\n", "\n", "import gradio as gr\n", "\n", "\n", "def fake_gan():\n", " images = [\n", " (random.choice(\n", " [\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-1151ce9f4b2043de0d2e3b7826127998.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-116b5e92936b766b7fdfc242649337f7.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-1163530ca19b5cebe1b002b8ec67b6fc.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-1116395d6e6a6581eef8b8038f4c8e55.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-11319be65db395d0e8e6855d18ddcef0.jpg\",\n", " ]\n", " ), f\"label {i}\")\n", " for i in range(3)\n", " ]\n", " return images\n", "\n", "\n", "with gr.Blocks() as demo:\n", " gallery = gr.Gallery(\n", " label=\"Generated images\", show_label=False, elem_id=\"gallery\"\n", " , columns=[3], rows=[1], object_fit=\"contain\", height=\"auto\")\n", " btn = gr.Button(\"Generate images\", scale=0)\n", "\n", " btn.click(fake_gan, None, gallery)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/fake_gan/run.py b/demos/fake_gan/run.py new file mode 100644 index 0000000000000000000000000000000000000000..b3ea489cee0f42b6bc26b4809ba7c62dba54d1f6 --- /dev/null +++ b/demos/fake_gan/run.py @@ -0,0 +1,33 @@ +# This demo needs to be run from the repo folder. +# python demo/fake_gan/run.py +import random + +import gradio as gr + + +def fake_gan(): + images = [ + (random.choice( + [ + "http://www.marketingtool.online/en/face-generator/img/faces/avatar-1151ce9f4b2043de0d2e3b7826127998.jpg", + "http://www.marketingtool.online/en/face-generator/img/faces/avatar-116b5e92936b766b7fdfc242649337f7.jpg", + "http://www.marketingtool.online/en/face-generator/img/faces/avatar-1163530ca19b5cebe1b002b8ec67b6fc.jpg", + "http://www.marketingtool.online/en/face-generator/img/faces/avatar-1116395d6e6a6581eef8b8038f4c8e55.jpg", + "http://www.marketingtool.online/en/face-generator/img/faces/avatar-11319be65db395d0e8e6855d18ddcef0.jpg", + ] + ), f"label {i}") + for i in range(3) + ] + return images + + +with gr.Blocks() as demo: + gallery = gr.Gallery( + label="Generated images", show_label=False, elem_id="gallery" + , columns=[3], rows=[1], object_fit="contain", height="auto") + btn = gr.Button("Generate images", scale=0) + + btn.click(fake_gan, None, gallery) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/file_explorer_component_events/dir1/bar.txt b/demos/file_explorer_component_events/dir1/bar.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir1/foo.txt b/demos/file_explorer_component_events/dir1/foo.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir2/baz.png b/demos/file_explorer_component_events/dir2/baz.png new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir2/foo.png b/demos/file_explorer_component_events/dir2/foo.png new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir3/dir3_bar.log b/demos/file_explorer_component_events/dir3/dir3_bar.log new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir3/dir3_foo.txt b/demos/file_explorer_component_events/dir3/dir3_foo.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir3/dir4/dir5/dir5_foo.txt b/demos/file_explorer_component_events/dir3/dir4/dir5/dir5_foo.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir3/dir4/dir7/dir7_foo.txt b/demos/file_explorer_component_events/dir3/dir4/dir7/dir7_foo.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir3/dir4/dir_4_bar.log b/demos/file_explorer_component_events/dir3/dir4/dir_4_bar.log new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/dir3/dir4/dir_4_foo.txt b/demos/file_explorer_component_events/dir3/dir4/dir_4_foo.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/file_explorer_component_events/run.ipynb b/demos/file_explorer_component_events/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..8dc663c498903a767fd517b5e2964aec72cd2fb3 --- /dev/null +++ b/demos/file_explorer_component_events/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: file_explorer_component_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('dir1')\n", "!wget -q -O dir1/bar.txt https://github.com/gradio-app/gradio/raw/main/demo/file_explorer_component_events/dir1/bar.txt\n", "!wget -q -O dir1/foo.txt https://github.com/gradio-app/gradio/raw/main/demo/file_explorer_component_events/dir1/foo.txt\n", "os.mkdir('dir2')\n", "!wget -q -O dir2/baz.png https://github.com/gradio-app/gradio/raw/main/demo/file_explorer_component_events/dir2/baz.png\n", "!wget -q -O dir2/foo.png https://github.com/gradio-app/gradio/raw/main/demo/file_explorer_component_events/dir2/foo.png\n", "os.mkdir('dir3')\n", "!wget -q -O dir3/dir3_bar.log https://github.com/gradio-app/gradio/raw/main/demo/file_explorer_component_events/dir3/dir3_bar.log\n", "!wget -q -O dir3/dir3_foo.txt https://github.com/gradio-app/gradio/raw/main/demo/file_explorer_component_events/dir3/dir3_foo.txt\n", "!wget -q -O dir3/dir4 https://github.com/gradio-app/gradio/raw/main/demo/file_explorer_component_events/dir3/dir4"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from pathlib import Path\n", "\n", "base_root = Path(__file__).parent.resolve()\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " dd = gr.Dropdown(label=\"Select File Explorer Root\",\n", " value=str(base_root / \"dir1\"),\n", " choices=[str(base_root / \"dir1\"), str(base_root / \"dir2\"),\n", " str(base_root / \"dir3\")])\n", " with gr.Group():\n", " txt_only_glob = gr.Checkbox(label=\"Show only text files\", value=False)\n", " ignore_txt_in_glob = gr.Checkbox(label=\"Ignore text files in glob\", value=False)\n", "\n", " fe = gr.FileExplorer(root_dir=str(base_root / \"dir1\"),\n", " glob=\"**/*\", interactive=True)\n", " textbox = gr.Textbox(label=\"Selected Directory\")\n", " run = gr.Button(\"Run\")\n", " total_changes = gr.Number(0, elem_id=\"total-changes\")\n", " \n", " txt_only_glob.select(lambda s: gr.FileExplorer(glob=\"*.txt\" if s else \"*\") ,\n", " inputs=[txt_only_glob], outputs=[fe])\n", " ignore_txt_in_glob.select(lambda s: gr.FileExplorer(ignore_glob=\"*.txt\" if s else None),\n", " inputs=[ignore_txt_in_glob], outputs=[fe]) \n", "\n", " dd.select(lambda s: gr.FileExplorer(root=s), inputs=[dd], outputs=[fe])\n", " run.click(lambda s: \",\".join(s) if isinstance(s, list) else s, inputs=[fe], outputs=[textbox])\n", " fe.change(lambda num: num + 1, inputs=total_changes, outputs=total_changes)\n", "\n", " with gr.Row():\n", " a = gr.Textbox(elem_id=\"input-box\")\n", " a.change(lambda x: x, inputs=[a])\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/file_explorer_component_events/run.py b/demos/file_explorer_component_events/run.py new file mode 100644 index 0000000000000000000000000000000000000000..c991bc9e55f6c843013f63de7f317cf41e2bc75d --- /dev/null +++ b/demos/file_explorer_component_events/run.py @@ -0,0 +1,37 @@ +import gradio as gr +from pathlib import Path + +base_root = Path(__file__).parent.resolve() + +with gr.Blocks() as demo: + with gr.Row(): + dd = gr.Dropdown(label="Select File Explorer Root", + value=str(base_root / "dir1"), + choices=[str(base_root / "dir1"), str(base_root / "dir2"), + str(base_root / "dir3")]) + with gr.Group(): + txt_only_glob = gr.Checkbox(label="Show only text files", value=False) + ignore_txt_in_glob = gr.Checkbox(label="Ignore text files in glob", value=False) + + fe = gr.FileExplorer(root_dir=str(base_root / "dir1"), + glob="**/*", interactive=True) + textbox = gr.Textbox(label="Selected Directory") + run = gr.Button("Run") + total_changes = gr.Number(0, elem_id="total-changes") + + txt_only_glob.select(lambda s: gr.FileExplorer(glob="*.txt" if s else "*") , + inputs=[txt_only_glob], outputs=[fe]) + ignore_txt_in_glob.select(lambda s: gr.FileExplorer(ignore_glob="*.txt" if s else None), + inputs=[ignore_txt_in_glob], outputs=[fe]) + + dd.select(lambda s: gr.FileExplorer(root=s), inputs=[dd], outputs=[fe]) + run.click(lambda s: ",".join(s) if isinstance(s, list) else s, inputs=[fe], outputs=[textbox]) + fe.change(lambda num: num + 1, inputs=total_changes, outputs=total_changes) + + with gr.Row(): + a = gr.Textbox(elem_id="input-box") + a.change(lambda x: x, inputs=[a]) + + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/image_editor_events/run.ipynb b/demos/image_editor_events/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..7db9c7a6de56e7fec136fd9eed31e4ff625e65e1 --- /dev/null +++ b/demos/image_editor_events/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_editor_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "\n", "def predict(im):\n", " return im[\"composite\"]\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Group():\n", " with gr.Row():\n", " im = gr.ImageEditor(\n", " type=\"numpy\",\n", " crop_size=\"1:1\",\n", " elem_id=\"image_editor\",\n", " )\n", " im_preview = gr.Image()\n", " with gr.Group():\n", " with gr.Row():\n", "\n", " n_upload = gr.Label(\n", " 0,\n", " label=\"upload\",\n", " elem_id=\"upload\",\n", " )\n", " n_change = gr.Label(\n", " 0,\n", " label=\"change\",\n", " elem_id=\"change\",\n", " )\n", " n_input = gr.Label(\n", " 0,\n", " label=\"input\",\n", " elem_id=\"input\",\n", " )\n", " n_apply = gr.Label(\n", " 0,\n", " label=\"apply\",\n", " elem_id=\"apply\",\n", " )\n", " clear_btn = gr.Button(\"Clear\", elem_id=\"clear\")\n", "\n", " im.upload(\n", " lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress=\"hidden\"\n", " )\n", " im.change(\n", " lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress=\"hidden\"\n", " )\n", " im.input(\n", " lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress=\"hidden\"\n", " )\n", " im.apply(\n", " lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress=\"hidden\"\n", " )\n", " im.change(predict, outputs=im_preview, inputs=im, show_progress=\"hidden\")\n", " clear_btn.click(\n", " lambda: None,\n", " None,\n", " im,\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/image_editor_events/run.py b/demos/image_editor_events/run.py new file mode 100644 index 0000000000000000000000000000000000000000..fb27d92ff1778c3f161ff0461e35412adf8104c7 --- /dev/null +++ b/demos/image_editor_events/run.py @@ -0,0 +1,62 @@ +import gradio as gr + + +def predict(im): + return im["composite"] + + +with gr.Blocks() as demo: + with gr.Group(): + with gr.Row(): + im = gr.ImageEditor( + type="numpy", + crop_size="1:1", + elem_id="image_editor", + ) + im_preview = gr.Image() + with gr.Group(): + with gr.Row(): + + n_upload = gr.Label( + 0, + label="upload", + elem_id="upload", + ) + n_change = gr.Label( + 0, + label="change", + elem_id="change", + ) + n_input = gr.Label( + 0, + label="input", + elem_id="input", + ) + n_apply = gr.Label( + 0, + label="apply", + elem_id="apply", + ) + clear_btn = gr.Button("Clear", elem_id="clear") + + im.upload( + lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress="hidden" + ) + im.change( + lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress="hidden" + ) + im.input( + lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress="hidden" + ) + im.apply( + lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress="hidden" + ) + im.change(predict, outputs=im_preview, inputs=im, show_progress="hidden") + clear_btn.click( + lambda: None, + None, + im, + ) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/image_mod_default_image/images/cheetah1.jpg b/demos/image_mod_default_image/images/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c510ff30e09c1ce410afa499f0bfc3a63c751134 Binary files /dev/null and b/demos/image_mod_default_image/images/cheetah1.jpg differ diff --git a/demos/image_mod_default_image/images/lion.jpg b/demos/image_mod_default_image/images/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e9bf9f5d0816d6201b4862088dc74476249a6a70 Binary files /dev/null and b/demos/image_mod_default_image/images/lion.jpg differ diff --git a/demos/image_mod_default_image/images/logo.png b/demos/image_mod_default_image/images/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..8f1df7156f0a690a2415903061e19c20e24adac4 Binary files /dev/null and b/demos/image_mod_default_image/images/logo.png differ diff --git a/demos/image_mod_default_image/run.ipynb b/demos/image_mod_default_image/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1a17252385a81c5a64a62d2b4dc61b5969dbbc7f --- /dev/null +++ b/demos/image_mod_default_image/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_mod_default_image"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('images')\n", "!wget -q -O images/cheetah1.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_mod_default_image/images/cheetah1.jpg\n", "!wget -q -O images/lion.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_mod_default_image/images/lion.jpg\n", "!wget -q -O images/logo.png https://github.com/gradio-app/gradio/raw/main/demo/image_mod_default_image/images/logo.png"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "\n", "\n", "def image_mod(image):\n", " return image.rotate(45)\n", "\n", "\n", "cheetah = os.path.join(os.path.abspath(''), \"images/cheetah1.jpg\")\n", "\n", "demo = gr.Interface(image_mod, gr.Image(type=\"pil\", value=cheetah), \"image\",\n", " flagging_options=[\"blurry\", \"incorrect\", \"other\"], examples=[\n", " os.path.join(os.path.abspath(''), \"images/lion.jpg\"),\n", " os.path.join(os.path.abspath(''), \"images/logo.png\")\n", " ])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch(max_file_size=\"70kb\")\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/image_mod_default_image/run.py b/demos/image_mod_default_image/run.py new file mode 100644 index 0000000000000000000000000000000000000000..d05c3e299b27c2331fc8e6f8a17fc34afd904adb --- /dev/null +++ b/demos/image_mod_default_image/run.py @@ -0,0 +1,18 @@ +import gradio as gr +import os + + +def image_mod(image): + return image.rotate(45) + + +cheetah = os.path.join(os.path.dirname(__file__), "images/cheetah1.jpg") + +demo = gr.Interface(image_mod, gr.Image(type="pil", value=cheetah), "image", + flagging_options=["blurry", "incorrect", "other"], examples=[ + os.path.join(os.path.dirname(__file__), "images/lion.jpg"), + os.path.join(os.path.dirname(__file__), "images/logo.png") + ]) + +if __name__ == "__main__": + demo.launch(max_file_size="70kb") diff --git a/demos/image_segmentation/DESCRIPTION.md b/demos/image_segmentation/DESCRIPTION.md new file mode 100644 index 0000000000000000000000000000000000000000..dbba2ae29e4ed391bfd1681fb2fe7d0efcb34222 --- /dev/null +++ b/demos/image_segmentation/DESCRIPTION.md @@ -0,0 +1 @@ +Simple image segmentation using gradio's AnnotatedImage component. \ No newline at end of file diff --git a/demos/image_segmentation/run.ipynb b/demos/image_segmentation/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ac39c2862e509bcadc97ace2367edf2a8672e98e --- /dev/null +++ b/demos/image_segmentation/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_segmentation\n", "### Simple image segmentation using gradio's AnnotatedImage component.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import random\n", "\n", "with gr.Blocks() as demo:\n", " section_labels = [\n", " \"apple\",\n", " \"banana\",\n", " \"carrot\",\n", " \"donut\",\n", " \"eggplant\",\n", " \"fish\",\n", " \"grapes\",\n", " \"hamburger\",\n", " \"ice cream\",\n", " \"juice\",\n", " ]\n", "\n", " with gr.Row():\n", " num_boxes = gr.Slider(0, 5, 2, step=1, label=\"Number of boxes\")\n", " num_segments = gr.Slider(0, 5, 1, step=1, label=\"Number of segments\")\n", "\n", " with gr.Row():\n", " img_input = gr.Image()\n", " img_output = gr.AnnotatedImage(\n", " color_map={\"banana\": \"#a89a00\", \"carrot\": \"#ffae00\"}\n", " )\n", "\n", " section_btn = gr.Button(\"Identify Sections\")\n", " selected_section = gr.Textbox(label=\"Selected Section\")\n", "\n", " def section(img, num_boxes, num_segments):\n", " sections = []\n", " for a in range(num_boxes):\n", " x = random.randint(0, img.shape[1])\n", " y = random.randint(0, img.shape[0])\n", " w = random.randint(0, img.shape[1] - x)\n", " h = random.randint(0, img.shape[0] - y)\n", " sections.append(((x, y, x + w, y + h), section_labels[a]))\n", " for b in range(num_segments):\n", " x = random.randint(0, img.shape[1])\n", " y = random.randint(0, img.shape[0])\n", " r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y))\n", " mask = np.zeros(img.shape[:2])\n", " for i in range(img.shape[0]):\n", " for j in range(img.shape[1]):\n", " dist_square = (i - y) ** 2 + (j - x) ** 2\n", " if dist_square < r**2:\n", " mask[i, j] = round((r**2 - dist_square) / r**2 * 4) / 4\n", " sections.append((mask, section_labels[b + num_boxes]))\n", " return (img, sections)\n", "\n", " section_btn.click(section, [img_input, num_boxes, num_segments], img_output)\n", "\n", " def select_section(evt: gr.SelectData):\n", " return section_labels[evt.index]\n", "\n", " img_output.select(select_section, None, selected_section)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/image_segmentation/run.py b/demos/image_segmentation/run.py new file mode 100644 index 0000000000000000000000000000000000000000..af3793f3217683102683eeb9a559bdff92a57066 --- /dev/null +++ b/demos/image_segmentation/run.py @@ -0,0 +1,61 @@ +import gradio as gr +import numpy as np +import random + +with gr.Blocks() as demo: + section_labels = [ + "apple", + "banana", + "carrot", + "donut", + "eggplant", + "fish", + "grapes", + "hamburger", + "ice cream", + "juice", + ] + + with gr.Row(): + num_boxes = gr.Slider(0, 5, 2, step=1, label="Number of boxes") + num_segments = gr.Slider(0, 5, 1, step=1, label="Number of segments") + + with gr.Row(): + img_input = gr.Image() + img_output = gr.AnnotatedImage( + color_map={"banana": "#a89a00", "carrot": "#ffae00"} + ) + + section_btn = gr.Button("Identify Sections") + selected_section = gr.Textbox(label="Selected Section") + + def section(img, num_boxes, num_segments): + sections = [] + for a in range(num_boxes): + x = random.randint(0, img.shape[1]) + y = random.randint(0, img.shape[0]) + w = random.randint(0, img.shape[1] - x) + h = random.randint(0, img.shape[0] - y) + sections.append(((x, y, x + w, y + h), section_labels[a])) + for b in range(num_segments): + x = random.randint(0, img.shape[1]) + y = random.randint(0, img.shape[0]) + r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y)) + mask = np.zeros(img.shape[:2]) + for i in range(img.shape[0]): + for j in range(img.shape[1]): + dist_square = (i - y) ** 2 + (j - x) ** 2 + if dist_square < r**2: + mask[i, j] = round((r**2 - dist_square) / r**2 * 4) / 4 + sections.append((mask, section_labels[b + num_boxes])) + return (img, sections) + + section_btn.click(section, [img_input, num_boxes, num_segments], img_output) + + def select_section(evt: gr.SelectData): + return section_labels[evt.index] + + img_output.select(select_section, None, selected_section) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/interface_random_slider/run.ipynb b/demos/interface_random_slider/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..dcdef26f3983bbd6d3a66fdbe9392d209ed20cc8 --- /dev/null +++ b/demos/interface_random_slider/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: interface_random_slider"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "\n", "def func(slider_1, slider_2, *args):\n", " return slider_1 + slider_2 * 5\n", "\n", "\n", "demo = gr.Interface(\n", " func,\n", " [\n", " gr.Slider(minimum=1.5, maximum=250000.89, randomize=True, label=\"Random Big Range\"),\n", " gr.Slider(minimum=-1, maximum=1, randomize=True, step=0.05, label=\"Random only multiple of 0.05 allowed\"),\n", " gr.Slider(minimum=0, maximum=1, randomize=True, step=0.25, label=\"Random only multiples of 0.25 allowed\"),\n", " gr.Slider(minimum=-100, maximum=100, randomize=True, step=3, label=\"Random between -100 and 100 step 3\"),\n", " gr.Slider(minimum=-100, maximum=100, randomize=True, label=\"Random between -100 and 100\"),\n", " gr.Slider(value=0.25, minimum=5, maximum=30, step=-1),\n", " ],\n", " \"number\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/interface_random_slider/run.py b/demos/interface_random_slider/run.py new file mode 100644 index 0000000000000000000000000000000000000000..5d199f706615434773b48cbd1c7f6fcb199eba0f --- /dev/null +++ b/demos/interface_random_slider/run.py @@ -0,0 +1,22 @@ +import gradio as gr + + +def func(slider_1, slider_2, *args): + return slider_1 + slider_2 * 5 + + +demo = gr.Interface( + func, + [ + gr.Slider(minimum=1.5, maximum=250000.89, randomize=True, label="Random Big Range"), + gr.Slider(minimum=-1, maximum=1, randomize=True, step=0.05, label="Random only multiple of 0.05 allowed"), + gr.Slider(minimum=0, maximum=1, randomize=True, step=0.25, label="Random only multiples of 0.25 allowed"), + gr.Slider(minimum=-100, maximum=100, randomize=True, step=3, label="Random between -100 and 100 step 3"), + gr.Slider(minimum=-100, maximum=100, randomize=True, label="Random between -100 and 100"), + gr.Slider(value=0.25, minimum=5, maximum=30, step=-1), + ], + "number", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/kitchen_sink/files/cantina.wav b/demos/kitchen_sink/files/cantina.wav new file mode 100644 index 0000000000000000000000000000000000000000..41f020438468229763ec4a2321325e5916e09106 Binary files /dev/null and b/demos/kitchen_sink/files/cantina.wav differ diff --git a/demos/kitchen_sink/files/cheetah1.jpg b/demos/kitchen_sink/files/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c510ff30e09c1ce410afa499f0bfc3a63c751134 Binary files /dev/null and b/demos/kitchen_sink/files/cheetah1.jpg differ diff --git a/demos/kitchen_sink/files/lion.jpg b/demos/kitchen_sink/files/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e9bf9f5d0816d6201b4862088dc74476249a6a70 Binary files /dev/null and b/demos/kitchen_sink/files/lion.jpg differ diff --git a/demos/kitchen_sink/files/logo.png b/demos/kitchen_sink/files/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..8f1df7156f0a690a2415903061e19c20e24adac4 Binary files /dev/null and b/demos/kitchen_sink/files/logo.png differ diff --git a/demos/kitchen_sink/files/time.csv b/demos/kitchen_sink/files/time.csv new file mode 100644 index 0000000000000000000000000000000000000000..ddb2035c4ed0377f54ee1602fff9f05ba5daa2db --- /dev/null +++ b/demos/kitchen_sink/files/time.csv @@ -0,0 +1,8 @@ +time,value,price +1,1,4 +2,3,8 +3,6,12 +4,10,16 +5,15,20 +6,21,24 +7,28,28 \ No newline at end of file diff --git a/demos/kitchen_sink/files/titanic.csv b/demos/kitchen_sink/files/titanic.csv new file mode 100644 index 0000000000000000000000000000000000000000..63b68ab0ba98c667f515c52f08c0bbd5573d5330 --- /dev/null +++ b/demos/kitchen_sink/files/titanic.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/demos/kitchen_sink/files/tower.jpg b/demos/kitchen_sink/files/tower.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aec3fa94eedf13f6e0c4ef56e4f669a3dba59fd8 Binary files /dev/null and b/demos/kitchen_sink/files/tower.jpg differ diff --git a/demos/kitchen_sink/files/world.mp4 b/demos/kitchen_sink/files/world.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..9bce44c33e275d6107240a1101032a7835fd8eed --- /dev/null +++ b/demos/kitchen_sink/files/world.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:71944d7430c461f0cd6e7fd10cee7eb72786352a3678fc7bc0ae3d410f72aece +size 1570024 diff --git a/demos/kitchen_sink/run.ipynb b/demos/kitchen_sink/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..21dcacd1e6eb588b55dac8385864399eb9f72f03 --- /dev/null +++ b/demos/kitchen_sink/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: kitchen_sink"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/cantina.wav https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/cantina.wav\n", "!wget -q -O files/cheetah1.jpg https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/cheetah1.jpg\n", "!wget -q -O files/lion.jpg https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/lion.jpg\n", "!wget -q -O files/logo.png https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/logo.png\n", "!wget -q -O files/time.csv https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/time.csv\n", "!wget -q -O files/titanic.csv https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/titanic.csv\n", "!wget -q -O files/tower.jpg https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/tower.jpg\n", "!wget -q -O files/world.mp4 https://github.com/gradio-app/gradio/raw/main/demo/kitchen_sink/files/world.mp4"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import os\n", "import json\n", "\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "CHOICES = [\"foo\", \"bar\", \"baz\"]\n", "JSONOBJ = \"\"\"{\"items\":{\"item\":[{\"id\": \"0001\",\"type\": null,\"is_good\": false,\"ppu\": 0.55,\"batters\":{\"batter\":[{ \"id\": \"1001\", \"type\": \"Regular\" },{ \"id\": \"1002\", \"type\": \"Chocolate\" },{ \"id\": \"1003\", \"type\": \"Blueberry\" },{ \"id\": \"1004\", \"type\": \"Devil's Food\" }]},\"topping\":[{ \"id\": \"5001\", \"type\": \"None\" },{ \"id\": \"5002\", \"type\": \"Glazed\" },{ \"id\": \"5005\", \"type\": \"Sugar\" },{ \"id\": \"5007\", \"type\": \"Powdered Sugar\" },{ \"id\": \"5006\", \"type\": \"Chocolate with Sprinkles\" },{ \"id\": \"5003\", \"type\": \"Chocolate\" },{ \"id\": \"5004\", \"type\": \"Maple\" }]}]}}\"\"\"\n", "\n", "\n", "def fn(\n", " text1,\n", " text2,\n", " num,\n", " slider1,\n", " slider2,\n", " single_checkbox,\n", " checkboxes,\n", " radio,\n", " dropdown,\n", " multi_dropdown,\n", " im1,\n", " # im2,\n", " # im3,\n", " im4,\n", " video,\n", " audio1,\n", " audio2,\n", " file,\n", " df1,\n", "):\n", " return (\n", " (text1 if single_checkbox else text2)\n", " + \", selected:\"\n", " + \", \".join(checkboxes), # Text\n", " {\n", " \"positive\": num / (num + slider1 + slider2),\n", " \"negative\": slider1 / (num + slider1 + slider2),\n", " \"neutral\": slider2 / (num + slider1 + slider2),\n", " }, # Label\n", " (audio1[0], np.flipud(audio1[1]))\n", " if audio1 is not None\n", " else os.path.join(os.path.abspath(''), \"files/cantina.wav\"), # Audio\n", " np.flipud(im1)\n", " if im1 is not None\n", " else os.path.join(os.path.abspath(''), \"files/cheetah1.jpg\"), # Image\n", " video\n", " if video is not None\n", " else os.path.join(os.path.abspath(''), \"files/world.mp4\"), # Video\n", " [\n", " (\"The\", \"art\"),\n", " (\"quick brown\", \"adj\"),\n", " (\"fox\", \"nn\"),\n", " (\"jumped\", \"vrb\"),\n", " (\"testing testing testing\", None),\n", " (\"over\", \"prp\"),\n", " (\"the\", \"art\"),\n", " (\"testing\", None),\n", " (\"lazy\", \"adj\"),\n", " (\"dogs\", \"nn\"),\n", " (\".\", \"punc\"),\n", " ]\n", " + [(f\"test {x}\", f\"test {x}\") for x in range(10)], # HighlightedText\n", " # [(\"The testing testing testing\", None), (\"quick brown\", 0.2), (\"fox\", 1), (\"jumped\", -1), (\"testing testing testing\", 0), (\"over\", 0), (\"the\", 0), (\"testing\", 0), (\"lazy\", 1), (\"dogs\", 0), (\".\", 1)] + [(f\"test {x}\", x/10) for x in range(-10, 10)], # HighlightedText\n", " [\n", " (\"The testing testing testing\", None),\n", " (\"over\", 0.6),\n", " (\"the\", 0.2),\n", " (\"testing\", None),\n", " (\"lazy\", -0.1),\n", " (\"dogs\", 0.4),\n", " (\".\", 0),\n", " ]\n", " + [(f\"test\", x / 10) for x in range(-10, 10)], # HighlightedText\n", " json.loads(JSONOBJ), # JSON\n", " \"\", # HTML\n", " os.path.join(os.path.abspath(''), \"files/titanic.csv\"),\n", " df1, # Dataframe\n", " np.random.randint(0, 10, (4, 4)), # Dataframe\n", " )\n", "\n", "\n", "demo = gr.Interface(\n", " fn,\n", " inputs=[\n", " gr.Textbox(value=\"Lorem ipsum\", label=\"Textbox\"),\n", " gr.Textbox(lines=3, placeholder=\"Type here..\", label=\"Textbox 2\"),\n", " gr.Number(label=\"Number\", value=42),\n", " gr.Slider(10, 20, value=15, label=\"Slider: 10 - 20\"),\n", " gr.Slider(maximum=20, step=0.04, label=\"Slider: step @ 0.04\"),\n", " gr.Checkbox(label=\"Checkbox\"),\n", " gr.CheckboxGroup(label=\"CheckboxGroup\", choices=CHOICES, value=CHOICES[0:2]),\n", " gr.Radio(label=\"Radio\", choices=CHOICES, value=CHOICES[2]),\n", " gr.Dropdown(label=\"Dropdown\", choices=CHOICES),\n", " gr.Dropdown(\n", " label=\"Multiselect Dropdown (Max choice: 2)\",\n", " choices=CHOICES,\n", " multiselect=True,\n", " max_choices=2,\n", " ),\n", " gr.Image(label=\"Image\"),\n", " # gr.Image(label=\"Image w/ Cropper\", tool=\"select\"),\n", " # gr.Image(label=\"Sketchpad\", source=\"canvas\"),\n", " gr.Image(label=\"Webcam\", sources=[\"webcam\"]),\n", " gr.Video(label=\"Video\"),\n", " gr.Audio(label=\"Audio\"),\n", " gr.Audio(label=\"Microphone\", sources=[\"microphone\"]),\n", " gr.File(label=\"File\"),\n", " gr.Dataframe(label=\"Dataframe\", headers=[\"Name\", \"Age\", \"Gender\"]),\n", " ],\n", " outputs=[\n", " gr.Textbox(label=\"Textbox\"),\n", " gr.Label(label=\"Label\"),\n", " gr.Audio(label=\"Audio\"),\n", " gr.Image(label=\"Image\"),\n", " gr.Video(label=\"Video\"),\n", " gr.HighlightedText(\n", " label=\"HighlightedText\", color_map={\"punc\": \"pink\", \"test 0\": \"blue\"}\n", " ),\n", " gr.HighlightedText(label=\"HighlightedText\", show_legend=True),\n", " gr.JSON(label=\"JSON\"),\n", " gr.HTML(label=\"HTML\"),\n", " gr.File(label=\"File\"),\n", " gr.Dataframe(label=\"Dataframe\"),\n", " gr.Dataframe(label=\"Numpy\"),\n", " ],\n", " examples=[\n", " [\n", " \"the quick brown fox\",\n", " \"jumps over the lazy dog\",\n", " 10,\n", " 12,\n", " 4,\n", " True,\n", " [\"foo\", \"baz\"],\n", " \"baz\",\n", " \"bar\",\n", " [\"foo\", \"bar\"],\n", " os.path.join(os.path.abspath(''), \"files/cheetah1.jpg\"),\n", " # os.path.join(os.path.abspath(''), \"files/cheetah1.jpg\"),\n", " # os.path.join(os.path.abspath(''), \"files/cheetah1.jpg\"),\n", " os.path.join(os.path.abspath(''), \"files/cheetah1.jpg\"),\n", " os.path.join(os.path.abspath(''), \"files/world.mp4\"),\n", " os.path.join(os.path.abspath(''), \"files/cantina.wav\"),\n", " os.path.join(os.path.abspath(''), \"files/cantina.wav\"),\n", " os.path.join(os.path.abspath(''), \"files/titanic.csv\"),\n", " [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 1, 2], [3, 4, 5, 6]],\n", " ]\n", " ]\n", " * 3,\n", " title=\"Kitchen Sink\",\n", " description=\"Try out all the components!\",\n", " article=\"Learn more about [Gradio](http://gradio.app)\",\n", " cache_examples=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/kitchen_sink/run.py b/demos/kitchen_sink/run.py new file mode 100644 index 0000000000000000000000000000000000000000..8b21991baff3d17e7341b895862c321e239c0460 --- /dev/null +++ b/demos/kitchen_sink/run.py @@ -0,0 +1,161 @@ +import os +import json + +import numpy as np + +import gradio as gr + +CHOICES = ["foo", "bar", "baz"] +JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}""" + + +def fn( + text1, + text2, + num, + slider1, + slider2, + single_checkbox, + checkboxes, + radio, + dropdown, + multi_dropdown, + im1, + # im2, + # im3, + im4, + video, + audio1, + audio2, + file, + df1, +): + return ( + (text1 if single_checkbox else text2) + + ", selected:" + + ", ".join(checkboxes), # Text + { + "positive": num / (num + slider1 + slider2), + "negative": slider1 / (num + slider1 + slider2), + "neutral": slider2 / (num + slider1 + slider2), + }, # Label + (audio1[0], np.flipud(audio1[1])) + if audio1 is not None + else os.path.join(os.path.dirname(__file__), "files/cantina.wav"), # Audio + np.flipud(im1) + if im1 is not None + else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), # Image + video + if video is not None + else os.path.join(os.path.dirname(__file__), "files/world.mp4"), # Video + [ + ("The", "art"), + ("quick brown", "adj"), + ("fox", "nn"), + ("jumped", "vrb"), + ("testing testing testing", None), + ("over", "prp"), + ("the", "art"), + ("testing", None), + ("lazy", "adj"), + ("dogs", "nn"), + (".", "punc"), + ] + + [(f"test {x}", f"test {x}") for x in range(10)], # HighlightedText + # [("The testing testing testing", None), ("quick brown", 0.2), ("fox", 1), ("jumped", -1), ("testing testing testing", 0), ("over", 0), ("the", 0), ("testing", 0), ("lazy", 1), ("dogs", 0), (".", 1)] + [(f"test {x}", x/10) for x in range(-10, 10)], # HighlightedText + [ + ("The testing testing testing", None), + ("over", 0.6), + ("the", 0.2), + ("testing", None), + ("lazy", -0.1), + ("dogs", 0.4), + (".", 0), + ] + + [(f"test", x / 10) for x in range(-10, 10)], # HighlightedText + json.loads(JSONOBJ), # JSON + "", # HTML + os.path.join(os.path.dirname(__file__), "files/titanic.csv"), + df1, # Dataframe + np.random.randint(0, 10, (4, 4)), # Dataframe + ) + + +demo = gr.Interface( + fn, + inputs=[ + gr.Textbox(value="Lorem ipsum", label="Textbox"), + gr.Textbox(lines=3, placeholder="Type here..", label="Textbox 2"), + gr.Number(label="Number", value=42), + gr.Slider(10, 20, value=15, label="Slider: 10 - 20"), + gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"), + gr.Checkbox(label="Checkbox"), + gr.CheckboxGroup(label="CheckboxGroup", choices=CHOICES, value=CHOICES[0:2]), + gr.Radio(label="Radio", choices=CHOICES, value=CHOICES[2]), + gr.Dropdown(label="Dropdown", choices=CHOICES), + gr.Dropdown( + label="Multiselect Dropdown (Max choice: 2)", + choices=CHOICES, + multiselect=True, + max_choices=2, + ), + gr.Image(label="Image"), + # gr.Image(label="Image w/ Cropper", tool="select"), + # gr.Image(label="Sketchpad", source="canvas"), + gr.Image(label="Webcam", sources=["webcam"]), + gr.Video(label="Video"), + gr.Audio(label="Audio"), + gr.Audio(label="Microphone", sources=["microphone"]), + gr.File(label="File"), + gr.Dataframe(label="Dataframe", headers=["Name", "Age", "Gender"]), + ], + outputs=[ + gr.Textbox(label="Textbox"), + gr.Label(label="Label"), + gr.Audio(label="Audio"), + gr.Image(label="Image"), + gr.Video(label="Video"), + gr.HighlightedText( + label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"} + ), + gr.HighlightedText(label="HighlightedText", show_legend=True), + gr.JSON(label="JSON"), + gr.HTML(label="HTML"), + gr.File(label="File"), + gr.Dataframe(label="Dataframe"), + gr.Dataframe(label="Numpy"), + ], + examples=[ + [ + "the quick brown fox", + "jumps over the lazy dog", + 10, + 12, + 4, + True, + ["foo", "baz"], + "baz", + "bar", + ["foo", "bar"], + os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + # os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + # os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "files/world.mp4"), + os.path.join(os.path.dirname(__file__), "files/cantina.wav"), + os.path.join(os.path.dirname(__file__), "files/cantina.wav"), + os.path.join(os.path.dirname(__file__), "files/titanic.csv"), + [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 1, 2], [3, 4, 5, 6]], + ] + ] + * 3, + title="Kitchen Sink", + description="Try out all the components!", + article="Learn more about [Gradio](http://gradio.app)", + cache_examples=True, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/kitchen_sink_random/__init__.py b/demos/kitchen_sink_random/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/kitchen_sink_random/constants.py b/demos/kitchen_sink_random/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..bda41f4f76c8a3749a3ad970f9956d92c5e123b3 --- /dev/null +++ b/demos/kitchen_sink_random/constants.py @@ -0,0 +1,68 @@ +import numpy as np +import matplotlib.pyplot as plt +import random +import os + + +def random_plot(): + start_year = 2020 + x = np.arange(start_year, start_year + random.randint(0, 10)) + year_count = x.shape[0] + plt_format = "-" + fig = plt.figure() + ax = fig.add_subplot(111) + series = np.arange(0, year_count, dtype=float) + series = series**2 + series += np.random.rand(year_count) + ax.plot(x, series, plt_format) + return fig + + +img_dir = os.path.join(os.path.dirname(__file__), "files") +file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files") +model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files") +highlighted_text_output_1 = [ + { + "entity": "I-LOC", + "score": 0.9988978, + "index": 2, + "word": "Chicago", + "start": 5, + "end": 12, + }, + { + "entity": "I-MISC", + "score": 0.9958592, + "index": 5, + "word": "Pakistani", + "start": 22, + "end": 31, + }, +] +highlighted_text_output_2 = [ + { + "entity": "I-LOC", + "score": 0.9988978, + "index": 2, + "word": "Chicago", + "start": 5, + "end": 12, + }, + { + "entity": "I-LOC", + "score": 0.9958592, + "index": 5, + "word": "Pakistan", + "start": 22, + "end": 30, + }, +] + +highlighted_text = "Does Chicago have any Pakistani restaurants" + + +def random_model3d(): + model_3d = random.choice( + [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"] + ) + return model_3d diff --git a/demos/kitchen_sink_random/files/cheetah1.jpeg b/demos/kitchen_sink_random/files/cheetah1.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..c510ff30e09c1ce410afa499f0bfc3a63c751134 Binary files /dev/null and b/demos/kitchen_sink_random/files/cheetah1.jpeg differ diff --git a/demos/kitchen_sink_random/files/cheetah1.jpg b/demos/kitchen_sink_random/files/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c510ff30e09c1ce410afa499f0bfc3a63c751134 Binary files /dev/null and b/demos/kitchen_sink_random/files/cheetah1.jpg differ diff --git a/demos/kitchen_sink_random/files/lion.jpg b/demos/kitchen_sink_random/files/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e9bf9f5d0816d6201b4862088dc74476249a6a70 Binary files /dev/null and b/demos/kitchen_sink_random/files/lion.jpg differ diff --git a/demos/kitchen_sink_random/run.py b/demos/kitchen_sink_random/run.py new file mode 100644 index 0000000000000000000000000000000000000000..5b4440e94984b8da2d46b6984a78b4f663847165 --- /dev/null +++ b/demos/kitchen_sink_random/run.py @@ -0,0 +1,98 @@ +import gradio as gr +from datetime import datetime +import random +import string +import os +import pandas as pd + +from constants import ( + file_dir, + img_dir, + highlighted_text, + highlighted_text_output_2, + highlighted_text_output_1, + random_plot, + random_model3d, +) + + +demo = gr.Interface( + lambda *args: args[0], + inputs=[ + gr.Textbox(value=lambda: datetime.now(), label="Current Time"), + gr.Number(value=lambda: random.random(), label="Ranom Percentage"), + gr.Slider(minimum=-1, maximum=1, randomize=True, label="Slider with randomize"), + gr.Slider( + minimum=0, + maximum=1, + value=lambda: random.random(), + label="Slider with value func", + ), + gr.Checkbox(value=lambda: random.random() > 0.5, label="Random Checkbox"), + gr.CheckboxGroup( + choices=["a", "b", "c", "d"], + value=lambda: random.choice(["a", "b", "c", "d"]), + label="Random CheckboxGroup", + ), + gr.Radio( + choices=list(string.ascii_lowercase), + value=lambda: random.choice(string.ascii_lowercase), + ), + gr.Dropdown( + choices=["a", "b", "c", "d", "e"], + value=lambda: random.choice(["a", "b", "c"]), + ), + gr.Image( + value=lambda: random.choice( + [os.path.join(img_dir, img) for img in os.listdir(img_dir)] + ) + ), + gr.Video(value=lambda: os.path.join(file_dir, "world.mp4")), + gr.Audio(value=lambda: os.path.join(file_dir, "cantina.wav")), + gr.File( + value=lambda: random.choice( + [os.path.join(file_dir, img) for img in os.listdir(file_dir)] + ) + ), + gr.Dataframe( + value=lambda: pd.DataFrame( + {"random_number_rows": range(random.randint(0, 10))} + ) + ), + gr.State(value=lambda: random.choice(string.ascii_lowercase)), + gr.ColorPicker(value=lambda: random.choice(["#000000", "#ff0000", "#0000FF"])), + gr.Label(value=lambda: random.choice(["Pedestrian", "Car", "Cyclist"])), + gr.HighlightedText( + value=lambda: random.choice( + [ + {"text": highlighted_text, "entities": highlighted_text_output_1}, + {"text": highlighted_text, "entities": highlighted_text_output_2}, + ] + ), + ), + gr.JSON(value=lambda: random.choice([{"a": 1}, {"b": 2}])), + gr.HTML( + value=lambda: random.choice( + [ + 'I am red
', + 'I am blue
', + ] + ) + ), + gr.Gallery( + value=lambda: [os.path.join(img_dir, img) for img in os.listdir(img_dir)] + ), + gr.Chatbot( + value=lambda: random.choice([[("hello", "hi!")], [("bye", "goodbye!")]]) + ), + gr.Model3D(value=random_model3d), + gr.Plot(value=random_plot), + gr.Markdown(value=lambda: f"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}"), + ], + outputs=[ + gr.State(value=lambda: random.choice(string.ascii_lowercase)) + ], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/matrix_transpose/run.ipynb b/demos/matrix_transpose/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..d2d497ef82776db4deca3ad4e30bfb805226150f --- /dev/null +++ b/demos/matrix_transpose/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: matrix_transpose"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "\n", "import gradio as gr\n", "\n", "\n", "def transpose(matrix):\n", " return matrix.T\n", "\n", "\n", "demo = gr.Interface(\n", " transpose,\n", " gr.Dataframe(type=\"numpy\", datatype=\"number\", row_count=5, col_count=3),\n", " \"numpy\",\n", " examples=[\n", " [np.zeros((3, 3)).tolist()],\n", " [np.ones((2, 2)).tolist()],\n", " [np.random.randint(0, 10, (3, 10)).tolist()],\n", " [np.random.randint(0, 10, (10, 3)).tolist()],\n", " [np.random.randint(0, 10, (10, 10)).tolist()],\n", " ],\n", " cache_examples=False\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/matrix_transpose/run.py b/demos/matrix_transpose/run.py new file mode 100644 index 0000000000000000000000000000000000000000..34548199576ef86fa50139cbc6762e038e9d69a8 --- /dev/null +++ b/demos/matrix_transpose/run.py @@ -0,0 +1,25 @@ +import numpy as np + +import gradio as gr + + +def transpose(matrix): + return matrix.T + + +demo = gr.Interface( + transpose, + gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3), + "numpy", + examples=[ + [np.zeros((3, 3)).tolist()], + [np.ones((2, 2)).tolist()], + [np.random.randint(0, 10, (3, 10)).tolist()], + [np.random.randint(0, 10, (10, 3)).tolist()], + [np.random.randint(0, 10, (10, 10)).tolist()], + ], + cache_examples=False +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/matrix_transpose/screenshot.png b/demos/matrix_transpose/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..a9434e9c1df2828ecc1df700eeaaad9609109f82 Binary files /dev/null and b/demos/matrix_transpose/screenshot.png differ diff --git a/demos/mini_leaderboard/assets/__init__.py b/demos/mini_leaderboard/assets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/mini_leaderboard/assets/custom_css.css b/demos/mini_leaderboard/assets/custom_css.css new file mode 100644 index 0000000000000000000000000000000000000000..91a5ff7d986e4b2026bed2175bdf99f847ed05a0 --- /dev/null +++ b/demos/mini_leaderboard/assets/custom_css.css @@ -0,0 +1,87 @@ +/* Hides the final AutoEvalColumn */ +#llm-benchmark-tab-table table td:last-child, +#llm-benchmark-tab-table table th:last-child { + display: none; +} + +/* Limit the width of the first AutoEvalColumn so that names don't expand too much */ +table td:first-child, +table th:first-child { + max-width: 400px; + overflow: auto; + white-space: nowrap; +} + +/* Full width space */ +.gradio-container { + max-width: 95%!important; +} + +/* Text style and margins */ +.markdown-text { + font-size: 16px !important; +} + +#models-to-add-text { + font-size: 18px !important; +} + +#citation-button span { + font-size: 16px !important; +} + +#citation-button textarea { + font-size: 16px !important; +} + +#citation-button > label > button { + margin: 6px; + transform: scale(1.3); +} + +#search-bar-table-box > div:first-child { + background: none; + border: none; +} + +#search-bar { + padding: 0px; +} + +.tab-buttons button { + font-size: 20px; +} + +/* Filters style */ +#filter_type{ + border: 0; + padding-left: 0; + padding-top: 0; +} +#filter_type label { + display: flex; +} +#filter_type label > span{ + margin-top: var(--spacing-lg); + margin-right: 0.5em; +} +#filter_type label > .wrap{ + width: 103px; +} +#filter_type label > .wrap .wrap-inner{ + padding: 2px; +} +#filter_type label > .wrap .wrap-inner input{ + width: 1px +} +#filter-columns-type{ + border:0; + padding:0.5; +} +#filter-columns-size{ + border:0; + padding:0.5; +} +#box-filter > .form{ + border: 0 +} \ No newline at end of file diff --git a/demos/mini_leaderboard/assets/leaderboard_data.json b/demos/mini_leaderboard/assets/leaderboard_data.json new file mode 100644 index 0000000000000000000000000000000000000000..e0d3af4b3db66a038e84d5a47f8b52b994f0387a --- /dev/null +++ b/demos/mini_leaderboard/assets/leaderboard_data.json @@ -0,0 +1 @@ +{"T":{"0":"\ud83d\udd36","1":"\ud83d\udcac","2":"\ud83d\udd36","3":"\ud83d\udd36","4":"\ud83d\udd36","5":"\ud83d\udd36","6":"\ud83d\udd36","7":"\ud83d\udd36","8":"\ud83d\udcac","9":"\ud83d\udd36","10":"\ud83d\udd36","11":"\ud83d\udd36","12":"\ud83d\udd36","13":"\ud83d\udcac","14":"\ud83d\udd36","15":"\ud83d\udd36","16":"\ud83d\udd36","17":"\ud83d\udd36","18":"\ud83d\udcac","19":"\ud83d\udd36","20":"\ud83d\udd36","21":"\ud83d\udd36","22":"\ud83d\udd36","23":"\ud83d\udd36","24":"\ud83d\udd36","25":"\ud83d\udd36","26":"\ud83d\udd36","27":"\ud83d\udd36","28":"\ud83d\udd36","29":"\ud83d\udd36","30":"\ud83d\udd36","31":"\ud83d\udd36","32":"\ud83d\udd36","33":"\ud83d\udd36","34":"\ud83d\udd36","35":"\ud83d\udd36","36":"\ud83d\udd36","37":"\ud83d\udd36","38":"\ud83d\udd36","39":"\ud83d\udd36","40":"\ud83d\udd36","41":"\ud83d\udd36","42":"\ud83d\udd36","43":"\ud83d\udd36","44":"\ud83d\udd36","45":"\ud83d\udcac","46":"\ud83e\udd1d","47":"\ud83d\udd36","48":"\ud83d\udd36","49":"\ud83d\udd36","50":"\ud83d\udd36","51":"\ud83d\udcac","52":"\ud83d\udd36","53":"\ud83d\udd36","54":"\ud83e\udd1d","55":"\ud83e\udd1d","56":"\ud83d\udd36","57":"\ud83d\udd36","58":"\ud83d\udd36","59":"\ud83d\udd36","60":"\ud83d\udd36","61":"\ud83d\udd36","62":"\ud83d\udd36","63":"\ud83d\udd36","64":"\ud83d\udcac","65":"\ud83d\udd36","66":"\ud83e\udd1d","67":"\ud83d\udd36","68":"\ud83d\udd36","69":"\ud83d\udcac","70":"\ud83d\udd36","71":"\ud83d\udd36","72":"\ud83d\udcac","73":"\ud83d\udcac","74":"\ud83d\udcac","75":"\ud83d\udd36","76":"\ud83d\udd36","77":"\ud83d\udcac","78":"\ud83d\udcac","79":"\ud83d\udcac","80":"\ud83d\udcac","81":"\ud83d\udcac","82":"\ud83d\udcac","83":"\ud83d\udd36","84":"\ud83d\udd36","85":"\ud83d\udd36","86":"\ud83d\udd36","87":"\ud83d\udd36","88":"\ud83d\udcac","89":"\ud83d\udd36","90":"\ud83d\udd36","91":"\ud83d\udcac","92":"\ud83d\udd36","93":"\ud83d\udd36","94":"\ud83d\udd36","95":"\ud83d\udd36","96":"\ud83d\udd36","97":"\ud83d\udd36","98":"\ud83d\udd36","99":"\ud83d\udd36","100":"\ud83d\udd36","101":"\ud83d\udd36","102":"\ud83d\udd36","103":"\ud83d\udd36","104":"\ud83d\udd36","105":"\ud83d\udcac","106":"\ud83d\udd36","107":"\ud83d\udd36","108":"\ud83d\udd36","109":"\ud83d\udd36","110":"\ud83d\udd36","111":"\ud83d\udcac","112":"\ud83d\udd36","113":"\ud83d\udd36","114":"\ud83d\udd36","115":"\ud83d\udd36","116":"\ud83d\udd36","117":"\ud83d\udd36","118":"\ud83d\udd36","119":"\ud83d\udd36","120":"\ud83d\udd36","121":"\ud83d\udd36","122":"\ud83d\udd36","123":"\ud83d\udd36","124":"\ud83d\udcac","125":"\ud83d\udcac","126":"\ud83d\udcac","127":"\ud83d\udcac","128":"\ud83d\udd36","129":"\ud83d\udd36","130":"\ud83d\udcac","131":"\ud83d\udcac","132":"\ud83d\udd36","133":"\ud83d\udcac","134":"\ud83d\udd36","135":"\ud83d\udd36","136":"\ud83d\udd36","137":"\ud83d\udcac","138":"\ud83d\udcac","139":"\ud83d\udd36","140":"\ud83d\udd36","141":"\ud83d\udd36","142":"\ud83d\udd36","143":"\ud83d\udcac","144":"\ud83d\udd36","145":"\ud83d\udcac","146":"\ud83d\udd36","147":"\ud83d\udcac","148":"\ud83d\udd36","149":"\ud83d\udcac","150":"\ud83d\udcac","151":"\ud83d\udd36","152":"\ud83d\udd36","153":"\ud83d\udd36","154":"\ud83d\udcac","155":"\ud83d\udd36","156":"\ud83d\udcac","157":"\ud83d\udd36","158":"\ud83d\udcac","159":"\ud83d\udd36","160":"\ud83d\udd36","161":"\ud83d\udd36","162":"\ud83d\udcac","163":"\ud83d\udcac","164":"\ud83d\udd36","165":"\ud83d\udd36","166":"\ud83e\udd1d","167":"\ud83d\udd36","168":"\ud83d\udcac","169":"\ud83d\udcac","170":"\ud83d\udcac","171":"\ud83d\udcac","172":"\ud83d\udd36","173":"\ud83e\udd1d","174":"\ud83d\udd36","175":"\ud83d\udd36","176":"\ud83d\udcac","177":"\ud83e\udd1d","178":"\ud83d\udd36","179":"\ud83d\udcac","180":"\ud83d\udd36","181":"\ud83d\udd36","182":"\ud83d\udfe2","183":"\ud83d\udd36","184":"\ud83d\udd36","185":"\ud83d\udd36","186":"\ud83d\udd36","187":"\ud83d\udd36","188":"\ud83d\udcac","189":"\ud83d\udcac","190":"\ud83d\udd36","191":"\ud83d\udd36","192":"\ud83d\udd36","193":"\ud83d\udd36","194":"\ud83d\udd36","195":"\ud83e\udd1d","196":"\ud83d\udd36","197":"\ud83d\udd36","198":"\ud83d\udd36","199":"\ud83d\udcac","200":"\ud83d\udd36","201":"\ud83d\udcac","202":"\ud83d\udd36","203":"\ud83d\udcac","204":"\ud83d\udd36","205":"\ud83d\udd36","206":"\ud83d\udcac","207":"\ud83d\udd36","208":"\ud83d\udcac","209":"\ud83d\udd36","210":"\ud83d\udd36","211":"\ud83d\udfe2","212":"\ud83d\udcac","213":"\ud83d\udd36","214":"\ud83d\udd36","215":"\ud83d\udd36","216":"\ud83e\udd1d","217":"\ud83d\udcac","218":"\ud83d\udd36","219":"\ud83d\udd36","220":"\ud83d\udd36","221":"\ud83d\udd36","222":"\ud83d\udd36","223":"\ud83d\udd36","224":"\ud83e\udd1d","225":"\ud83d\udcac","226":"\ud83d\udd36","227":"\ud83d\udcac","228":"\ud83e\udd1d","229":"\ud83d\udcac","230":"\ud83d\udd36","231":"\ud83d\udd36","232":"\ud83d\udcac","233":"\ud83d\udd36","234":"\ud83d\udd36","235":"\ud83d\udd36","236":"\ud83d\udd36","237":"\ud83e\udd1d","238":"\ud83d\udd36","239":"\ud83d\udcac","240":"\ud83d\udd36","241":"\ud83d\udd36","242":"\ud83e\udd1d","243":"\ud83d\udd36","244":"\ud83e\udd1d","245":"\ud83d\udd36","246":"\ud83d\udcac","247":"\ud83d\udd36","248":"\ud83d\udd36","249":"\ud83d\udd36","250":"\ud83e\udd1d","251":"\ud83d\udd36","252":"\ud83d\udd36","253":"\ud83d\udcac","254":"\ud83d\udcac","255":"\ud83d\udcac","256":"\ud83d\udd36","257":"\ud83d\udd36","258":"\ud83d\udcac","259":"\ud83d\udd36","260":"\ud83d\udcac","261":"\ud83d\udcac","262":"\ud83d\udcac","263":"\ud83d\udd36","264":"\ud83d\udd36","265":"\ud83d\udcac","266":"\ud83d\udcac","267":"\ud83d\udcac","268":"\ud83d\udd36","269":"\ud83d\udcac","270":"\ud83e\udd1d","271":"\ud83d\udd36","272":"\ud83d\udcac","273":"\ud83d\udd36","274":"\ud83d\udcac","275":"\ud83d\udcac","276":"\ud83e\udd1d","277":"\ud83d\udd36","278":"\ud83d\udd36","279":"\ud83e\udd1d","280":"\ud83d\udd36","281":"\ud83d\udcac","282":"\ud83d\udd36","283":"\ud83d\udd36","284":"\ud83d\udd36"},"Model":{"0":"davidkim205\/Rhea-72b-v0.5<\/a> \ud83d\udcd1<\/a>","1":"MTSAIR\/MultiVerse_70B<\/a> \ud83d\udcd1<\/a>","2":"MTSAIR\/MultiVerse_70B<\/a> \ud83d\udcd1<\/a>","3":"SF-Foundation\/Ein-72B-v0.11<\/a> \ud83d\udcd1<\/a>","4":"SF-Foundation\/Ein-72B-v0.13<\/a> \ud83d\udcd1<\/a>","5":"SF-Foundation\/Ein-72B-v0.12<\/a> \ud83d\udcd1<\/a>","6":"abacusai\/Smaug-72B-v0.1<\/a> \ud83d\udcd1<\/a>","7":"ibivibiv\/alpaca-dragon-72b-v1<\/a> \ud83d\udcd1<\/a>","8":"moreh\/MoMo-72B-lora-1.8.7-DPO<\/a> \ud83d\udcd1<\/a>","9":"cloudyu\/TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO_f16<\/a> \ud83d\udcd1<\/a>","10":"saltlux\/luxia-21.4b-alignment-v1.0<\/a> \ud83d\udcd1<\/a>","11":"cloudyu\/TomGrc_FusionNet_34Bx2_MoE_v0.1_full_linear_DPO<\/a> \ud83d\udcd1<\/a>","12":"zhengr\/MixTAO-7Bx2-MoE-v8.1<\/a> \ud83d\udcd1<\/a>","13":"yunconglong\/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B<\/a> \ud83d\udcd1<\/a>","14":"JaeyeonKang\/CCK_Asura_v1<\/a> \ud83d\udcd1<\/a>","15":"fblgit\/UNA-SimpleSmaug-34b-v1beta<\/a> \ud83d\udcd1<\/a>","16":"TomGrc\/FusionNet_34Bx2_MoE_v0.1<\/a> \ud83d\udcd1<\/a>","17":"migtissera\/Tess-72B-v1.5b<\/a> \ud83d\udcd1<\/a>","18":"moreh\/MoMo-72B-lora-1.8.6-DPO<\/a> \ud83d\udcd1<\/a>","19":"abacusai\/Smaug-34B-v0.1<\/a> \ud83d\udcd1<\/a>","20":"cloudyu\/Truthful_DPO_TomGrc_FusionNet_34Bx2_MoE<\/a> \ud83d\udcd1<\/a>","21":"ibivibiv\/orthorus-125b-v2<\/a> \ud83d\udcd1<\/a>","22":"ConvexAI\/Luminex-34B-v0.2<\/a> \ud83d\udcd1<\/a>","23":"yunconglong\/DARE_TIES_13B<\/a> \ud83d\udcd1<\/a>","24":"yunconglong\/13B_MATH_DPO<\/a> \ud83d\udcd1<\/a>","25":"TomGrc\/FusionNet_34Bx2_MoE<\/a> \ud83d\udcd1<\/a>","26":"ConvexAI\/Luminex-34B-v0.1<\/a> \ud83d\udcd1<\/a>","27":"yunconglong\/MoE_13B_DPO<\/a> \ud83d\udcd1<\/a>","28":"JaeyeonKang\/CCK_Asura_v3.0<\/a> \ud83d\udcd1<\/a>","29":"cloudyu\/4bit_quant_TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO<\/a> \ud83d\udcd1<\/a>","30":"yam-peleg\/Experiment26-7B<\/a> \ud83d\udcd1<\/a>","31":"MTSAIR\/multi_verse_model<\/a> \ud83d\udcd1<\/a>","32":"chihoonlee10\/T3Q-Mistral-Orca-Math-DPO<\/a> \ud83d\udcd1<\/a>","33":"yam-peleg\/Experiment26-7B<\/a> \ud83d\udcd1<\/a>","34":"rwitz\/experiment26-truthy-iter-0<\/a> \ud83d\udcd1<\/a>","35":"yam-peleg\/Experiment30-7B<\/a> \ud83d\udcd1<\/a>","36":"yam-peleg\/Experiment28-7B<\/a> \ud83d\udcd1<\/a>","37":"MaziyarPanahi\/Calme-7B-Instruct-v0.2<\/a> \ud83d\udcd1<\/a>","38":"rwitz\/experiment26-truthy-iter-1<\/a> \ud83d\udcd1<\/a>","39":"rwitz\/experiment26-truthy-iter-2<\/a> \ud83d\udcd1<\/a>","40":"chlee10\/T3Q-Merge-Mistral7B<\/a> \ud83d\udcd1<\/a>","41":"LeroyDyer\/Mixtral_AI_Cyber_3.m1<\/a> \ud83d\udcd1<\/a>","42":"yam-peleg\/Experiment31-7B<\/a> \ud83d\udcd1<\/a>","43":"yam-peleg\/Experiment31-7B<\/a> \ud83d\udcd1<\/a>","44":"yam-peleg\/Experiment24-7B<\/a> \ud83d\udcd1<\/a>","45":"zhengr\/MixTAO-7Bx2-MoE-Instruct-v7.0<\/a> \ud83d\udcd1<\/a>","46":"bobofrut\/ladybird-base-7B-v8<\/a> \ud83d\udcd1<\/a>","47":"yam-peleg\/Experiment29-7B<\/a> \ud83d\udcd1<\/a>","48":"yam-peleg\/Experiment30-7B<\/a> \ud83d\udcd1<\/a>","49":"CorticalStack\/pastiche-crown-clown-7b-dare-dpo<\/a> \ud83d\udcd1<\/a>","50":"MaziyarPanahi\/Calme-7B-Instruct-v0.1.1<\/a> \ud83d\udcd1<\/a>","51":"mlabonne\/UltraMerge-7B<\/a> \ud83d\udcd1<\/a>","52":"cloudyu\/Truthful_DPO_cloudyu_Mixtral_34Bx2_MoE_60B<\/a> \ud83d\udcd1<\/a>","53":"yam-peleg\/Experiment27-7B<\/a> \ud83d\udcd1<\/a>","54":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO<\/a> \ud83d\udcd1<\/a>","55":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2<\/a> \ud83d\udcd1<\/a>","56":"cloudyu\/Yi-34Bx2-MoE-60B-DPO<\/a> \ud83d\udcd1<\/a>","57":"chihoonlee10\/T3Q-EN-DPO-Mistral-7B<\/a> \ud83d\udcd1<\/a>","58":"jefferylovely\/AiMaven-Merkaba-7b<\/a> \ud83d\udcd1<\/a>","59":"bardsai\/jaskier-7b-dpo-v5.6<\/a> \ud83d\udcd1<\/a>","60":"JaeyeonKang\/CCK_Asura_v2.1<\/a> \ud83d\udcd1<\/a>","61":"yam-peleg\/Experiment25-7B<\/a> \ud83d\udcd1<\/a>","62":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v3<\/a> \ud83d\udcd1<\/a>","63":"CorticalStack\/neurotic-crown-clown-7b-tak-stack-dpo<\/a> \ud83d\udcd1<\/a>","64":"jan-hq\/stealth-v2<\/a> \ud83d\udcd1<\/a>","65":"bardsai\/jaskier-7b-dpo-v6.1<\/a> \ud83d\udcd1<\/a>","66":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v4-test<\/a> \ud83d\udcd1<\/a>","67":"chihoonlee10\/T3Q-DPO-Mistral-7B<\/a> \ud83d\udcd1<\/a>","68":"Kukedlc\/Jupiter-k-7B-slerp<\/a> \ud83d\udcd1<\/a>","69":"moreh\/MoMo-72B-lora-1.8.4-DPO<\/a> \ud83d\udcd1<\/a>","70":"TomGrc\/FusionNet_7Bx2_MoE_v0.1<\/a> \ud83d\udcd1<\/a>","71":"macadeliccc\/MBX-7B-v3-DPO<\/a> \ud83d\udcd1<\/a>","72":"vicgalle\/CarbonBeagle-11B-truthy<\/a> \ud83d\udcd1<\/a>","73":"dddsaty\/FusionNet_7Bx2_MoE_Ko_DPO_Adapter_Attach<\/a> \ud83d\udcd1<\/a>","74":"vicgalle\/RoleBeagle-11B<\/a> \ud83d\udcd1<\/a>","75":"MaziyarPanahi\/Calme-7B-Instruct-v0.5<\/a> \ud83d\udcd1<\/a>","76":"FelixChao\/Capricorn-7B-DPO<\/a> \ud83d\udcd1<\/a>","77":"rwitz\/experiment26-SPIN-iter-0<\/a> \ud83d\udcd1<\/a>","78":"Kukedlc\/NeuralKrishna-7B-V2-DPO<\/a> \ud83d\udcd1<\/a>","79":"abideen\/AlphaMonarch-laser<\/a> \ud83d\udcd1<\/a>","80":"touqir\/Cyrax-7B<\/a> \ud83d\udcd1<\/a>","81":"Eric111\/UltraCatunaMayo-DPO<\/a> \ud83d\udcd1<\/a>","82":"abideen\/AlphaMonarch-daser<\/a> \ud83d\udcd1<\/a>","83":"yam-peleg\/Experiment21-7B<\/a> \ud83d\udcd1<\/a>","84":"TomGrc\/FusionNet_7Bx2_MoE_14B<\/a> \ud83d\udcd1<\/a>","85":"yam-peleg\/Experiment22-7B<\/a> \ud83d\udcd1<\/a>","86":"cloudyu\/Yi-34Bx2-MOE-200K<\/a> \ud83d\udcd1<\/a>","87":"NeverSleep\/MiquMaid-v2-2x70B-DPO<\/a> \ud83d\udcd1<\/a>","88":"abideen\/AlphaMonarch-dora<\/a> \ud83d\udcd1<\/a>","89":"AiMavenAi\/Prometheus-1.3<\/a> \ud83d\udcd1<\/a>","90":"FelixChao\/Capricorn-7B<\/a> \ud83d\udcd1<\/a>","91":"yleo\/EmertonMonarch-7B<\/a> \ud83d\udcd1<\/a>","92":"yam-peleg\/Experiment20-7B<\/a> \ud83d\udcd1<\/a>","93":"ibivibiv\/multimaster-7b-v6<\/a> \ud83d\udcd1<\/a>","94":"abacusai\/Smaug-Mixtral-v0.1<\/a> \ud83d\udcd1<\/a>","95":"daxiongshu\/Pluto_24B_DPO_63<\/a> \ud83d\udcd1<\/a>","96":"abacusai\/Smaug-Mixtral-v0.1<\/a> \ud83d\udcd1<\/a>","97":"cloudyu\/Phoenix_DPO_60B<\/a> \ud83d\udcd1<\/a>","98":"Weyaxi\/Helion-4x34B<\/a> \ud83d\udcd1<\/a>","99":"ibivibiv\/multimaster-7b-v4<\/a> \ud83d\udcd1<\/a>","100":"fblgit\/UNA-34BeagleSimpleMath-32K-v1<\/a> \ud83d\udcd1<\/a>","101":"ShinojiResearch\/Senku-70B-Full<\/a> \ud83d\udcd1<\/a>","102":"fblgit\/UNA-34Beagles-32K-v1<\/a> \ud83d\udcd1<\/a>","103":"one-man-army\/UNA-34Beagles-32K-bf16-v1<\/a> \ud83d\udcd1<\/a>","104":"FelixChao\/Scorpio-7B<\/a> \ud83d\udcd1<\/a>","105":"vicgalle\/ConfigurableBeagle-11B<\/a> \ud83d\udcd1<\/a>","106":"Weyaxi\/Cosmosis-3x34B<\/a> \ud83d\udcd1<\/a>","107":"macadeliccc\/WestLake-7B-v2-laser-truthy-dpo<\/a> \ud83d\udcd1<\/a>","108":"yam-peleg\/Experiment19-7B<\/a> \ud83d\udcd1<\/a>","109":"ShinojiResearch\/Senku-70B-Full<\/a> \ud83d\udcd1<\/a>","110":"yam-peleg\/Experiment23-7B<\/a> \ud83d\udcd1<\/a>","111":"maywell\/kiqu-70b<\/a> \ud83d\udcd1<\/a>","112":"FelixChao\/WestSeverus-7B-DPO-v2<\/a> \ud83d\udcd1<\/a>","113":"migtissera\/Tess-70B-v1.6<\/a> \ud83d\udcd1<\/a>","114":"alnrg2arg\/test3_sft_16bit<\/a> \ud83d\udcd1<\/a>","115":"FelixChao\/Faraday-7B<\/a> \ud83d\udcd1<\/a>","116":"Weyaxi\/Astralis-4x34B<\/a> \ud83d\udcd1<\/a>","117":"FelixChao\/Faraday-7B<\/a> \ud83d\udcd1<\/a>","118":"PetroGPT\/WestSeverus-7B-DPO<\/a> \ud83d\udcd1<\/a>","119":"FelixChao\/Sectumsempra-7B-DPO<\/a> \ud83d\udcd1<\/a>","120":"NeverSleep\/MiquMaid-v1-70B<\/a> \ud83d\udcd1<\/a>","121":"Weyaxi\/Bagel-Hermes-2x34B<\/a> \ud83d\udcd1<\/a>","122":"BarryFutureman\/WestLakeX-7B-EvoMerge-Variant2<\/a> \ud83d\udcd1<\/a>","123":"ibivibiv\/multimaster-7b-v5<\/a> \ud83d\udcd1<\/a>","124":"alnrg2arg\/test3_sft_16bit_dpo2<\/a> \ud83d\udcd1<\/a>","125":"ChaoticNeutrals\/Eris_Floramix_DPO_7B<\/a> \ud83d\udcd1<\/a>","126":"abhishekchohan\/SOLAR-10.7B-Instruct-Forest-DPO-v1<\/a> \ud83d\udcd1<\/a>","127":"abacusai\/MetaMath-Bagel-DPO-34B<\/a> \ud83d\udcd1<\/a>","128":"cognitivecomputations\/WestLake-7B-v2-laser<\/a> \ud83d\udcd1<\/a>","129":"cloudyu\/60B_MoE_Coder_v3<\/a> \ud83d\udcd1<\/a>","130":"ChaoticNeutrals\/Eris_Remix_DPO_7B<\/a> \ud83d\udcd1<\/a>","131":"Eric111\/CatunaLaserPi-DPO<\/a> \ud83d\udcd1<\/a>","132":"jondurbin\/nontoxic-bagel-34b-v0.2<\/a> \ud83d\udcd1<\/a>","133":"jondurbin\/bagel-dpo-34b-v0.2<\/a> \ud83d\udcd1<\/a>","134":"senseable\/WestLake-7B-v2<\/a> \ud83d\udcd1<\/a>","135":"moreh\/MoMo-72B-LoRA-V1.4<\/a> \ud83d\udcd1<\/a>","136":"MaziyarPanahi\/Calme-7B-Instruct-v0.4<\/a> \ud83d\udcd1<\/a>","137":"kevin009\/llamaRAGdrama<\/a> \ud83d\udcd1<\/a>","138":"vicgalle\/Mixtral-7Bx2-truthy<\/a> \ud83d\udcd1<\/a>","139":"moreh\/MoMo-72B-LoRA-V1.4<\/a> \ud83d\udcd1<\/a>","140":"jondurbin\/bagel-dpo-34b-v0.2<\/a> \ud83d\udcd1<\/a>","141":"senseable\/Westlake-7B<\/a> \ud83d\udcd1<\/a>","142":"rizla\/trrapi-16b<\/a> \ud83d\udcd1<\/a>","143":"abacusai\/MM-OV-bagel-DPO-34b-c1000-250<\/a> \ud83d\udcd1<\/a>","144":"BarryFutureman\/WestLakeX-7B-EvoMerge<\/a> \ud83d\udcd1<\/a>","145":"yunconglong\/Truthful_DPO_MOE_19B<\/a> \ud83d\udcd1<\/a>","146":"Kukedlc\/NeuralExperiment-7b-MagicCoder-v7.5<\/a> \ud83d\udcd1<\/a>","147":"ResplendentAI\/Datura_7B<\/a> \ud83d\udcd1<\/a>","148":"FelixChao\/Patronum-7B<\/a> \ud83d\udcd1<\/a>","149":"bhavinjawade\/SOLAR-10B-OrcaDPO-Jawade<\/a> \ud83d\udcd1<\/a>","150":"ResplendentAI\/Flora_DPO_7B<\/a> \ud83d\udcd1<\/a>","151":"ResplendentAI\/Flora_7B<\/a> \ud83d\udcd1<\/a>","152":"NeuralNovel\/Valor-7B-v0.1<\/a> \ud83d\udcd1<\/a>","153":"VAGOsolutions\/SauerkrautLM-SOLAR-Instruct<\/a> \ud83d\udcd1<\/a>","154":"upstage\/SOLAR-10.7B-Instruct-v1.0<\/a> \ud83d\udcd1<\/a>","155":"fblgit\/UNA-SOLAR-10.7B-Instruct-v1.0<\/a> \ud83d\udcd1<\/a>","156":"bhavinjawade\/SOLAR-10B-Nector-DPO-Jawade<\/a> \ud83d\udcd1<\/a>","157":"abacusai\/Liberated-Qwen1.5-72B<\/a> \ud83d\udcd1<\/a>","158":"dddsaty\/SOLAR-Instruct-ko-Adapter-Attach<\/a> \ud83d\udcd1<\/a>","159":"macadeliccc\/SOLAR-10.7b-Instruct-truthy-dpo<\/a> \ud83d\udcd1<\/a>","160":"abacusai\/Liberated-Qwen1.5-72B<\/a> \ud83d\udcd1<\/a>","161":"cloudyu\/19B_MATH_DPO<\/a> \ud83d\udcd1<\/a>","162":"dhanushreddy29\/BrokenKeyboard<\/a> \ud83d\udcd1<\/a>","163":"fblgit\/UNA-SOLAR-10.7B-Instruct-v1.0<\/a> \ud83d\udcd1<\/a>","164":"fblgit\/UNA-POLAR-10.7B-InstructMath-v2<\/a> \ud83d\udcd1<\/a>","165":"fblgit\/UNAversal-2x7B-v1<\/a> \ud83d\udcd1<\/a>","166":"dddsaty\/Merge_Sakura_Solar<\/a> \ud83d\udcd1<\/a>","167":"rishiraj\/meow<\/a> \ud83d\udcd1<\/a>","168":"vicgalle\/ConfigurableSOLAR-10.7B<\/a> \ud83d\udcd1<\/a>","169":"fblgit\/UNA-TheBeagle-7b-v1<\/a> \ud83d\udcd1<\/a>","170":"vicgalle\/OpenBeagle-11B<\/a> \ud83d\udcd1<\/a>","171":"InferenceIllusionist\/Excalibur-7b-DPO<\/a> \ud83d\udcd1<\/a>","172":"JaeyeonKang\/CCK_Gony_v3<\/a> \ud83d\udcd1<\/a>","173":"Sao10K\/Typhon-Mixtral-v1<\/a> \ud83d\udcd1<\/a>","174":"fblgit\/UNAversal-8x7B-v1beta<\/a> \ud83d\udcd1<\/a>","175":"sophosympatheia\/Aurora-Nights-70B-v1.0<\/a> \ud83d\udcd1<\/a>","176":"allenai\/tulu-2-dpo-70b<\/a> \ud83d\udcd1<\/a>","177":"Steelskull\/Lumosia-v2-MoE-4x10.7<\/a> \ud83d\udcd1<\/a>","178":"NousResearch\/Nous-Hermes-2-Yi-34B<\/a> \ud83d\udcd1<\/a>","179":"decruz07\/kellemar-DPO-Orca-Distilled-7B-SLERP<\/a> \ud83d\udcd1<\/a>","180":"abacusai\/MM-Orc-Vic-bagel-34b-c1000<\/a> \ud83d\udcd1<\/a>","181":"JaeyeonKang\/CCK_Asura_v2<\/a> \ud83d\udcd1<\/a>","182":"Qwen\/Qwen-72B<\/a> \ud83d\udcd1<\/a>","183":"yam-peleg\/Experiment7-7B<\/a> \ud83d\udcd1<\/a>","184":"macadeliccc\/SOLAR-10.7b-Instruct-dpo<\/a> \ud83d\udcd1<\/a>","185":"yam-peleg\/Experiment15-7B<\/a> \ud83d\udcd1<\/a>","186":"yam-peleg\/Experiment10-7B<\/a> \ud83d\udcd1<\/a>","187":"yam-peleg\/Experiment8-7B<\/a> \ud83d\udcd1<\/a>","188":"cloudyu\/Mixtral-8x7B-Instruct-v0.1-DPO<\/a> \ud83d\udcd1<\/a>","189":"Neuronovo\/neuronovo-9B-v0.4<\/a> \ud83d\udcd1<\/a>","190":"cloudyu\/Mixtral_7Bx5_MoE_30B<\/a> \ud83d\udcd1<\/a>","191":"yam-peleg\/Experiment9-7B<\/a> \ud83d\udcd1<\/a>","192":"yam-peleg\/Experiment1-7B<\/a> \ud83d\udcd1<\/a>","193":"yam-peleg\/Experiment2-7B<\/a> \ud83d\udcd1<\/a>","194":"yam-peleg\/Experiment4-7B<\/a> \ud83d\udcd1<\/a>","195":"Sao10K\/Franziska-Mixtral-v1<\/a> \ud83d\udcd1<\/a>","196":"NousResearch\/Nous-Hermes-2-Mixtral-8x7B-DPO<\/a> \ud83d\udcd1<\/a>","197":"ResplendentAI\/DaturaCookie_7B<\/a> \ud83d\udcd1<\/a>","198":"ibndias\/Nous-Hermes-2-MoE-2x34B<\/a> \ud83d\udcd1<\/a>","199":"gradientai\/v-alpha-tross<\/a> \ud83d\udcd1<\/a>","200":"carsenk\/flippa-exp26-v3-7b<\/a> \ud83d\udcd1<\/a>","201":"SUSTech\/SUS-Chat-34B<\/a> \ud83d\udcd1<\/a>","202":"Sao10K\/SOLAR-10.7B-NahIdWin<\/a> \ud83d\udcd1<\/a>","203":"yunconglong\/7Bx4_DPO<\/a> \ud83d\udcd1<\/a>","204":"gradientai\/v-alpha-tross<\/a> \ud83d\udcd1<\/a>","205":"ResplendentAI\/Luna-2x7B-MoE<\/a> \ud83d\udcd1<\/a>","206":"NousResearch\/Nous-Hermes-2-Mixtral-8x7B-DPO<\/a> \ud83d\udcd1<\/a>","207":"ibivibiv\/multimaster-7b-v3<\/a> \ud83d\udcd1<\/a>","208":"yunconglong\/7Bx4_DPO_2e<\/a> \ud83d\udcd1<\/a>","209":"argilla\/notux-8x7b-v1<\/a> \ud83d\udcd1<\/a>","210":"The-Face-Of-Goonery\/HuginnV5.5-12.6B<\/a> \ud83d\udcd1<\/a>","211":"Qwen\/Qwen1.5-72B<\/a> \ud83d\udcd1<\/a>","212":"logicker\/SkkuDS-DPO-72B-v1<\/a> \ud83d\udcd1<\/a>","213":"VAGOsolutions\/SauerkrautLM-Mixtral-8x7B-Instruct<\/a> \ud83d\udcd1<\/a>","214":"Himitsui\/Kaiju-11B<\/a> \ud83d\udcd1<\/a>","215":"PetroGPT\/Severus-7B-DPO<\/a> \ud83d\udcd1<\/a>","216":"S-miguel\/The-Trinity-Coder-7B<\/a> \ud83d\udcd1<\/a>","217":"logicker\/SkkuDS-DPO-72B-v3<\/a> \ud83d\udcd1<\/a>","218":"PSanni\/MPOMixtral-8x7B-Instruct-v0.1<\/a> \ud83d\udcd1<\/a>","219":"cloudyu\/19B_TRUTH_DPO<\/a> \ud83d\udcd1<\/a>","220":"JaeyeonKang\/CCK_Gony_v3.3<\/a> \ud83d\udcd1<\/a>","221":"VAGOsolutions\/SauerkrautLM-Mixtral-8x7B-Instruct<\/a> \ud83d\udcd1<\/a>","222":"tenyx\/TenyxChat-8x7B-v1<\/a> \ud83d\udcd1<\/a>","223":"mistralai\/Mixtral-8x7B-Instruct-v0.1<\/a> \ud83d\udcd1<\/a>","224":"ChaoticNeutrals\/RPMix-4x7B-MoE<\/a> \ud83d\udcd1<\/a>","225":"SJ-Donald\/SJ-SOLAR-10.7b-DPO<\/a> \ud83d\udcd1<\/a>","226":"senseable\/garten2-7b<\/a> \ud83d\udcd1<\/a>","227":"Azure99\/blossom-v5-34b<\/a> \ud83d\udcd1<\/a>","228":"Sao10K\/Fimbulvetr-11B-v2<\/a> \ud83d\udcd1<\/a>","229":"mistralai\/Mixtral-8x7B-Instruct-v0.1<\/a> \ud83d\udcd1<\/a>","230":"FelixChao\/Severus-7B<\/a> \ud83d\udcd1<\/a>","231":"Himitsui\/KuroMitsu-11B<\/a> \ud83d\udcd1<\/a>","232":"maywell\/PiVoT-SUS-RP<\/a> \ud83d\udcd1<\/a>","233":"jondurbin\/bagel-dpo-8x7b-v0.2<\/a> \ud83d\udcd1<\/a>","234":"ignos\/Mistral-T5-7B-v1<\/a> \ud83d\udcd1<\/a>","235":"SanjiWatsuki\/Kunoichi-DPO-v2-7B<\/a> \ud83d\udcd1<\/a>","236":"Brillibits\/Instruct_Mixtral-8x7B-v0.1_Dolly15K<\/a> \ud83d\udcd1<\/a>","237":"Sao10K\/Fimbulvetr-11B-v2<\/a> \ud83d\udcd1<\/a>","238":"SanjiWatsuki\/Kunoichi-DPO-v2-7B<\/a> \ud83d\udcd1<\/a>","239":"cognitivecomputations\/mixtral-instruct-0.1-laser<\/a> \ud83d\udcd1<\/a>","240":"cognitivecomputations\/laserxtral<\/a> \ud83d\udcd1<\/a>","241":"OpenBuddy\/openbuddy-deepseek-67b-v15.2<\/a> \ud83d\udcd1<\/a>","242":"macadeliccc\/piccolo-math-2x7b<\/a> \ud83d\udcd1<\/a>","243":"JaeyeonKang\/CCK_Gony_v0.1<\/a> \ud83d\udcd1<\/a>","244":"R136a1\/InfinityKuno-2x7B<\/a> \ud83d\udcd1<\/a>","245":"jan-ai\/Solar-10.7B-SLERP<\/a> \ud83d\udcd1<\/a>","246":"mncai\/yi-34B-v3<\/a> \ud83d\udcd1<\/a>","247":"NeverSleep\/CausalLM-RP-34B<\/a> \ud83d\udcd1<\/a>","248":"Sao10K\/Fimbulvetr-10.7B-v1<\/a> \ud83d\udcd1<\/a>","249":"SanjiWatsuki\/Kunoichi-DPO-7B<\/a> \ud83d\udcd1<\/a>","250":"jan-hq\/supermario-slerp-v3<\/a> \ud83d\udcd1<\/a>","251":"viethq188\/LeoScorpius-7B<\/a> \ud83d\udcd1<\/a>","252":"JaeyeonKang\/CCK_Gony_v3.1<\/a> \ud83d\udcd1<\/a>","253":"adonlee\/Mistral_7B_SFT_DPO_v0<\/a> \ud83d\udcd1<\/a>","254":"mncai\/yi-34B-v2<\/a> \ud83d\udcd1<\/a>","255":"NousResearch\/Nous-Hermes-2-Mixtral-8x7B-SFT<\/a> \ud83d\udcd1<\/a>","256":"CausalLM\/72B-preview-llamafied-qwen-llamafy<\/a> \ud83d\udcd1<\/a>","257":"OpenPipe\/mistral-ft-optimized-1218<\/a> \ud83d\udcd1<\/a>","258":"bn22\/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED<\/a> \ud83d\udcd1<\/a>","259":"arlineka\/Brunhilde-2x7b-MOE-DPO-v.01.5<\/a> \ud83d\udcd1<\/a>","260":"OpenBuddy\/openbuddy-deepseek-67b-v18.1-4k<\/a> \ud83d\udcd1<\/a>","261":"deepseek-ai\/deepseek-llm-67b-chat<\/a> \ud83d\udcd1<\/a>","262":"mlabonne\/NeuralDarewin-7B<\/a> \ud83d\udcd1<\/a>","263":"OpenBuddy\/openbuddy-deepseek-67b-v15.1<\/a> \ud83d\udcd1<\/a>","264":"migtissera\/Tess-M-Creative-v1.0<\/a> \ud83d\udcd1<\/a>","265":"VitalContribution\/Evangelion-7B<\/a> \ud83d\udcd1<\/a>","266":"bhenrym14\/platypus-yi-34b<\/a> \ud83d\udcd1<\/a>","267":"RatanRohith\/NeuralPizza-7B-V0.3<\/a> \ud83d\udcd1<\/a>","268":"PracticeLLM\/SOLAR-tail-10.7B-Merge-v1.0<\/a> \ud83d\udcd1<\/a>","269":"Azure99\/blossom-v4-yi-34b<\/a> \ud83d\udcd1<\/a>","270":"llmixer\/BigWeave-v15-103b<\/a> \ud83d\udcd1<\/a>","271":"MaziyarPanahi\/Calme-7B-Instruct-v0.1<\/a> \ud83d\udcd1<\/a>","272":"Samee-ur\/NeuralPipe-7B-slerp-DPO<\/a> \ud83d\udcd1<\/a>","273":"VAGOsolutions\/SauerkrautLM-14b-MoE-LaserChat<\/a> \ud83d\udcd1<\/a>","274":"RatanRohith\/NeuralPizza-7B-V0.2<\/a> \ud83d\udcd1<\/a>","275":"RatanRohith\/NeuralPizza-7B-V0.1<\/a> \ud83d\udcd1<\/a>","276":"R136a1\/InfinityKumon-2x7B<\/a> \ud83d\udcd1<\/a>","277":"deepseek-ai\/deepseek-llm-67b-chat<\/a> \ud83d\udcd1<\/a>","278":"Sao10K\/14B-Glacier-Stack<\/a> \ud83d\udcd1<\/a>","279":"jan-hq\/supermario-slerp-v2<\/a> \ud83d\udcd1<\/a>","280":"dillfrescott\/amadeus-v0.1<\/a> \ud83d\udcd1<\/a>","281":"OpenBuddy\/openbuddy-deepseek-67b-v15.3-4k<\/a> \ud83d\udcd1<\/a>","282":"KnutJaegersberg\/Deita-20b<\/a> \ud83d\udcd1<\/a>","283":"LDCC\/LDCC-SOLAR-10.7B<\/a> \ud83d\udcd1<\/a>","284":"LDCC\/LDCC-SOLAR-10.7B<\/a> \ud83d\udcd1<\/a>"},"Average \u2b06\ufe0f":{"0":81.22,"1":81.0,"2":80.98,"3":80.81,"4":80.79,"5":80.72,"6":80.48,"7":79.3,"8":78.55,"9":77.91,"10":77.74,"11":77.52,"12":77.5,"13":77.44,"14":77.43,"15":77.41,"16":77.38,"17":77.3,"18":77.29,"19":77.29,"20":77.28,"21":77.22,"22":77.19,"23":77.1,"24":77.08,"25":77.07,"26":77.06,"27":77.05,"28":77.03,"29":76.95,"30":76.74,"31":76.74,"32":76.7,"33":76.67,"34":76.65,"35":76.62,"36":76.62,"37":76.61,"38":76.6,"39":76.6,"40":76.59,"41":76.59,"42":76.58,"43":76.57,"44":76.56,"45":76.55,"46":76.55,"47":76.53,"48":76.53,"49":76.5,"50":76.49,"51":76.49,"52":76.48,"53":76.47,"54":76.45,"55":76.44,"56":76.44,"57":76.43,"58":76.42,"59":76.41,"60":76.41,"61":76.4,"62":76.4,"63":76.38,"64":76.37,"65":76.36,"66":76.34,"67":76.34,"68":76.29,"69":76.23,"70":76.16,"71":76.13,"72":76.1,"73":76.09,"74":76.06,"75":76.05,"76":76.04,"77":76.04,"78":76.0,"79":76.0,"80":75.98,"81":75.96,"82":75.94,"83":75.93,"84":75.91,"85":75.9,"86":75.89,"87":75.89,"88":75.86,"89":75.81,"90":75.76,"91":75.74,"92":75.71,"93":75.66,"94":75.64,"95":75.63,"96":75.49,"97":75.48,"98":75.48,"99":75.47,"100":75.45,"101":75.44,"102":75.41,"103":75.41,"104":75.4,"105":75.4,"106":75.39,"107":75.37,"108":75.36,"109":75.36,"110":75.31,"111":75.29,"112":75.29,"113":75.29,"114":75.28,"115":75.25,"116":75.24,"117":75.22,"118":75.17,"119":75.14,"120":75.12,"121":75.1,"122":75.04,"123":75.01,"124":74.98,"125":74.87,"126":74.8,"127":74.8,"128":74.78,"129":74.75,"130":74.71,"131":74.7,"132":74.69,"133":74.69,"134":74.68,"135":74.67,"136":74.65,"137":74.65,"138":74.64,"139":74.64,"140":74.5,"141":74.48,"142":74.48,"143":74.47,"144":74.37,"145":74.3,"146":74.28,"147":74.28,"148":74.27,"149":74.27,"150":74.26,"151":74.26,"152":74.21,"153":74.21,"154":74.2,"155":74.2,"156":74.19,"157":74.13,"158":74.11,"159":74.11,"160":74.11,"161":74.1,"162":74.08,"163":74.07,"164":74.07,"165":74.05,"166":74.03,"167":73.94,"168":73.94,"169":73.87,"170":73.85,"171":73.84,"172":73.83,"173":73.81,"174":73.78,"175":73.77,"176":73.77,"177":73.75,"178":73.74,"179":73.71,"180":73.68,"181":73.62,"182":73.6,"183":73.55,"184":73.54,"185":73.48,"186":73.47,"187":73.47,"188":73.44,"189":73.42,"190":73.39,"191":73.39,"192":73.39,"193":73.38,"194":73.38,"195":73.36,"196":73.35,"197":73.35,"198":73.3,"199":73.28,"200":73.25,"201":73.22,"202":73.21,"203":73.2,"204":73.16,"205":73.13,"206":73.12,"207":73.07,"208":72.99,"209":72.97,"210":72.93,"211":72.91,"212":72.89,"213":72.89,"214":72.82,"215":72.81,"216":72.81,"217":72.8,"218":72.8,"219":72.8,"220":72.76,"221":72.73,"222":72.72,"223":72.7,"224":72.68,"225":72.67,"226":72.65,"227":72.65,"228":72.63,"229":72.62,"230":72.58,"231":72.58,"232":72.57,"233":72.49,"234":72.47,"235":72.46,"236":72.44,"237":72.4,"238":72.4,"239":72.36,"240":72.34,"241":72.33,"242":72.32,"243":72.32,"244":72.32,"245":72.31,"246":72.26,"247":72.26,"248":72.25,"249":72.24,"250":72.22,"251":72.21,"252":72.2,"253":72.17,"254":72.12,"255":72.07,"256":72.0,"257":71.94,"258":71.83,"259":71.81,"260":71.8,"261":71.79,"262":71.79,"263":71.76,"264":71.73,"265":71.71,"266":71.69,"267":71.68,"268":71.68,"269":71.67,"270":71.67,"271":71.63,"272":71.6,"273":71.6,"274":71.59,"275":71.53,"276":71.52,"277":71.52,"278":71.47,"279":71.45,"280":71.42,"281":71.42,"282":71.4,"283":71.4,"284":71.4},"ARC":{"0":79.78,"1":78.67,"2":78.58,"3":76.79,"4":76.19,"5":76.19,"6":76.02,"7":73.89,"8":70.82,"9":74.06,"10":77.47,"11":74.06,"12":73.81,"13":74.91,"14":73.89,"15":74.57,"16":73.72,"17":71.25,"18":70.14,"19":74.23,"20":72.87,"21":73.63,"22":74.49,"23":74.32,"24":74.66,"25":72.95,"26":73.63,"27":74.32,"28":72.95,"29":73.21,"30":73.38,"31":72.87,"32":72.95,"33":73.12,"34":73.29,"35":73.38,"36":73.04,"37":73.12,"38":73.21,"39":73.38,"40":72.95,"41":74.06,"42":73.55,"43":73.55,"44":73.81,"45":74.23,"46":73.21,"47":73.12,"48":73.46,"49":72.78,"50":72.95,"51":73.04,"52":71.25,"53":73.55,"54":73.12,"55":73.12,"56":71.25,"57":73.04,"58":73.21,"59":73.04,"60":72.53,"61":73.21,"62":73.04,"63":72.44,"64":73.89,"65":73.29,"66":73.12,"67":72.78,"68":74.23,"69":69.62,"70":74.06,"71":73.55,"72":72.27,"73":73.89,"74":72.35,"75":72.87,"76":72.87,"77":72.44,"78":74.06,"79":73.12,"80":72.95,"81":72.87,"82":73.04,"83":71.42,"84":73.55,"85":71.5,"86":70.48,"87":72.53,"88":73.21,"89":72.61,"90":72.44,"91":72.7,"92":73.04,"93":72.78,"94":74.91,"95":73.98,"96":74.66,"97":71.16,"98":69.71,"99":72.53,"100":74.15,"101":71.5,"102":73.55,"103":73.55,"104":71.33,"105":72.53,"106":69.71,"107":73.89,"108":72.35,"109":71.33,"110":72.35,"111":72.1,"112":71.42,"113":71.33,"114":73.55,"115":72.27,"116":69.71,"117":72.44,"118":70.73,"119":71.5,"120":71.67,"121":69.8,"122":72.53,"123":72.18,"124":73.63,"125":73.04,"126":71.93,"127":68.17,"128":73.29,"129":71.16,"130":72.44,"131":72.95,"132":72.44,"133":71.93,"134":73.04,"135":69.2,"136":70.73,"137":72.01,"138":72.18,"139":69.11,"140":72.01,"141":73.21,"142":72.1,"143":68.17,"144":71.42,"145":71.08,"146":71.33,"147":72.1,"148":71.67,"149":71.16,"150":71.76,"151":72.1,"152":72.27,"153":70.82,"154":71.08,"155":70.56,"156":71.33,"157":65.7,"158":71.08,"159":72.1,"160":65.7,"161":71.08,"162":71.25,"163":70.73,"164":70.73,"165":73.38,"166":70.73,"167":70.48,"168":70.39,"169":73.04,"170":70.48,"171":70.9,"172":71.33,"173":71.84,"174":69.8,"175":71.33,"176":72.1,"177":70.39,"178":66.89,"179":70.48,"180":67.32,"181":70.82,"182":65.19,"183":71.84,"184":71.76,"185":72.18,"186":72.18,"187":72.1,"188":69.8,"189":72.44,"190":69.97,"191":72.01,"192":72.53,"193":72.18,"194":72.18,"195":71.76,"196":71.08,"197":71.25,"198":66.64,"199":71.93,"200":68.09,"201":66.3,"202":64.51,"203":69.37,"204":71.84,"205":71.16,"206":71.42,"207":70.39,"208":68.94,"209":70.65,"210":72.01,"211":65.87,"212":65.96,"213":70.48,"214":69.97,"215":70.22,"216":69.37,"217":66.04,"218":70.99,"219":71.67,"220":70.39,"221":70.56,"222":69.71,"223":70.14,"224":71.08,"225":68.26,"226":69.37,"227":66.98,"228":70.14,"229":70.22,"230":68.43,"231":70.31,"232":66.55,"233":72.1,"234":68.6,"235":69.62,"236":69.28,"237":70.14,"238":69.37,"239":70.48,"240":69.03,"241":68.6,"242":69.11,"243":70.05,"244":69.62,"245":70.73,"246":67.06,"247":68.0,"248":68.94,"249":69.62,"250":69.28,"251":69.28,"252":69.62,"253":66.3,"254":66.13,"255":69.71,"256":65.19,"257":67.92,"258":68.26,"259":69.54,"260":67.75,"261":67.75,"262":70.14,"263":67.66,"264":66.81,"265":68.94,"266":68.43,"267":71.08,"268":66.13,"269":66.81,"270":69.71,"271":67.24,"272":69.28,"273":66.72,"274":68.77,"275":70.48,"276":69.62,"277":67.75,"278":71.67,"279":69.71,"280":68.94,"281":67.58,"282":63.91,"283":67.32,"284":67.58},"HellaSwag":{"0":91.15,"1":89.77,"2":89.74,"3":89.02,"4":89.44,"5":89.46,"6":89.27,"7":88.16,"8":85.96,"9":86.74,"10":91.88,"11":86.67,"12":89.22,"13":89.3,"14":89.07,"15":86.74,"16":86.46,"17":85.53,"18":86.03,"19":86.76,"20":86.52,"21":89.04,"22":86.76,"23":89.5,"24":89.51,"25":86.22,"26":86.59,"27":89.39,"28":88.86,"29":86.11,"30":89.15,"31":89.2,"32":89.23,"33":89.12,"34":89.11,"35":89.13,"36":89.04,"37":89.19,"38":89.13,"39":89.11,"40":89.15,"41":88.96,"42":89.19,"43":89.14,"44":89.06,"45":89.37,"46":89.19,"47":89.06,"48":89.09,"49":89.15,"50":89.26,"51":89.25,"52":85.24,"53":89.13,"54":89.09,"55":89.07,"56":85.1,"57":89.3,"58":89.03,"59":89.0,"60":88.75,"61":89.01,"62":89.11,"63":88.73,"64":89.26,"65":88.89,"66":89.09,"67":89.29,"68":88.82,"69":85.35,"70":88.9,"71":89.11,"72":89.31,"73":88.94,"74":89.77,"75":88.77,"76":88.47,"77":88.74,"78":88.97,"79":89.21,"80":88.19,"81":88.75,"82":89.23,"83":89.03,"84":88.84,"85":88.89,"86":84.63,"87":88.36,"88":89.26,"89":89.02,"90":88.41,"91":89.16,"92":88.62,"93":88.77,"94":87.79,"95":88.17,"96":87.72,"97":85.46,"98":85.28,"99":88.77,"100":85.98,"101":87.88,"102":85.93,"103":85.93,"104":88.5,"105":88.85,"106":85.18,"107":88.85,"108":88.61,"109":87.86,"110":88.77,"111":87.94,"112":88.27,"113":87.06,"114":88.87,"115":88.9,"116":85.17,"117":88.91,"118":88.01,"119":88.7,"120":87.96,"121":85.26,"122":88.52,"123":88.42,"124":89.03,"125":88.28,"126":88.44,"127":84.23,"128":88.66,"129":85.44,"130":88.03,"131":88.33,"132":85.64,"133":85.25,"134":88.65,"135":85.07,"136":87.75,"137":88.83,"138":87.88,"139":85.0,"140":85.24,"141":88.49,"142":88.88,"143":83.97,"144":88.08,"145":88.46,"146":87.94,"147":88.27,"148":88.33,"149":88.27,"150":88.28,"151":88.31,"152":86.59,"153":88.63,"154":88.16,"155":88.18,"156":88.62,"157":84.62,"158":88.2,"159":88.44,"160":84.58,"161":88.43,"162":88.34,"163":88.32,"164":88.2,"165":87.87,"166":88.51,"167":88.08,"168":88.03,"169":88.0,"170":88.76,"171":87.93,"172":88.71,"173":87.47,"174":86.9,"175":88.33,"176":88.99,"177":87.87,"178":85.49,"179":87.56,"180":83.52,"181":88.09,"182":85.94,"183":88.04,"184":88.08,"185":88.68,"186":87.96,"187":88.13,"188":87.83,"189":88.33,"190":86.82,"191":88.06,"192":88.17,"193":88.15,"194":88.09,"195":87.37,"196":87.29,"197":88.0,"198":85.73,"199":86.82,"200":86.5,"201":83.91,"202":85.67,"203":86.89,"204":86.84,"205":88.12,"206":87.21,"207":87.65,"208":86.8,"209":87.72,"210":86.7,"211":85.99,"212":86.0,"213":87.75,"214":87.72,"215":87.09,"216":86.17,"217":86.11,"218":87.95,"219":88.63,"220":87.88,"221":87.74,"222":87.76,"223":87.55,"224":87.79,"225":86.95,"226":87.54,"227":84.79,"228":87.79,"229":87.63,"230":86.89,"231":88.07,"232":84.23,"233":86.41,"234":86.3,"235":87.44,"236":87.59,"237":87.77,"238":87.42,"239":87.28,"240":86.76,"241":86.37,"242":87.27,"243":87.27,"244":87.44,"245":87.87,"246":85.11,"247":83.43,"248":87.27,"249":87.14,"250":86.71,"251":87.01,"252":87.45,"253":84.9,"254":85.0,"255":86.74,"256":83.24,"257":86.26,"258":86.11,"259":87.02,"260":84.65,"261":86.82,"262":86.4,"263":86.49,"264":85.14,"265":86.45,"266":85.21,"267":87.38,"268":86.54,"269":84.44,"270":86.41,"271":85.57,"272":86.34,"273":84.88,"274":86.11,"275":87.3,"276":87.09,"277":86.8,"278":88.35,"279":86.54,"280":86.98,"281":85.15,"282":83.11,"283":88.11,"284":88.11},"MMLU":{"0":77.95,"1":78.22,"2":78.27,"3":77.2,"4":77.07,"5":77.17,"6":77.15,"7":77.4,"8":77.13,"9":76.65,"10":68.1,"11":76.69,"12":64.92,"13":64.67,"14":75.44,"15":76.68,"16":76.72,"17":76.63,"18":77.4,"19":76.66,"20":76.96,"21":75.99,"22":76.55,"23":64.47,"24":64.53,"25":77.05,"26":76.55,"27":64.48,"28":75.41,"29":75.44,"30":64.32,"31":64.4,"32":64.42,"33":64.3,"34":64.35,"35":64.28,"36":64.44,"37":64.36,"38":64.34,"39":64.36,"40":64.44,"41":64.45,"42":64.36,"43":64.29,"44":64.34,"45":64.54,"46":64.39,"47":64.49,"48":64.4,"49":64.51,"50":64.32,"51":64.4,"52":77.28,"53":64.45,"54":64.8,"55":64.8,"56":77.36,"57":64.13,"58":64.53,"59":64.38,"60":74.96,"61":64.45,"62":64.79,"63":64.56,"64":64.94,"65":64.39,"66":64.79,"67":64.25,"68":65.01,"69":77.33,"70":65.0,"71":64.91,"72":66.55,"73":65.03,"74":66.35,"75":64.69,"76":64.29,"77":64.64,"78":64.41,"79":64.43,"80":64.6,"81":65.18,"82":64.43,"83":63.92,"84":64.68,"85":64.13,"86":76.64,"87":75.31,"88":64.47,"89":64.26,"90":64.9,"91":64.05,"92":63.23,"93":64.74,"94":70.08,"95":64.49,"96":70.06,"97":77.66,"98":77.33,"99":64.85,"100":76.52,"101":75.2,"102":76.45,"103":76.45,"104":64.7,"105":66.71,"106":77.25,"107":64.84,"108":63.08,"109":75.14,"110":64.17,"111":74.93,"112":64.79,"113":74.76,"114":64.63,"115":64.69,"116":77.24,"117":64.68,"118":64.93,"119":64.9,"120":74.9,"121":77.24,"122":64.77,"123":65.06,"124":64.63,"125":64.71,"126":65.63,"127":76.54,"128":64.72,"129":75.37,"130":65.29,"131":64.95,"132":76.41,"133":76.58,"134":64.71,"135":77.12,"136":64.4,"137":64.5,"138":65.2,"139":77.26,"140":76.58,"141":64.64,"142":64.26,"143":76.33,"144":64.84,"145":66.13,"146":64.62,"147":64.15,"148":64.84,"149":66.12,"150":64.13,"151":64.16,"152":64.09,"153":66.2,"154":66.21,"155":66.08,"156":66.22,"157":77.13,"158":66.09,"159":65.45,"160":77.08,"161":66.25,"162":66.04,"163":66.1,"164":66.03,"165":63.49,"166":66.03,"167":66.25,"168":66.44,"169":63.48,"170":66.94,"171":65.46,"172":71.07,"173":71.11,"174":70.39,"175":70.47,"176":69.84,"177":66.45,"178":76.7,"179":65.33,"180":76.09,"181":74.72,"182":77.37,"183":65.25,"184":66.06,"185":60.01,"186":65.32,"187":65.25,"188":71.05,"189":65.24,"190":64.42,"191":65.32,"192":65.28,"193":65.1,"194":65.03,"195":69.78,"196":72.17,"197":64.28,"198":76.49,"199":70.38,"200":64.42,"201":76.41,"202":64.17,"203":64.73,"204":70.44,"205":64.41,"206":72.28,"207":65.07,"208":64.5,"209":71.39,"210":64.5,"211":77.2,"212":77.33,"213":71.37,"214":66.79,"215":64.93,"216":64.9,"217":77.34,"218":70.26,"219":65.78,"220":71.43,"221":71.08,"222":71.12,"223":71.4,"224":64.36,"225":66.73,"226":65.44,"227":76.0,"228":66.83,"229":71.16,"230":65.2,"231":66.66,"232":76.23,"233":70.27,"234":64.62,"235":64.94,"236":70.96,"237":66.68,"238":64.83,"239":71.07,"240":64.68,"241":71.5,"242":63.69,"243":71.21,"244":64.49,"245":65.77,"246":75.8,"247":83.1,"248":66.59,"249":64.79,"250":65.11,"251":65.04,"252":71.2,"253":64.53,"254":75.64,"255":72.21,"256":77.04,"257":64.99,"258":66.26,"259":64.93,"260":70.58,"261":72.42,"262":64.85,"263":70.3,"264":75.54,"265":63.97,"266":78.13,"267":64.29,"268":66.52,"269":74.34,"270":71.25,"271":64.97,"272":63.7,"273":65.17,"274":64.32,"275":64.42,"276":64.97,"277":72.19,"278":66.73,"279":64.82,"280":64.69,"281":70.38,"282":67.4,"283":66.83,"284":66.63},"TruthfulQA":{"0":74.5,"1":75.18,"2":75.09,"3":79.02,"4":77.82,"5":77.78,"6":76.67,"7":72.69,"8":74.71,"9":72.24,"10":79.17,"11":71.32,"12":78.57,"13":78.02,"14":71.75,"15":70.17,"16":71.01,"17":71.99,"18":69.0,"19":70.22,"20":73.28,"21":70.19,"22":70.21,"23":78.66,"24":78.63,"25":71.31,"26":69.68,"27":78.47,"28":69.1,"29":72.78,"30":78.24,"31":77.92,"32":78.41,"33":78.04,"34":77.86,"35":77.98,"36":78.49,"37":78.0,"38":77.66,"39":77.3,"40":77.96,"41":77.67,"42":78.31,"43":78.43,"44":78.54,"45":74.26,"46":76.82,"47":78.72,"48":77.76,"49":78.8,"50":78.1,"51":78.17,"52":66.74,"53":78.7,"54":77.45,"55":77.46,"56":66.24,"57":78.71,"58":78.3,"59":77.81,"60":67.33,"61":78.49,"62":77.48,"63":78.37,"64":72.47,"65":77.47,"66":77.52,"67":78.57,"68":73.96,"69":64.64,"70":71.2,"71":74.0,"72":78.55,"73":71.24,"74":77.92,"75":73.68,"76":77.23,"77":74.9,"78":76.19,"79":77.9,"80":77.01,"81":76.44,"82":78.01,"83":79.79,"84":69.6,"85":79.47,"86":68.19,"87":66.5,"88":78.02,"89":79.29,"90":73.76,"91":78.09,"92":77.72,"93":70.89,"94":66.88,"95":79.36,"96":66.95,"97":63.84,"98":63.91,"99":70.74,"100":73.74,"101":61.96,"102":73.55,"103":73.55,"104":72.51,"105":77.13,"106":63.82,"107":69.81,"108":78.18,"109":61.95,"110":78.87,"111":63.48,"112":72.37,"113":63.8,"114":69.77,"115":73.07,"116":63.55,"117":73.03,"118":70.53,"119":72.49,"120":61.79,"121":64.82,"122":70.35,"123":70.37,"124":70.71,"125":70.94,"126":76.13,"127":65.44,"128":67.04,"129":67.01,"130":68.92,"131":70.01,"132":72.7,"133":70.05,"134":67.06,"135":62.66,"136":70.25,"137":70.24,"138":74.68,"139":62.71,"140":70.16,"141":67.36,"142":74.13,"143":63.67,"144":67.5,"145":72.29,"146":72.11,"147":71.03,"148":70.41,"149":71.57,"150":71.08,"151":71.19,"152":69.84,"153":71.95,"154":71.43,"155":72.05,"156":70.92,"157":60.64,"158":71.51,"159":76.75,"160":60.56,"161":72.11,"162":71.36,"163":72.52,"164":71.73,"165":69.93,"166":72.21,"167":70.49,"168":72.34,"169":69.85,"170":67.01,"171":70.82,"172":73.33,"173":68.81,"174":71.97,"175":62.81,"176":65.78,"177":68.48,"178":60.37,"179":64.97,"180":60.57,"181":56.97,"182":60.19,"183":70.59,"184":71.98,"185":77.05,"186":71.1,"187":70.25,"188":69.18,"189":71.07,"190":65.97,"191":70.42,"192":69.98,"193":69.97,"194":70.39,"195":70.07,"196":54.83,"197":68.48,"198":58.08,"199":65.21,"200":67.35,"201":57.04,"202":76.73,"203":65.66,"204":65.22,"205":68.66,"206":54.53,"207":59.7,"208":65.6,"209":66.21,"210":70.45,"211":59.61,"212":59.54,"213":65.71,"214":62.15,"215":64.41,"216":61.25,"217":59.73,"218":66.52,"219":72.23,"220":67.41,"221":65.72,"222":65.42,"223":64.98,"224":67.29,"225":67.74,"226":59.5,"227":62.68,"228":63.43,"229":64.58,"230":61.36,"231":61.36,"232":54.57,"233":72.83,"234":61.86,"235":66.06,"236":64.83,"237":63.42,"238":66.0,"239":65.83,"240":63.8,"241":56.2,"242":63.86,"243":63.23,"244":63.28,"245":65.72,"246":57.54,"247":54.51,"248":60.54,"249":67.31,"250":61.77,"251":63.95,"252":64.17,"253":69.72,"254":57.34,"255":51.22,"256":52.55,"257":59.48,"258":57.79,"259":65.47,"260":55.66,"261":55.85,"262":62.92,"263":54.42,"264":57.68,"265":64.01,"266":54.48,"267":67.93,"268":60.57,"269":57.89,"270":66.1,"271":59.38,"272":63.53,"273":57.64,"274":61.38,"275":67.22,"276":61.99,"277":55.83,"278":65.37,"279":63.06,"280":63.82,"281":54.88,"282":57.29,"283":68.85,"284":68.87},"Winogrande":{"0":87.85,"1":87.53,"2":87.37,"3":84.06,"4":84.93,"5":84.45,"6":85.08,"7":86.03,"8":84.06,"9":83.35,"10":87.45,"11":83.43,"12":87.37,"13":88.24,"14":86.35,"15":83.82,"16":83.35,"17":81.45,"18":84.37,"19":83.66,"20":83.19,"21":85.48,"22":83.27,"23":88.08,"24":88.08,"25":83.98,"26":83.43,"27":88.0,"28":85.08,"29":82.95,"30":84.93,"31":84.77,"32":84.93,"33":85.0,"34":84.93,"35":84.93,"36":85.4,"37":84.93,"38":84.85,"39":85.0,"40":85.0,"41":85.0,"42":85.0,"43":85.16,"44":85.16,"45":87.77,"46":85.32,"47":85.0,"48":84.85,"49":84.85,"50":85.16,"51":84.85,"52":84.29,"53":84.93,"54":84.77,"55":84.69,"56":84.77,"57":85.32,"58":84.61,"59":84.53,"60":85.87,"61":85.4,"62":84.77,"63":83.82,"64":88.0,"65":84.69,"66":84.69,"67":84.93,"68":85.24,"69":84.14,"70":87.53,"71":85.56,"72":83.82,"73":87.61,"74":84.06,"75":84.37,"76":83.11,"77":85.24,"78":84.29,"79":84.61,"80":83.9,"81":83.98,"82":84.69,"83":85.48,"84":88.16,"85":84.77,"86":82.72,"87":85.32,"88":84.45,"89":85.16,"90":83.27,"91":85.16,"92":85.0,"93":86.42,"94":81.69,"95":81.69,"96":81.61,"97":84.93,"98":84.37,"99":86.27,"100":83.27,"101":84.77,"102":82.95,"103":82.95,"104":83.5,"105":83.27,"106":84.14,"107":86.66,"108":84.53,"109":84.53,"110":85.32,"111":84.85,"112":83.27,"113":83.98,"114":84.45,"115":85.32,"116":84.14,"117":85.56,"118":83.5,"119":83.19,"120":85.08,"121":84.77,"122":85.79,"123":86.03,"124":84.37,"125":84.69,"126":82.16,"127":82.24,"128":86.74,"129":82.56,"130":84.77,"131":82.64,"132":82.48,"133":83.35,"134":86.98,"135":83.74,"136":82.08,"137":86.66,"138":80.66,"139":83.74,"140":83.03,"141":86.03,"142":86.35,"143":82.4,"144":84.77,"145":83.35,"146":83.5,"147":84.53,"148":81.85,"149":83.66,"150":84.53,"151":84.45,"152":83.35,"153":83.5,"154":83.58,"155":83.66,"156":83.43,"157":83.03,"158":83.5,"159":82.72,"160":83.11,"161":82.95,"162":83.19,"163":83.35,"164":82.95,"165":82.08,"166":82.72,"167":83.43,"168":83.03,"169":82.16,"170":83.5,"171":82.48,"172":81.22,"173":81.77,"174":82.0,"175":83.35,"176":83.27,"177":84.21,"178":82.95,"179":81.93,"180":82.32,"181":85.24,"182":82.48,"183":80.82,"184":82.32,"185":84.21,"186":80.74,"187":80.66,"188":81.37,"189":80.66,"190":80.98,"191":80.74,"192":80.82,"193":81.22,"194":81.14,"195":80.9,"196":83.11,"197":82.79,"198":83.35,"199":83.58,"200":84.77,"201":83.5,"202":80.51,"203":80.58,"204":83.11,"205":83.27,"206":82.64,"207":84.06,"208":80.74,"209":80.74,"210":81.29,"211":83.03,"212":82.64,"213":81.22,"214":83.5,"215":80.66,"216":81.77,"217":82.64,"218":82.56,"219":82.16,"220":81.22,"221":81.45,"222":81.22,"223":81.06,"224":81.93,"225":84.21,"226":84.69,"227":83.43,"228":82.95,"229":81.37,"230":80.9,"231":84.69,"232":83.35,"233":83.27,"234":80.27,"235":80.82,"236":82.56,"237":82.72,"238":80.74,"239":80.82,"240":80.03,"241":84.45,"242":79.87,"243":80.35,"244":82.72,"245":82.48,"246":83.5,"247":82.16,"248":83.5,"249":80.58,"250":80.51,"251":81.53,"252":81.14,"253":81.77,"254":83.66,"255":82.95,"256":82.4,"257":80.74,"258":83.43,"259":80.9,"260":82.95,"261":84.21,"262":79.72,"263":84.77,"264":83.11,"265":79.95,"266":84.06,"267":80.51,"268":84.77,"269":82.4,"270":80.35,"271":83.35,"272":80.51,"273":81.93,"274":80.35,"275":80.35,"276":81.93,"277":84.21,"278":84.06,"279":80.74,"280":79.95,"281":83.35,"282":84.61,"283":83.66,"284":83.66},"GSM8K":{"0":76.12,"1":76.65,"2":76.8,"3":78.77,"4":79.3,"5":79.23,"6":78.7,"7":77.63,"8":78.62,"9":74.45,"10":62.4,"11":72.93,"12":71.11,"13":69.52,"14":68.08,"15":72.48,"16":73.01,"17":76.95,"18":76.8,"19":72.18,"20":70.89,"21":68.99,"22":71.87,"23":67.55,"24":67.1,"25":70.89,"26":72.48,"27":67.63,"28":70.81,"29":71.19,"30":70.43,"31":71.27,"32":70.28,"33":70.43,"34":70.36,"35":70.05,"36":69.29,"37":70.05,"38":70.43,"39":70.43,"40":70.05,"41":69.37,"42":69.07,"43":68.84,"44":68.46,"45":69.14,"46":70.36,"47":68.76,"48":69.6,"49":68.92,"50":69.14,"51":69.22,"52":74.07,"53":68.08,"54":69.45,"55":69.52,"56":73.92,"57":68.08,"58":68.84,"59":69.67,"60":68.99,"61":67.85,"62":69.22,"63":70.36,"64":69.67,"65":69.45,"66":68.84,"67":68.23,"68":70.51,"69":76.27,"70":70.28,"71":69.67,"72":66.11,"73":69.83,"74":65.88,"75":71.95,"76":70.28,"77":70.28,"78":68.08,"79":66.72,"80":69.22,"81":68.54,"82":66.26,"83":65.96,"84":70.66,"85":66.64,"86":72.71,"87":67.32,"88":65.73,"89":64.52,"90":71.8,"91":65.28,"92":66.64,"93":70.36,"94":72.48,"95":66.11,"96":71.95,"97":69.83,"98":72.25,"99":69.67,"100":59.06,"101":71.34,"102":60.05,"103":60.05,"104":71.87,"105":63.91,"106":72.25,"107":68.16,"108":65.43,"109":71.34,"110":62.4,"111":68.46,"112":71.65,"113":70.81,"114":70.43,"115":67.25,"116":71.65,"117":66.72,"118":73.31,"119":70.05,"120":69.29,"121":68.69,"122":68.31,"123":68.01,"124":67.48,"125":67.55,"126":64.52,"127":72.18,"128":68.23,"129":66.94,"130":68.84,"131":69.29,"132":58.45,"133":60.96,"134":67.63,"135":70.2,"136":72.71,"137":65.66,"138":67.25,"139":69.98,"140":59.97,"141":67.17,"142":61.18,"143":72.25,"144":69.6,"145":64.52,"146":66.19,"147":65.58,"148":68.54,"149":64.82,"150":65.81,"151":65.35,"152":69.14,"153":64.14,"154":64.75,"155":64.67,"156":64.59,"157":73.69,"158":64.29,"159":59.21,"160":73.62,"161":63.76,"162":64.29,"163":63.38,"164":64.75,"165":67.55,"166":63.99,"167":64.9,"168":63.38,"169":66.72,"170":66.41,"171":65.43,"172":57.32,"173":61.87,"174":61.64,"175":66.34,"176":62.62,"177":65.13,"178":70.05,"179":72.02,"180":72.25,"181":65.88,"182":70.43,"183":64.75,"184":61.03,"185":58.76,"186":63.53,"187":64.44,"188":61.41,"189":62.77,"190":72.18,"191":63.76,"192":63.53,"193":63.68,"194":63.46,"195":60.27,"196":71.65,"197":65.28,"198":69.52,"199":61.79,"200":68.39,"201":72.18,"202":67.7,"203":71.95,"204":61.49,"205":63.15,"206":70.66,"207":71.57,"208":71.34,"209":61.11,"210":62.62,"211":65.73,"212":65.88,"213":60.8,"214":66.79,"215":69.52,"216":73.39,"217":64.97,"218":58.53,"219":56.33,"220":58.23,"221":59.82,"222":61.11,"223":61.11,"224":63.61,"225":62.09,"226":69.37,"227":62.02,"228":64.67,"229":60.73,"230":72.71,"231":64.37,"232":70.51,"233":50.04,"234":73.16,"235":65.88,"236":59.44,"237":63.68,"238":66.03,"239":58.68,"240":69.75,"241":66.87,"242":70.13,"243":61.79,"244":66.34,"245":61.26,"246":64.52,"247":62.32,"248":66.64,"249":63.99,"250":69.98,"251":66.41,"252":59.59,"253":65.81,"254":64.97,"255":69.6,"256":71.57,"257":72.25,"258":69.14,"259":63.0,"260":69.22,"261":63.68,"262":66.72,"263":66.94,"264":62.09,"265":66.94,"266":59.82,"267":58.91,"268":65.58,"269":64.14,"270":56.18,"271":69.29,"272":66.26,"273":73.24,"274":68.61,"275":59.44,"276":63.53,"277":62.32,"278":52.62,"279":63.84,"280":64.14,"281":67.17,"282":72.1,"283":53.6,"284":53.53},"Type":{"0":"fine-tuned on domain-specific datasets","1":"chat models (RLHF, DPO, IFT, ...)","2":"fine-tuned on domain-specific datasets","3":"fine-tuned on domain-specific datasets","4":"fine-tuned on domain-specific datasets","5":"fine-tuned on domain-specific datasets","6":"fine-tuned on domain-specific datasets","7":"fine-tuned on domain-specific datasets","8":"chat models (RLHF, DPO, IFT, ...)","9":"fine-tuned on domain-specific datasets","10":"fine-tuned on domain-specific datasets","11":"fine-tuned on domain-specific datasets","12":"fine-tuned on domain-specific datasets","13":"chat models (RLHF, DPO, IFT, ...)","14":"fine-tuned on domain-specific datasets","15":"fine-tuned on domain-specific datasets","16":"fine-tuned on domain-specific datasets","17":"fine-tuned on domain-specific datasets","18":"chat models (RLHF, DPO, IFT, ...)","19":"fine-tuned on domain-specific datasets","20":"fine-tuned on domain-specific datasets","21":"fine-tuned on domain-specific datasets","22":"fine-tuned on domain-specific datasets","23":"fine-tuned on domain-specific datasets","24":"fine-tuned on domain-specific datasets","25":"fine-tuned on domain-specific datasets","26":"fine-tuned on domain-specific datasets","27":"fine-tuned on domain-specific datasets","28":"fine-tuned on domain-specific datasets","29":"fine-tuned on domain-specific datasets","30":"fine-tuned on domain-specific datasets","31":"fine-tuned on domain-specific datasets","32":"fine-tuned on domain-specific datasets","33":"fine-tuned on domain-specific datasets","34":"fine-tuned on domain-specific datasets","35":"fine-tuned on domain-specific datasets","36":"fine-tuned on domain-specific datasets","37":"fine-tuned on domain-specific datasets","38":"fine-tuned on domain-specific datasets","39":"fine-tuned on domain-specific datasets","40":"fine-tuned on domain-specific datasets","41":"fine-tuned on domain-specific datasets","42":"fine-tuned on domain-specific datasets","43":"fine-tuned on domain-specific datasets","44":"fine-tuned on domain-specific datasets","45":"chat models (RLHF, DPO, IFT, ...)","46":"base merges and moerges","47":"fine-tuned on domain-specific datasets","48":"fine-tuned on domain-specific datasets","49":"fine-tuned on domain-specific datasets","50":"fine-tuned on domain-specific datasets","51":"chat models (RLHF, DPO, IFT, ...)","52":"fine-tuned on domain-specific datasets","53":"fine-tuned on domain-specific datasets","54":"base merges and moerges","55":"base merges and moerges","56":"fine-tuned on domain-specific datasets","57":"fine-tuned on domain-specific datasets","58":"fine-tuned on domain-specific datasets","59":"fine-tuned on domain-specific datasets","60":"fine-tuned on domain-specific datasets","61":"fine-tuned on domain-specific datasets","62":"fine-tuned on domain-specific datasets","63":"fine-tuned on domain-specific datasets","64":"chat models (RLHF, DPO, IFT, ...)","65":"fine-tuned on domain-specific datasets","66":"base merges and moerges","67":"fine-tuned on domain-specific datasets","68":"fine-tuned on domain-specific datasets","69":"chat models (RLHF, DPO, IFT, ...)","70":"fine-tuned on domain-specific datasets","71":"fine-tuned on domain-specific datasets","72":"chat models (RLHF, DPO, IFT, ...)","73":"chat models (RLHF, DPO, IFT, ...)","74":"chat models (RLHF, DPO, IFT, ...)","75":"fine-tuned on domain-specific datasets","76":"fine-tuned on domain-specific datasets","77":"chat models (RLHF, DPO, IFT, ...)","78":"chat models (RLHF, DPO, IFT, ...)","79":"chat models (RLHF, DPO, IFT, ...)","80":"chat models (RLHF, DPO, IFT, ...)","81":"chat models (RLHF, DPO, IFT, ...)","82":"chat models (RLHF, DPO, IFT, ...)","83":"fine-tuned on domain-specific datasets","84":"fine-tuned on domain-specific datasets","85":"fine-tuned on domain-specific datasets","86":"fine-tuned on domain-specific datasets","87":"fine-tuned on domain-specific datasets","88":"chat models (RLHF, DPO, IFT, ...)","89":"fine-tuned on domain-specific datasets","90":"fine-tuned on domain-specific datasets","91":"chat models (RLHF, DPO, IFT, ...)","92":"fine-tuned on domain-specific datasets","93":"fine-tuned on domain-specific datasets","94":"fine-tuned on domain-specific datasets","95":"fine-tuned on domain-specific datasets","96":"fine-tuned on domain-specific datasets","97":"fine-tuned on domain-specific datasets","98":"fine-tuned on domain-specific datasets","99":"fine-tuned on domain-specific datasets","100":"fine-tuned on domain-specific datasets","101":"fine-tuned on domain-specific datasets","102":"fine-tuned on domain-specific datasets","103":"fine-tuned on domain-specific datasets","104":"fine-tuned on domain-specific datasets","105":"chat models (RLHF, DPO, IFT, ...)","106":"fine-tuned on domain-specific datasets","107":"fine-tuned on domain-specific datasets","108":"fine-tuned on domain-specific datasets","109":"fine-tuned on domain-specific datasets","110":"fine-tuned on domain-specific datasets","111":"chat models (RLHF, DPO, IFT, ...)","112":"fine-tuned on domain-specific datasets","113":"fine-tuned on domain-specific datasets","114":"fine-tuned on domain-specific datasets","115":"fine-tuned on domain-specific datasets","116":"fine-tuned on domain-specific datasets","117":"fine-tuned on domain-specific datasets","118":"fine-tuned on domain-specific datasets","119":"fine-tuned on domain-specific datasets","120":"fine-tuned on domain-specific datasets","121":"fine-tuned on domain-specific datasets","122":"fine-tuned on domain-specific datasets","123":"fine-tuned on domain-specific datasets","124":"chat models (RLHF, DPO, IFT, ...)","125":"chat models (RLHF, DPO, IFT, ...)","126":"chat models (RLHF, DPO, IFT, ...)","127":"chat models (RLHF, DPO, IFT, ...)","128":"fine-tuned on domain-specific datasets","129":"fine-tuned on domain-specific datasets","130":"chat models (RLHF, DPO, IFT, ...)","131":"chat models (RLHF, DPO, IFT, ...)","132":"fine-tuned on domain-specific datasets","133":"chat models (RLHF, DPO, IFT, ...)","134":"fine-tuned on domain-specific datasets","135":"fine-tuned on domain-specific datasets","136":"fine-tuned on domain-specific datasets","137":"chat models (RLHF, DPO, IFT, ...)","138":"chat models (RLHF, DPO, IFT, ...)","139":"fine-tuned on domain-specific datasets","140":"fine-tuned on domain-specific datasets","141":"fine-tuned on domain-specific datasets","142":"fine-tuned on domain-specific datasets","143":"chat models (RLHF, DPO, IFT, ...)","144":"fine-tuned on domain-specific datasets","145":"chat models (RLHF, DPO, IFT, ...)","146":"fine-tuned on domain-specific datasets","147":"chat models (RLHF, DPO, IFT, ...)","148":"fine-tuned on domain-specific datasets","149":"chat models (RLHF, DPO, IFT, ...)","150":"chat models (RLHF, DPO, IFT, ...)","151":"fine-tuned on domain-specific datasets","152":"fine-tuned on domain-specific datasets","153":"fine-tuned on domain-specific datasets","154":"chat models (RLHF, DPO, IFT, ...)","155":"fine-tuned on domain-specific datasets","156":"chat models (RLHF, DPO, IFT, ...)","157":"fine-tuned on domain-specific datasets","158":"chat models (RLHF, DPO, IFT, ...)","159":"fine-tuned on domain-specific datasets","160":"fine-tuned on domain-specific datasets","161":"fine-tuned on domain-specific datasets","162":"chat models (RLHF, DPO, IFT, ...)","163":"chat models (RLHF, DPO, IFT, ...)","164":"fine-tuned on domain-specific datasets","165":"fine-tuned on domain-specific datasets","166":"base merges and moerges","167":"fine-tuned on domain-specific datasets","168":"chat models (RLHF, DPO, IFT, ...)","169":"chat models (RLHF, DPO, IFT, ...)","170":"chat models (RLHF, DPO, IFT, ...)","171":"chat models (RLHF, DPO, IFT, ...)","172":"fine-tuned on domain-specific datasets","173":"base merges and moerges","174":"fine-tuned on domain-specific datasets","175":"fine-tuned on domain-specific datasets","176":"chat models (RLHF, DPO, IFT, ...)","177":"base merges and moerges","178":"fine-tuned on domain-specific datasets","179":"chat models (RLHF, DPO, IFT, ...)","180":"fine-tuned on domain-specific datasets","181":"fine-tuned on domain-specific datasets","182":"pretrained","183":"fine-tuned on domain-specific datasets","184":"fine-tuned on domain-specific datasets","185":"fine-tuned on domain-specific datasets","186":"fine-tuned on domain-specific datasets","187":"fine-tuned on domain-specific datasets","188":"chat models (RLHF, DPO, IFT, ...)","189":"chat models (RLHF, DPO, IFT, ...)","190":"fine-tuned on domain-specific datasets","191":"fine-tuned on domain-specific datasets","192":"fine-tuned on domain-specific datasets","193":"fine-tuned on domain-specific datasets","194":"fine-tuned on domain-specific datasets","195":"base merges and moerges","196":"fine-tuned on domain-specific datasets","197":"fine-tuned on domain-specific datasets","198":"fine-tuned on domain-specific datasets","199":"chat models (RLHF, DPO, IFT, ...)","200":"fine-tuned on domain-specific datasets","201":"chat models (RLHF, DPO, IFT, ...)","202":"fine-tuned on domain-specific datasets","203":"chat models (RLHF, DPO, IFT, ...)","204":"fine-tuned on domain-specific datasets","205":"fine-tuned on domain-specific datasets","206":"chat models (RLHF, DPO, IFT, ...)","207":"fine-tuned on domain-specific datasets","208":"chat models (RLHF, DPO, IFT, ...)","209":"fine-tuned on domain-specific datasets","210":"fine-tuned on domain-specific datasets","211":"pretrained","212":"chat models (RLHF, DPO, IFT, ...)","213":"fine-tuned on domain-specific datasets","214":"fine-tuned on domain-specific datasets","215":"fine-tuned on domain-specific datasets","216":"base merges and moerges","217":"chat models (RLHF, DPO, IFT, ...)","218":"fine-tuned on domain-specific datasets","219":"fine-tuned on domain-specific datasets","220":"fine-tuned on domain-specific datasets","221":"fine-tuned on domain-specific datasets","222":"fine-tuned on domain-specific datasets","223":"fine-tuned on domain-specific datasets","224":"base merges and moerges","225":"chat models (RLHF, DPO, IFT, ...)","226":"fine-tuned on domain-specific datasets","227":"chat models (RLHF, DPO, IFT, ...)","228":"base merges and moerges","229":"chat models (RLHF, DPO, IFT, ...)","230":"fine-tuned on domain-specific datasets","231":"fine-tuned on domain-specific datasets","232":"chat models (RLHF, DPO, IFT, ...)","233":"fine-tuned on domain-specific datasets","234":"fine-tuned on domain-specific datasets","235":"fine-tuned on domain-specific datasets","236":"fine-tuned on domain-specific datasets","237":"base merges and moerges","238":"fine-tuned on domain-specific datasets","239":"chat models (RLHF, DPO, IFT, ...)","240":"fine-tuned on domain-specific datasets","241":"fine-tuned on domain-specific datasets","242":"base merges and moerges","243":"fine-tuned on domain-specific datasets","244":"base merges and moerges","245":"fine-tuned on domain-specific datasets","246":"chat models (RLHF, DPO, IFT, ...)","247":"fine-tuned on domain-specific datasets","248":"fine-tuned on domain-specific datasets","249":"fine-tuned on domain-specific datasets","250":"base merges and moerges","251":"fine-tuned on domain-specific datasets","252":"fine-tuned on domain-specific datasets","253":"chat models (RLHF, DPO, IFT, ...)","254":"chat models (RLHF, DPO, IFT, ...)","255":"chat models (RLHF, DPO, IFT, ...)","256":"fine-tuned on domain-specific datasets","257":"fine-tuned on domain-specific datasets","258":"chat models (RLHF, DPO, IFT, ...)","259":"fine-tuned on domain-specific datasets","260":"chat models (RLHF, DPO, IFT, ...)","261":"chat models (RLHF, DPO, IFT, ...)","262":"chat models (RLHF, DPO, IFT, ...)","263":"fine-tuned on domain-specific datasets","264":"fine-tuned on domain-specific datasets","265":"chat models (RLHF, DPO, IFT, ...)","266":"chat models (RLHF, DPO, IFT, ...)","267":"chat models (RLHF, DPO, IFT, ...)","268":"fine-tuned on domain-specific datasets","269":"chat models (RLHF, DPO, IFT, ...)","270":"base merges and moerges","271":"fine-tuned on domain-specific datasets","272":"chat models (RLHF, DPO, IFT, ...)","273":"fine-tuned on domain-specific datasets","274":"chat models (RLHF, DPO, IFT, ...)","275":"chat models (RLHF, DPO, IFT, ...)","276":"base merges and moerges","277":"fine-tuned on domain-specific datasets","278":"fine-tuned on domain-specific datasets","279":"base merges and moerges","280":"fine-tuned on domain-specific datasets","281":"chat models (RLHF, DPO, IFT, ...)","282":"fine-tuned on domain-specific datasets","283":"fine-tuned on domain-specific datasets","284":"fine-tuned on domain-specific datasets"},"Architecture":{"0":"LlamaForCausalLM","1":"LlamaForCausalLM","2":"LlamaForCausalLM","3":"?","4":"?","5":"?","6":"LlamaForCausalLM","7":"LlamaForCausalLM","8":"LlamaForCausalLM","9":"MixtralForCausalLM","10":"LlamaForCausalLM","11":"MixtralForCausalLM","12":"MixtralForCausalLM","13":"MixtralForCausalLM","14":"LlamaForCausalLM","15":"LlamaForCausalLM","16":"MixtralForCausalLM","17":"LlamaForCausalLM","18":"LlamaForCausalLM","19":"LlamaForCausalLM","20":"MixtralForCausalLM","21":"MixtralForCausalLM","22":"LlamaForCausalLM","23":"MixtralForCausalLM","24":"MixtralForCausalLM","25":"MixtralForCausalLM","26":"LlamaForCausalLM","27":"MixtralForCausalLM","28":"LlamaForCausalLM","29":"MixtralForCausalLM","30":"MistralForCausalLM","31":"MistralForCausalLM","32":"MistralForCausalLM","33":"MistralForCausalLM","34":"MistralForCausalLM","35":"MistralForCausalLM","36":"MistralForCausalLM","37":"MistralForCausalLM","38":"MistralForCausalLM","39":"MistralForCausalLM","40":"MistralForCausalLM","41":"MistralForCausalLM","42":"MistralForCausalLM","43":"MistralForCausalLM","44":"MistralForCausalLM","45":"MixtralForCausalLM","46":"MistralForCausalLM","47":"MistralForCausalLM","48":"MistralForCausalLM","49":"MistralForCausalLM","50":"MistralForCausalLM","51":"MistralForCausalLM","52":"MixtralForCausalLM","53":"MistralForCausalLM","54":"MistralForCausalLM","55":"MistralForCausalLM","56":"MixtralForCausalLM","57":"MistralForCausalLM","58":"MistralForCausalLM","59":"MistralForCausalLM","60":"LlamaForCausalLM","61":"MistralForCausalLM","62":"MistralForCausalLM","63":"MistralForCausalLM","64":"MixtralForCausalLM","65":"MistralForCausalLM","66":"MistralForCausalLM","67":"MistralForCausalLM","68":"MistralForCausalLM","69":"LlamaForCausalLM","70":"MixtralForCausalLM","71":"MistralForCausalLM","72":"MistralForCausalLM","73":"MixtralForCausalLM","74":"MistralForCausalLM","75":"MistralForCausalLM","76":"MistralForCausalLM","77":"MistralForCausalLM","78":"MistralForCausalLM","79":"MistralForCausalLM","80":"MistralForCausalLM","81":"MistralForCausalLM","82":"MistralForCausalLM","83":"MistralForCausalLM","84":"MixtralForCausalLM","85":"MistralForCausalLM","86":"MixtralForCausalLM","87":"MixtralForCausalLM","88":"MistralForCausalLM","89":"MistralForCausalLM","90":"MistralForCausalLM","91":"MistralForCausalLM","92":"MistralForCausalLM","93":"MixtralForCausalLM","94":"MixtralForCausalLM","95":"MixtralForCausalLM","96":"MixtralForCausalLM","97":"MixtralForCausalLM","98":"MixtralForCausalLM","99":"MixtralForCausalLM","100":"LlamaForCausalLM","101":"LlamaForCausalLM","102":"LlamaForCausalLM","103":"LlamaForCausalLM","104":"MistralForCausalLM","105":"MistralForCausalLM","106":"MixtralForCausalLM","107":"MistralForCausalLM","108":"MistralForCausalLM","109":"LlamaForCausalLM","110":"MistralForCausalLM","111":"LlamaForCausalLM","112":"MistralForCausalLM","113":"LlamaForCausalLM","114":"MistralForCausalLM","115":"MistralForCausalLM","116":"MixtralForCausalLM","117":"MistralForCausalLM","118":"MistralForCausalLM","119":"MistralForCausalLM","120":"LlamaForCausalLM","121":"MixtralForCausalLM","122":"MistralForCausalLM","123":"MixtralForCausalLM","124":"MistralForCausalLM","125":"MistralForCausalLM","126":"LlamaForCausalLM","127":"LlamaForCausalLM","128":"MistralForCausalLM","129":"MixtralForCausalLM","130":"MistralForCausalLM","131":"MistralForCausalLM","132":"LlamaForCausalLM","133":"LlamaForCausalLM","134":"MistralForCausalLM","135":"LlamaForCausalLM","136":"MistralForCausalLM","137":"MistralForCausalLM","138":"MixtralForCausalLM","139":"LlamaForCausalLM","140":"LlamaForCausalLM","141":"MistralForCausalLM","142":"MixtralForCausalLM","143":"LlamaForCausalLM","144":"MistralForCausalLM","145":"MixtralForCausalLM","146":"MistralForCausalLM","147":"MistralForCausalLM","148":"MistralForCausalLM","149":"LlamaForCausalLM","150":"MistralForCausalLM","151":"MistralForCausalLM","152":"MistralForCausalLM","153":"LlamaForCausalLM","154":"LlamaForCausalLM","155":"LlamaForCausalLM","156":"LlamaForCausalLM","157":"Qwen2ForCausalLM","158":"LlamaForCausalLM","159":"LlamaForCausalLM","160":"Qwen2ForCausalLM","161":"MixtralForCausalLM","162":"LlamaForCausalLM","163":"LlamaForCausalLM","164":"LlamaForCausalLM","165":"MixtralForCausalLM","166":"LlamaForCausalLM","167":"Unknown","168":"LlamaForCausalLM","169":"MistralForCausalLM","170":"MistralForCausalLM","171":"MistralForCausalLM","172":"MixtralForCausalLM","173":"MixtralForCausalLM","174":"MixtralForCausalLM","175":"LlamaForCausalLM","176":"LlamaForCausalLM","177":"MixtralForCausalLM","178":"LlamaForCausalLM","179":"MistralForCausalLM","180":"LlamaForCausalLM","181":"LlamaForCausalLM","182":"QWenLMHeadModel","183":"MistralForCausalLM","184":"LlamaForCausalLM","185":"MistralForCausalLM","186":"MistralForCausalLM","187":"MistralForCausalLM","188":"MixtralForCausalLM","189":"MistralForCausalLM","190":"MixtralForCausalLM","191":"MistralForCausalLM","192":"MistralForCausalLM","193":"MistralForCausalLM","194":"MistralForCausalLM","195":"MixtralForCausalLM","196":"MixtralForCausalLM","197":"MistralForCausalLM","198":"MixtralForCausalLM","199":"LlamaForCausalLM","200":"?","201":"LlamaForCausalLM","202":"LlamaForCausalLM","203":"MixtralForCausalLM","204":"LlamaForCausalLM","205":"MixtralForCausalLM","206":"MixtralForCausalLM","207":"MixtralForCausalLM","208":"MixtralForCausalLM","209":"MixtralForCausalLM","210":"MistralForCausalLM","211":"Qwen2ForCausalLM","212":"Qwen2ForCausalLM","213":"MixtralForCausalLM","214":"LlamaForCausalLM","215":"MistralForCausalLM","216":"MistralForCausalLM","217":"Qwen2ForCausalLM","218":"MixtralForCausalLM","219":"MixtralForCausalLM","220":"MixtralForCausalLM","221":"MixtralForCausalLM","222":"MixtralForCausalLM","223":"MixtralForCausalLM","224":"MixtralForCausalLM","225":"LlamaForCausalLM","226":"MistralForCausalLM","227":"LlamaForCausalLM","228":"LlamaForCausalLM","229":"MixtralForCausalLM","230":"MistralForCausalLM","231":"LlamaForCausalLM","232":"LlamaForCausalLM","233":"MixtralForCausalLM","234":"MistralForCausalLM","235":"MistralForCausalLM","236":"MixtralForCausalLM","237":"LlamaForCausalLM","238":"MistralForCausalLM","239":"MixtralForCausalLM","240":"MixtralForCausalLM","241":"LlamaForCausalLM","242":"MixtralForCausalLM","243":"MixtralForCausalLM","244":"MixtralForCausalLM","245":"LlamaForCausalLM","246":"LlamaForCausalLM","247":"LlamaForCausalLM","248":"LlamaForCausalLM","249":"MistralForCausalLM","250":"MistralForCausalLM","251":"MistralForCausalLM","252":"MixtralForCausalLM","253":"MistralForCausalLM","254":"LlamaForCausalLM","255":"MixtralForCausalLM","256":"LlamaForCausalLM","257":"MistralForCausalLM","258":"LlamaForCausalLM","259":"MixtralForCausalLM","260":"LlamaForCausalLM","261":"LlamaForCausalLM","262":"MistralForCausalLM","263":"LlamaForCausalLM","264":"LlamaForCausalLM","265":"MistralForCausalLM","266":"LlamaForCausalLM","267":"MistralForCausalLM","268":"LlamaForCausalLM","269":"LlamaForCausalLM","270":"LlamaForCausalLM","271":"MistralForCausalLM","272":"MistralForCausalLM","273":"MixtralForCausalLM","274":"MistralForCausalLM","275":"MistralForCausalLM","276":"MixtralForCausalLM","277":"LlamaForCausalLM","278":"LlamaForCausalLM","279":"MistralForCausalLM","280":"MixtralForCausalLM","281":"LlamaForCausalLM","282":"LlamaForCausalLM","283":"LlamaForCausalLM","284":"LlamaForCausalLM"},"Precision":{"0":"float16","1":"bfloat16","2":"float16","3":"bfloat16","4":"bfloat16","5":"bfloat16","6":"bfloat16","7":"float16","8":"bfloat16","9":"bfloat16","10":"bfloat16","11":"float16","12":"bfloat16","13":"bfloat16","14":"float16","15":"bfloat16","16":"bfloat16","17":"float16","18":"bfloat16","19":"bfloat16","20":"bfloat16","21":"float16","22":"float16","23":"bfloat16","24":"bfloat16","25":"bfloat16","26":"float16","27":"bfloat16","28":"float16","29":"4bit","30":"float16","31":"bfloat16","32":"float16","33":"bfloat16","34":"bfloat16","35":"float16","36":"float16","37":"float16","38":"bfloat16","39":"bfloat16","40":"float16","41":"float16","42":"bfloat16","43":"float16","44":"float16","45":"bfloat16","46":"bfloat16","47":"float16","48":"bfloat16","49":"float16","50":"float16","51":"float16","52":"bfloat16","53":"float16","54":"float16","55":"float16","56":"bfloat16","57":"float16","58":"bfloat16","59":"float16","60":"float16","61":"float16","62":"float16","63":"float16","64":"bfloat16","65":"float16","66":"float16","67":"float16","68":"bfloat16","69":"bfloat16","70":"float16","71":"float16","72":"float16","73":"float16","74":"float16","75":"float16","76":"bfloat16","77":"bfloat16","78":"float16","79":"float16","80":"float16","81":"float16","82":"float16","83":"float16","84":"bfloat16","85":"float16","86":"bfloat16","87":"bfloat16","88":"float16","89":"float16","90":"bfloat16","91":"float16","92":"float16","93":"float16","94":"bfloat16","95":"float16","96":"float16","97":"bfloat16","98":"bfloat16","99":"float16","100":"bfloat16","101":"float16","102":"bfloat16","103":"bfloat16","104":"float16","105":"float16","106":"bfloat16","107":"float16","108":"float16","109":"bfloat16","110":"float16","111":"bfloat16","112":"float16","113":"float16","114":"bfloat16","115":"bfloat16","116":"bfloat16","117":"float16","118":"float16","119":"float16","120":"float16","121":"bfloat16","122":"float16","123":"float16","124":"bfloat16","125":"float16","126":"bfloat16","127":"bfloat16","128":"float16","129":"bfloat16","130":"float16","131":"float16","132":"bfloat16","133":"float16","134":"float16","135":"bfloat16","136":"float16","137":"float16","138":"float16","139":"float16","140":"bfloat16","141":"float16","142":"bfloat16","143":"bfloat16","144":"float16","145":"bfloat16","146":"float16","147":"float16","148":"float16","149":"float16","150":"float16","151":"float16","152":"bfloat16","153":"bfloat16","154":"float16","155":"bfloat16","156":"float16","157":"bfloat16","158":"float16","159":"float16","160":"float16","161":"bfloat16","162":"float16","163":"float16","164":"bfloat16","165":"bfloat16","166":"float16","167":"bfloat16","168":"float16","169":"bfloat16","170":"float16","171":"bfloat16","172":"float16","173":"bfloat16","174":"bfloat16","175":"float16","176":"bfloat16","177":"bfloat16","178":"bfloat16","179":"float16","180":"bfloat16","181":"float16","182":"bfloat16","183":"float16","184":"bfloat16","185":"float16","186":"float16","187":"float16","188":"bfloat16","189":"bfloat16","190":"bfloat16","191":"float16","192":"float16","193":"float16","194":"float16","195":"bfloat16","196":"float16","197":"bfloat16","198":"bfloat16","199":"bfloat16","200":"float16","201":"bfloat16","202":"float16","203":"bfloat16","204":"float16","205":"bfloat16","206":"bfloat16","207":"float16","208":"bfloat16","209":"float16","210":"float16","211":"bfloat16","212":"float16","213":"float16","214":"float16","215":"float16","216":"float16","217":"float16","218":"bfloat16","219":"bfloat16","220":"float16","221":"bfloat16","222":"bfloat16","223":"float16","224":"bfloat16","225":"float16","226":"float16","227":"bfloat16","228":"float16","229":"bfloat16","230":"float16","231":"float16","232":"bfloat16","233":"bfloat16","234":"float16","235":"float16","236":"bfloat16","237":"bfloat16","238":"bfloat16","239":"float16","240":"bfloat16","241":"bfloat16","242":"bfloat16","243":"float16","244":"bfloat16","245":"bfloat16","246":"float16","247":"bfloat16","248":"float16","249":"bfloat16","250":"bfloat16","251":"float16","252":"float16","253":"float16","254":"float16","255":"bfloat16","256":"bfloat16","257":"bfloat16","258":"float16","259":"float16","260":"bfloat16","261":"float16","262":"float16","263":"bfloat16","264":"float16","265":"float16","266":"float16","267":"float16","268":"float16","269":"float16","270":"float16","271":"float16","272":"float16","273":"bfloat16","274":"float16","275":"float16","276":"float16","277":"bfloat16","278":"float16","279":"bfloat16","280":"float16","281":"bfloat16","282":"float16","283":"float16","284":"bfloat16"},"Merged":{"0":false,"1":false,"2":false,"3":false,"4":false,"5":false,"6":false,"7":false,"8":false,"9":false,"10":false,"11":false,"12":false,"13":false,"14":false,"15":false,"16":false,"17":false,"18":false,"19":false,"20":false,"21":false,"22":false,"23":false,"24":false,"25":false,"26":false,"27":false,"28":false,"29":false,"30":false,"31":false,"32":false,"33":false,"34":false,"35":false,"36":false,"37":false,"38":false,"39":false,"40":false,"41":false,"42":false,"43":false,"44":false,"45":false,"46":false,"47":false,"48":false,"49":false,"50":false,"51":false,"52":false,"53":false,"54":false,"55":false,"56":false,"57":false,"58":false,"59":false,"60":false,"61":false,"62":false,"63":false,"64":false,"65":false,"66":false,"67":false,"68":false,"69":false,"70":false,"71":false,"72":false,"73":false,"74":false,"75":false,"76":false,"77":false,"78":false,"79":false,"80":false,"81":false,"82":false,"83":false,"84":false,"85":false,"86":false,"87":false,"88":false,"89":false,"90":false,"91":false,"92":false,"93":false,"94":false,"95":false,"96":false,"97":false,"98":false,"99":false,"100":false,"101":false,"102":false,"103":false,"104":false,"105":false,"106":false,"107":false,"108":false,"109":false,"110":false,"111":false,"112":false,"113":false,"114":false,"115":false,"116":false,"117":false,"118":false,"119":false,"120":false,"121":false,"122":false,"123":false,"124":false,"125":false,"126":false,"127":false,"128":false,"129":false,"130":false,"131":false,"132":false,"133":false,"134":false,"135":false,"136":false,"137":false,"138":false,"139":false,"140":false,"141":false,"142":false,"143":false,"144":false,"145":false,"146":false,"147":false,"148":false,"149":false,"150":false,"151":false,"152":false,"153":false,"154":false,"155":false,"156":false,"157":false,"158":false,"159":false,"160":false,"161":false,"162":false,"163":false,"164":false,"165":false,"166":false,"167":false,"168":false,"169":false,"170":false,"171":false,"172":false,"173":false,"174":false,"175":false,"176":false,"177":false,"178":false,"179":false,"180":false,"181":false,"182":false,"183":false,"184":false,"185":false,"186":false,"187":false,"188":false,"189":false,"190":false,"191":false,"192":false,"193":false,"194":false,"195":false,"196":false,"197":false,"198":false,"199":false,"200":false,"201":false,"202":false,"203":false,"204":false,"205":false,"206":false,"207":false,"208":false,"209":false,"210":false,"211":false,"212":false,"213":false,"214":false,"215":false,"216":false,"217":false,"218":false,"219":false,"220":false,"221":false,"222":false,"223":false,"224":false,"225":false,"226":false,"227":false,"228":false,"229":false,"230":false,"231":false,"232":false,"233":false,"234":false,"235":false,"236":false,"237":false,"238":false,"239":false,"240":false,"241":false,"242":false,"243":false,"244":false,"245":false,"246":false,"247":false,"248":false,"249":false,"250":false,"251":false,"252":false,"253":false,"254":false,"255":false,"256":false,"257":false,"258":false,"259":false,"260":false,"261":false,"262":false,"263":false,"264":false,"265":false,"266":false,"267":false,"268":false,"269":false,"270":false,"271":false,"272":false,"273":false,"274":false,"275":false,"276":false,"277":false,"278":false,"279":false,"280":false,"281":false,"282":false,"283":false,"284":false},"Hub License":{"0":"apache-2.0","1":"other","2":"other","3":"apache-2.0","4":"apache-2.0","5":"apache-2.0","6":"other","7":"other","8":"mit","9":"other","10":"apache-2.0","11":"other","12":"apache-2.0","13":"mit","14":"cc-by-nc-4.0","15":"apache-2.0","16":"mit","17":"other","18":"mit","19":"other","20":"mit","21":"apache-2.0","22":"other","23":["other"],"24":"other","25":"mit","26":"other","27":"other","28":"cc-by-nc-4.0","29":"other","30":"apache-2.0","31":"apache-2.0","32":"apache-2.0","33":"apache-2.0","34":"mit","35":"apache-2.0","36":"apache-2.0","37":"apache-2.0","38":"mit","39":"mit","40":"apache-2.0","41":"openrail","42":"apache-2.0","43":"apache-2.0","44":"apache-2.0","45":"apache-2.0","46":"apache-2.0","47":"apache-2.0","48":"apache-2.0","49":"apache-2.0","50":"apache-2.0","51":"apache-2.0","52":"mit","53":"apache-2.0","54":"cc-by-nc-4.0","55":"cc-by-nc-4.0","56":"other","57":"apache-2.0","58":"cc-by-nc-4.0","59":"cc-by-4.0","60":"cc-by-nc-4.0","61":"apache-2.0","62":"cc-by-nc-4.0","63":"apache-2.0","64":"apache-2.0","65":"cc-by-4.0","66":"cc-by-nc-4.0","67":"apache-2.0","68":"apache-2.0","69":"mit","70":"mit","71":"cc","72":"apache-2.0","73":"mit","74":"apache-2.0","75":"apache-2.0","76":"apache-2.0","77":"mit","78":"apache-2.0","79":"cc-by-nc-4.0","80":"apache-2.0","81":"apache-2.0","82":"cc-by-nc-4.0","83":"apache-2.0","84":"mit","85":"apache-2.0","86":"other","87":"cc-by-nc-4.0","88":"cc-by-nc-4.0","89":"cc-by-nc-4.0","90":"apache-2.0","91":"cc-by-nc-4.0","92":"apache-2.0","93":"apache-2.0","94":"apache-2.0","95":"apache-2.0","96":"apache-2.0","97":"other","98":"other","99":"apache-2.0","100":"apache-2.0","101":"cc0-1.0","102":"other","103":"other","104":"apache-2.0","105":"apache-2.0","106":"other","107":"apache-2.0","108":"apache-2.0","109":"cc0-1.0","110":"apache-2.0","111":"cc-by-sa-4.0","112":"apache-2.0","113":"llama2","114":"cc-by-nc-4.0","115":"apache-2.0","116":"other","117":"apache-2.0","118":"apache-2.0","119":"apache-2.0","120":"cc-by-nc-4.0","121":"other","122":"apache-2.0","123":"apache-2.0","124":"cc-by-nc-4.0","125":"other","126":"apache-2.0","127":"apache-2.0","128":"apache-2.0","129":"other","130":"other","131":"cc-by-nc-4.0","132":"other","133":"other","134":"apache-2.0","135":"mit","136":"apache-2.0","137":"apache-2.0","138":"apache-2.0","139":"mit","140":"other","141":"apache-2.0","142":"cc-by-nc-nd-4.0","143":"apache-2.0","144":"apache-2.0","145":"other","146":"apache-2.0","147":"cc-by-sa-4.0","148":"apache-2.0","149":"mit","150":"cc-by-sa-4.0","151":"cc-by-sa-4.0","152":"apache-2.0","153":"cc-by-nc-4.0","154":"cc-by-nc-4.0","155":"cc-by-nc-nd-4.0","156":"mit","157":"other","158":"cc-by-nc-4.0","159":"cc","160":"other","161":"other","162":"cc-by-nc-4.0","163":"cc-by-nc-nd-4.0","164":"cc-by-nc-nd-4.0","165":"apache-2.0","166":"cc-by-nc-sa-4.0","167":"cc-by-nc-4.0","168":"apache-2.0","169":"cc-by-nc-nd-4.0","170":"apache-2.0","171":"apache-2.0","172":"cc-by-nc-4.0","173":"cc-by-nc-4.0","174":"cc-by-nc-sa-4.0","175":"llama2","176":"other","177":"apache-2.0","178":"apache-2.0","179":"cc-by-nc-4.0","180":"apache-2.0","181":"cc-by-nc-4.0","182":"other","183":"apache-2.0","184":"cc-by-nc-4.0","185":"apache-2.0","186":"apache-2.0","187":"apache-2.0","188":"apache-2.0","189":"apache-2.0","190":"cc-by-nc-4.0","191":"apache-2.0","192":"apache-2.0","193":"apache-2.0","194":"apache-2.0","195":"cc-by-nc-4.0","196":"apache-2.0","197":"apache-2.0","198":"apache-2.0","199":"llama2","200":"apache-2.0","201":"other","202":"cc-by-nc-4.0","203":"mit","204":"llama2","205":"apache-2.0","206":"apache-2.0","207":"apache-2.0","208":"mit","209":"apache-2.0","210":"cc-by-4.0","211":"other","212":"other","213":"apache-2.0","214":"cc-by-nc-4.0","215":"apache-2.0","216":"apache-2.0","217":"other","218":"apache-2.0","219":"cc-by-nc-4.0","220":"cc-by-nc-4.0","221":"apache-2.0","222":"apache-2.0","223":"apache-2.0","224":"apache-2.0","225":"cc-by-nc-4.0","226":"apache-2.0","227":"apache-2.0","228":"cc-by-nc-4.0","229":"apache-2.0","230":"apache-2.0","231":"cc-by-nc-4.0","232":"apache-2.0","233":"apache-2.0","234":"apache-2.0","235":"cc-by-nc-4.0","236":"apache-2.0","237":"cc-by-nc-4.0","238":"cc-by-nc-4.0","239":"apache-2.0","240":"cc-by-nc-2.0","241":"other","242":"mit","243":"cc-by-nc-4.0","244":"apache-2.0","245":"apache-2.0","246":"other","247":"cc-by-nc-4.0","248":"cc-by-nc-4.0","249":"cc-by-nc-4.0","250":"apache-2.0","251":"apache-2.0","252":"cc-by-nc-4.0","253":"apache-2.0","254":"other","255":"apache-2.0","256":"gpl-3.0","257":"cc-by-nc-4.0","258":"apache-2.0","259":"cc-by-nc-4.0","260":"other","261":"other","262":"apache-2.0","263":"other","264":"other","265":"apache-2.0","266":"other","267":"apache-2.0","268":"cc-by-nc-sa-4.0","269":"apache-2.0","270":"unknown","271":"apache-2.0","272":"apache-2.0","273":"apache-2.0","274":"apache-2.0","275":"apache-2.0","276":"apache-2.0","277":"other","278":"cc-by-nc-4.0","279":"apache-2.0","280":"wtfpl","281":"other","282":"other","283":"cc-by-nc-4.0","284":"cc-by-nc-4.0"},"#Params (B)":{"0":72.29,"1":72.29,"2":72.29,"3":72.0,"4":72.0,"5":72.0,"6":72.29,"7":72.29,"8":72.29,"9":60.81,"10":21.42,"11":60.81,"12":12.88,"13":12.88,"14":68.98,"15":34.39,"16":60.81,"17":72.29,"18":72.29,"19":34.39,"20":60.81,"21":125.35,"22":34.39,"23":12.88,"24":12.88,"25":60.81,"26":34.39,"27":12.88,"28":68.98,"29":31.8,"30":7.24,"31":7.24,"32":7.24,"33":7.24,"34":7.24,"35":7.24,"36":7.24,"37":7.24,"38":7.24,"39":7.24,"40":7.24,"41":7.24,"42":7.24,"43":7.24,"44":7.24,"45":12.88,"46":7.24,"47":7.24,"48":7.24,"49":7.24,"50":7.24,"51":7.24,"52":60.81,"53":7.24,"54":7.24,"55":7.24,"56":60.81,"57":7.24,"58":7.24,"59":7.24,"60":68.98,"61":7.24,"62":7.24,"63":7.24,"64":12.88,"65":7.24,"66":7.24,"67":7.24,"68":7.24,"69":72.29,"70":12.88,"71":7.24,"72":10.73,"73":12.88,"74":10.73,"75":7.24,"76":7.24,"77":7.24,"78":7.24,"79":7.24,"80":7.24,"81":7.24,"82":7.24,"83":7.24,"84":12.88,"85":7.24,"86":60.81,"87":125.35,"88":7.24,"89":7.24,"90":7.24,"91":7.24,"92":7.24,"93":35.43,"94":46.7,"95":12.88,"96":46.7,"97":60.81,"98":113.66,"99":35.43,"100":34.39,"101":68.98,"102":34.39,"103":34.39,"104":7.24,"105":10.73,"106":87.24,"107":7.24,"108":7.24,"109":68.98,"110":7.24,"111":68.98,"112":7.24,"113":68.98,"114":7.24,"115":7.24,"116":113.66,"117":7.24,"118":7.24,"119":7.24,"120":70.0,"121":60.81,"122":7.24,"123":35.43,"124":7.24,"125":7.24,"126":10.7,"127":34.39,"128":7.24,"129":60.81,"130":7.24,"131":7.24,"132":34.39,"133":34.39,"134":7.24,"135":72.29,"136":7.24,"137":7.24,"138":12.88,"139":72.29,"140":34.39,"141":7.24,"142":18.79,"143":34.39,"144":7.24,"145":19.19,"146":7.24,"147":7.24,"148":7.24,"149":10.73,"150":7.24,"151":7.24,"152":7.24,"153":10.73,"154":10.73,"155":10.73,"156":10.73,"157":72.0,"158":10.73,"159":10.73,"160":72.0,"161":19.19,"162":10.73,"163":10.73,"164":10.73,"165":12.88,"166":10.73,"167":10.73,"168":10.73,"169":7.24,"170":10.73,"171":7.24,"172":46.7,"173":46.7,"174":46.7,"175":68.98,"176":68.98,"177":36.1,"178":34.39,"179":7.24,"180":34.39,"181":68.98,"182":72.29,"183":8.99,"184":10.73,"185":7.24,"186":8.99,"187":8.99,"188":46.7,"189":8.99,"190":29.79,"191":8.99,"192":8.99,"193":8.99,"194":8.99,"195":46.7,"196":46.7,"197":7.24,"198":60.81,"199":68.98,"200":7.0,"201":34.0,"202":10.73,"203":24.15,"204":68.98,"205":12.88,"206":46.7,"207":35.43,"208":24.15,"209":46.7,"210":12.91,"211":72.29,"212":72.29,"213":46.7,"214":10.73,"215":7.24,"216":7.24,"217":72.29,"218":46.7,"219":19.19,"220":46.7,"221":46.7,"222":46.7,"223":46.7,"224":24.15,"225":10.86,"226":7.24,"227":34.39,"228":10.73,"229":46.7,"230":7.24,"231":11.0,"232":34.39,"233":46.7,"234":7.0,"235":7.24,"236":46.7,"237":10.73,"238":7.24,"239":46.7,"240":24.15,"241":67.42,"242":12.88,"243":46.7,"244":12.88,"245":10.73,"246":34.39,"247":34.0,"248":10.73,"249":7.24,"250":7.24,"251":7.24,"252":46.7,"253":7.24,"254":34.39,"255":46.7,"256":72.0,"257":7.24,"258":10.73,"259":12.88,"260":67.42,"261":67.0,"262":7.24,"263":67.42,"264":34.39,"265":7.24,"266":34.39,"267":7.24,"268":10.73,"269":34.0,"270":103.2,"271":7.24,"272":7.24,"273":12.88,"274":7.24,"275":7.24,"276":12.88,"277":67.0,"278":14.22,"279":7.24,"280":24.15,"281":67.42,"282":19.86,"283":10.86,"284":10.86},"Hub \u2764\ufe0f":{"0":29,"1":2,"2":2,"3":10,"4":4,"5":3,"6":430,"7":19,"8":67,"9":9,"10":19,"11":2,"12":27,"13":46,"14":2,"15":14,"16":7,"17":12,"18":32,"19":50,"20":4,"21":3,"22":11,"23":9,"24":0,"25":8,"26":7,"27":4,"28":0,"29":1,"30":71,"31":19,"32":2,"33":71,"34":0,"35":0,"36":0,"37":7,"38":0,"39":0,"40":2,"41":1,"42":1,"43":1,"44":0,"45":16,"46":2,"47":1,"48":0,"49":0,"50":9,"51":4,"52":0,"53":0,"54":4,"55":0,"56":2,"57":0,"58":0,"59":26,"60":0,"61":0,"62":0,"63":1,"64":3,"65":9,"66":0,"67":0,"68":0,"69":11,"70":6,"71":4,"72":8,"73":0,"74":6,"75":7,"76":0,"77":0,"78":1,"79":8,"80":8,"81":0,"82":9,"83":1,"84":35,"85":0,"86":1,"87":14,"88":3,"89":0,"90":0,"91":2,"92":0,"93":1,"94":11,"95":1,"96":11,"97":1,"98":11,"99":0,"100":5,"101":134,"102":1,"103":9,"104":0,"105":2,"106":9,"107":21,"108":0,"109":134,"110":1,"111":22,"112":3,"113":19,"114":1,"115":1,"116":3,"117":1,"118":4,"119":2,"120":16,"121":15,"122":0,"123":0,"124":0,"125":5,"126":1,"127":12,"128":33,"129":2,"130":2,"131":0,"132":35,"133":87,"134":85,"135":86,"136":1,"137":2,"138":1,"139":86,"140":87,"141":6,"142":2,"143":1,"144":0,"145":1,"146":0,"147":6,"148":0,"149":4,"150":2,"151":6,"152":8,"153":44,"154":554,"155":16,"156":1,"157":69,"158":0,"159":3,"160":69,"161":0,"162":2,"163":16,"164":5,"165":3,"166":1,"167":14,"168":1,"169":31,"170":2,"171":2,"172":1,"173":4,"174":8,"175":16,"176":142,"177":5,"178":215,"179":6,"180":1,"181":0,"182":314,"183":0,"184":1,"185":0,"186":1,"187":0,"188":1,"189":5,"190":1,"191":0,"192":1,"193":1,"194":0,"195":0,"196":320,"197":3,"198":0,"199":10,"200":0,"201":111,"202":7,"203":2,"204":10,"205":7,"206":320,"207":0,"208":1,"209":161,"210":7,"211":44,"212":0,"213":19,"214":10,"215":0,"216":1,"217":0,"218":0,"219":0,"220":0,"221":19,"222":12,"223":3536,"224":3,"225":0,"226":2,"227":1,"228":73,"229":3536,"230":1,"231":9,"232":5,"233":20,"234":6,"235":54,"236":0,"237":73,"238":54,"239":6,"240":76,"241":10,"242":1,"243":0,"244":0,"245":2,"246":5,"247":5,"248":32,"249":5,"250":0,"251":4,"252":0,"253":1,"254":3,"255":55,"256":73,"257":150,"258":0,"259":0,"260":1,"261":157,"262":3,"263":1,"264":32,"265":2,"266":10,"267":0,"268":0,"269":5,"270":2,"271":2,"272":0,"273":6,"274":1,"275":3,"276":0,"277":157,"278":2,"279":1,"280":9,"281":1,"282":0,"283":14,"284":14},"Model sha":{"0":"fda5cf998a0f2d89b53b5fa490793e3e50bb8239","1":"ea2b4ff8e5acd7a48993f56b2d7b99e049eb6939","2":"ea2b4ff8e5acd7a48993f56b2d7b99e049eb6939","3":"40d451f32b1a6c9ad694b32ba8ed4822c27f3022","4":"1f302e0e15f3d3711778cd61686eb9b28b0c72ae","5":"84d38e29fec0dc9c274237968fdafe9396702f9b","6":"54a8c35600ec5cb30ca2129247854ece23e57f57","7":"4df251a558c53b6b6a4c459045b161951cfc3c4e","8":"c64edea08b27be1e7e2ae6a95bcdd74849cb887e","9":"cd29cfa124072c96ba8601230bead65d76e04dcb","10":"ba3403eaafc6d1f6e3a73245314ee96025c08d96","11":"e8e558b5fd4ac9da839577b1295d10ca75fc2663","12":"2d8cff968dbfb31e0c1ccc42053ccc4d2698a390","13":"915651208ea9f40c65a60d1f971a09f9461ee691","14":"7dd3ddea090bd63f3143e70d7d6237cc40c046e4","15":"e1cdc5b02c662c5f29a50d0b22c64a8902ca856b","16":"6c7ec6d2ca1c0d126a26963fedc9bbdf5210b0d1","17":"dc092ecc5d5a424678eac445a9f4443069776691","18":"76389d5d825c3743cc70bc75b902bbfdad11beba","19":"7b74a95019f01b59630cbd6469814c752d0e59e5","20":"097b951c2524e6113252fcd98ba5830c85dc450f","21":"95b3b4e432d98b804d64cfe42dd9fa6b67198e5b","22":"3880710724abcaffbdf8fa4031e1d02066fbfe9d","23":"74c6e4fbd272c9d897e8c93ee7de8a234f61900f","24":"96c62ad90f2b82016a1cdbfe96cfa5c4bb278e21","25":"c5575550053c84a401baf56174cb2e5d5bd9e79a","26":"d3efc551679d7ec00da14722d44151c948a48d25","27":"d8d6a47f877fee3e638a158c2bd637c0013ed4e4","28":"06fd0e293aeb3b2722e3910daefcd185fad4558c","29":"331bb6bdba4140bbf0031bd37076f2c8a76d7dbb","30":"bbaef291e93a7f6c9f8cb76a4dbd8c3c054d3f3c","31":"a4ca706d1bbc263b95e223a80ad68b0f125840b3","32":"f136ec75c9fb7c86c071291ddf418089c8f43da0","33":"bbaef291e93a7f6c9f8cb76a4dbd8c3c054d3f3c","34":"cd8bfad664fb7f9b017388d974dd3265f8c40396","35":"ff261dadc107d0ce67b836a052d7131f9d9e4260","36":"5efde29924cf7158e4cbd642311a92a14e85597c","37":"a283f4e8169009d683b329ae1a96c9a77ce5936a","38":"cb04e33c4ff559b31767765100cd50c24ec2531c","39":"1dc4edde961960f7263dc3bdd37ca9e9f7e451ea","40":"03405145ca06170f1b2e0acc838f573f0e090df8","41":"0da1865ae1ce682d4002dd9935d20520e79ed520","42":"a27e0dfaf79af8da32fc4ff6c5eb8be46c9f5a13","43":"a27e0dfaf79af8da32fc4ff6c5eb8be46c9f5a13","44":"b7f5aa8d4c899c175a1dad40a03b4071df90bd8e","45":"69b9280ee4d2a20ef5645798621e62dd9777c139","46":"4774173a54be9a648e1cf03248af3ae3d51a0434","47":"11a51df04f85047e166d63eb64cedc1ec02732a1","48":"ff261dadc107d0ce67b836a052d7131f9d9e4260","49":"1e1cd6e84d02a9c1d70c2a2037f485bc2b646391","50":"22a9da7289d20a1d5452f77aa5bc49e97344af52","51":"cd343f0846ceb4180297920b2da50d6b28dcb242","52":"6ba7b5acb65dd62c28585cba298e0d3671c14f3a","53":"2b81b03b242a548e54e9e10af6a4c24f24a4c5fc","54":"f92057866ff68bf215487d34ca1080707bb4e98c","55":"c00b0fa78ab41aec778209fdf7640ebbe6d83065","56":"3d0181b920304bca0bdfd41aff55188a574c85e3","57":"b1ec306bf85762b28ce29ac71924bb9a8fa01e5a","58":"af1576f357ce8c5c3ee2e8bda45f8ffd7e0535f0","59":"25c0f5c1edad0ed1ab02347adf02fe03e0a3b62a","60":"546cdd443abc56b48aaadb4ebb5fb9249015f0bb","61":"aa6e42036cea01cb99426a9333481b353fd36e61","62":"dd1a314a04b8b4faf33e7d5037a71246d3e65bad","63":"ec27a21a66dc4411f24f36d585787853ba2e6354","64":"d718acb1b95c85009db8dd34af1318bcaf23ebcd","65":"aa3528c04c38fa49b5b65e1d064c46db3e9774f1","66":"ff89febead2585b2a1efae12b53887b18c283a8a","67":"87382cefca257137b983fd01d0e6a8839704d75e","68":"d696e99a2a4eeb13994c277f2fb113e9ddd1e632","69":"a2c3a87dd53a87dc9fc622ce4ddbb05d3e9cf6a9","70":"a0d648c1bcc3f1615bb2f0a94c6d32e7abde355d","71":"099b9c3e105fbb579d561fe93174ae3bd75dac8d","72":"5c649b6bbb8aa16d52dda26c5ce8574d1c7a3274","73":"0c9f2823a900408cf3c70c532288f89e452067f7","74":"7637cbf40c746030910154e0b344c5358f35a878","75":"7e26287665e6214be131f4e7ee20a312a07a4c1c","76":"bfba5a5114005c849a49662b4c7e53debac98105","77":"b7174ccf5c91095737cdb29f50853512017a1ac4","78":"c9beb3cba8030cb4fe7d96dd513c9e7ab40da126","79":"bff2cd7ba1f8a742cd22cd9df22485636c3b6410","80":"783a2f1231542b9fe8bc728dc676745c62f35b9f","81":"67f6f5ea337547b3f5e287e0ed1392ef0462e65a","82":"5b806671b663295f5212704dfb7373ddfefe804f","83":"36a9851b8c9213c4e1bcfd2c46b3f799c36caa69","84":"a619fd0fcbdfcc897054491c2f285677bee38a11","85":"46afad714b0528863bcf67b2bf5fcd4318235ccf","86":"a5965f77bbb0fe23f16a5137918af27c753800af","87":"30e44c452e38ff3d879d7ba92a130fa2cc072754","88":"34e3f31067be2bcbf86c8af9d137db227b2ece20","89":"c241960b69943b3d32b8af110bbed20508265334","90":"ff7d668721b961a73a95098cf7436db0170b1db6","91":"1a8a1ce0ceea0e298d9c8d5cce0b869a4a8c0514","92":"2491f12e51d7b74fb47ef5480d4b5f547d4d19ea","93":"cc18e2b0b9764f255341d3e530d018545987544b","94":"2f83b45077479bc3f663da50c4c40372894bf92e","95":"72f6e05eddabe6f3fa8891c99c4ba02aa60158c1","96":"98fdc8315906b0a8b9e7f24bad89914869fcfc20","97":"bd9ac169a0d6acb8fb66d55a6471ef162271b248","98":"583254a5a134243d7793b311c465da12b10a3ff2","99":"a89b5a4ce482c531b1cb3b8703e8eb2b9321994c","100":"ead4b4aedf94b98916f30388b85620a3583375e8","101":"cf06159aaaadda2ca50b19ce547a52424f7d47c3","102":"e02a631564990af3d9c8b0232f979af11cd8b6f6","103":"d6024b97f624e9169a63f5faccb8c5ab121eb13a","104":"ea5855b529987fde6eca87492bccbd28eef8d052","105":"fbf1c9958c47062e2db30276c723867c0d019652","106":"644f20245c08dbbc6baad20100fcf0c8bd3181a0","107":"e01fb197b4303ba63ba2f4d68a897006ec7ec4fd","108":"ebc7cba80494385e29bce8b1b86a75d14666c19e","109":"cf06159aaaadda2ca50b19ce547a52424f7d47c3","110":"1442ca4e728892f18ef101c4987bdf11ef5bbae5","111":"c8ad8ee000e4e042d80e4cf53fb6d0815d7743dd","112":"50dd207ce4319397d862a91f8295d902549dbdf7","113":"031e9404b7a1467fdcc96bc109e05b640d573209","114":"a892e9a26785d59d8bf4ccef48606664c6cbc48b","115":"2d197f7a290d191183b86f35c3857dd15a16d9b6","116":"513311818a707ccc0c7d007ddabfab19e1a2e470","117":"2d197f7a290d191183b86f35c3857dd15a16d9b6","118":"e13a48ef1524ba35615d7f63834e7c9192fa1836","119":"5ecc835f4137adac99198831c61c2afff4f340cf","120":"0dc1f9340fac9aadf883f52e6409e49e8d286af6","121":"d187b7bd6757d78bf89aaad8b0b5834ddbf29392","122":"2e36c528223443d6b8b5203b6a013e79f6d78d09","123":"95d031f0cad065bc18387f09ce37b256756f762f","124":"8a741a32e8d1d426c408c3eeb208eccc172c655e","125":"16e9d47cb25c33d57328638e5c56e257c6021ce1","126":"543b52f9b6c96a4922dc8ed1251625b1bd919e19","127":"0c670c988b61240e5f89ae9df0820db7dc572576","128":"c3227c2b48ac6b136c074871b72088677f2adca9","129":"ccd128942c5a6bb1672ceed21730d0e172655d77","130":"4c09542d0154eb09bf7be874e2c68189407114ed","131":"207cddf327154c23b484f1cbd972b3c7989b7554","132":"08903c93d929829aabbde2681c7ad2465d7d4189","133":"fcc6ada5ea6dbf2f644d26b545ac402d2202cc74","134":"6df7bb2069432bcab0971ab105284a66b3ec1ce0","135":"66bf25995056155b5d0796f7c0981e243bdd48f3","136":"448255ff2397e04c62ecba4c4d982531eb42d241","137":"f1d27aab09086a6e691db6892d50ba809cbe0607","138":"4bfad083e96a4ab129cc202fc941994be2e3adc4","139":"e5dd511955f4ac65bb1884f07426157740ad8574","140":"fcc6ada5ea6dbf2f644d26b545ac402d2202cc74","141":"645fa936256811f53f0c33f1e5298f6ad1095dce","142":"96b27c4205881920289b29ac3d83ba5edf5cf672","143":"1d697d32ba4f6ed471cd2857669029f425b827bb","144":"6bf661cdade79d96c4def4f09c27ad5ca1bae11a","145":"de574b57d45cfea00748c464af17f1c1ca53e548","146":"43ea8d27d652dc15e4d27f665c5d636a5937780b","147":"750463cf0946dd46c4504b302757f2bb6e2b4521","148":"78da696445e50002d29bf5610af059fd3f00f51b","149":"02a497125bbf85fe0355eb22424315c920d1aec4","150":"0d04b46ec6ce4c707bcdebb94b98e30fe8f4ae1d","151":"9c95dafc63de0e98627458369e87347df87fa17d","152":"875319a815400bdb73c309601c175d72997a4fa0","153":"8b9615124a0bcadd7fa984eaadd066da0fb4fbae","154":"d3167df97a44b8632538b32ee8cd887893ea1435","155":"08d3f07da7160e9657630ba98531850905619def","156":"669f8f726fac4a588ced06a4da3959eb8ca20f9f","157":"8761e9acb20bc475c095455fd754bf632e0f88f0","158":"c2519bf48d73f5751cfecfe2c4c796fbcb73c390","159":"31bbd3c348400c942a33c1f952dca8e7125996b7","160":"8761e9acb20bc475c095455fd754bf632e0f88f0","161":"0a25a243957b41c7ac8d59af50294547151ae621","162":"c03dfcda5d45ea4c518bd14641d9604726e00477","163":"c63d06344214886094d7ab6c7fd5692cc59fdf0d","164":"b47d17b0df02e38e97f565784bb3cf948b29a6ec","165":"514783cefac2b142adb50ee5f61dd724d62910cf","166":"0cce8842b179e19e6faac936a8c44ea1ba05b6b9","167":"d933dcd7cbb19916f4732ae7e3892a656a8c3d27","168":"df83494a4366e081563659e1142464029a0dec82","169":"72084679bda2e7679259e9c0fa2fdcd48ecb158c","170":"b59ed47a8f30e7488f1faef65ff0a75597af0a44","171":"f2a7ecb1f539bb41a61c254150e404820851005f","172":"73b5302f1efc7ba87e123cfed0c9c998e098c16a","173":"8483318133a7763eb2dedc59294559febbf657c9","174":"db160d4bc5bd9f2e66a764aeb44dcd18fb8afa6d","175":"e4b4ee3d952b1e8360a82d2b3506fd5b4ab68df9","176":"0ab5c875f0070d5aee8d36bc55f41de440a13f02","177":"479d3907a5bce4f3edb476d3ae05fe4b38a0a6e4","178":"deb99d98742ec9691ef593418bea71a4437745a1","179":"efb6caff9804383600563a658ba18720ec3b2d11","180":"dc7dfbece1b31665b0456476f67ef97a17bd2323","181":"515d7d948b4274c7451fdef61eae9e76eac93a38","182":"f62c59844a8de3c27cf22735218d77e9fa9f6b17","183":"fff356f1e506e6801c5a60c165636e84a4bd302c","184":"0219ef0ce5c8aaa6abe5e6c30f287edb777c7e8c","185":"45b93bfc4297b0bc1ef0b7316cbae11d2bb527d1","186":"b79854d1c29b5caae403c29d484f969b31734a5e","187":"e17d301fb143b20ac943c99f34aa8b118f14e1e0","188":"9311a4300f61f4cba381ba8347b73f0f2977a8f9","189":"f4bfa8b298cbd0acc236117231d5b00de5f43240","190":"323fba03ac21b03df8d04ab575741429cc509d7b","191":"a3798e202aaa326b1027c0ee0a61ac78dc175e63","192":"aedfd66841e39a8db181d8549a42f4d2ee248b0a","193":"689dbca3e4bd977fa08b7a933e4e709277cd1394","194":"fa406117c67fc86cc8171f57b12184eecb8069be","195":"0121c0f6d769e8c0ecafeae0e85092855a4e95c9","196":"566cdea53950f86eb51dae62812c29e79405cffe","197":"755d702c80e5acee8c07676b4a4dee37de56e2a8","198":"af9757f0420e27e2a332cc16cbe1eeefe99cb5f1","199":"6188e34517a82298b0216c141ec728a5d9861658","200":"2dda3515c5bbf02824addbe2e8f924a48ce21156","201":"01f1a7861667c4869bb03251dfd10526bf846e9c","202":"94bad5a6b469d84f556d6cc52c44fd88c07476f3","203":"d26e345f256b8a8210637258a5973fd36227d8ec","204":"2d5b9af81408ebc5e45c944cc24c9bab85b7ae1f","205":"9f9e4ae1c294ea4301eeefd3cf6222d156916144","206":"6ba531f1aec62375bf94ad9c7bb064953c4e9868","207":"6ee0b7c59743c3047f307643c7c1f13ada56fdd1","208":"b2535b271d83f892de2fb3a790b298618565dcff","209":"1f8562051647d5537dc950315e74534b363a0812","210":"9cb2d09228ac87d761d23a1284c79b55f9f285d9","211":"cc2f19f5bc9ad693d4447e42e9844d9931ab8e81","212":"5e194e1e44c6c2ebe294f854733f5c5532de5688","213":"330eb185920d6a470b265a4b31217c60e810fb3e","214":"cb9c9b0fb1d49b085069617bd8dc9cdddfdba7fb","215":"9893dc24b32bc83ca63e7d06cfa296d66be3fb3d","216":"cca19971f846c6d45e089dd1425f86fa4cb48f0a","217":"5cf11f6e983a7c11b17c1b7c4aee6ff99e30ba82","218":"a4400d021e29279c8676d5c46cf76c4b36d748f6","219":"a388bd7af444f632e5e9370bedaeb69572f861af","220":"cbf9c2350f24d9d10ebb1961965e7fbb4361cafb","221":"330eb185920d6a470b265a4b31217c60e810fb3e","222":"86fd0b7d132126be49c02e061ebec02e1d3a4e38","223":"125c431e2ff41a156b9f9076f744d2f35dd6e67a","224":"c9fb38c846ba1f1ce9a7a3560e491ea9d4a8d875","225":"618e5aedf02d58358d6fda7d9fa67c169b7156d0","226":"96e7c78544d7eca96e3ae60ff80c728f3109e8ba","227":"05a9ef37686d678f267a15664b5ce66612b7996a","228":"afc90bd0690d0cbedd01f22d1d6ef0e44f30b5f4","229":"3de0408ae8b591d9ac516a2384925dd98ebc66f4","230":"adf7c513e9cadbe25cc2be61c43f3f36f1b488e9","231":"7bd8487fc3a5c3bac022bfe8c34d2f630c123d40","232":"1b3a5c98381f37a2ec97ce80d1d88d472a7d1802","233":"61822ea65b8a4c56d2b5622e2adf69e430fac29a","234":"e91dcc46d28fc0aa5553fb73c4eac5e28abfd3ec","235":"f55aef05f6632a1407fcddcbc6729613b07e87e2","236":"e593de223b662cfda40aa96163c6a42d6b32de5e","237":"afc90bd0690d0cbedd01f22d1d6ef0e44f30b5f4","238":"d7d33a1517c57b596162a71a48bc29c87d29d9aa","239":"5dbc14842c16f1fa315e682e7e5bdb0248a2b05e","240":"91e0a33fd2cb0a77401831e96536b91c5b7817e4","241":"c3caef28f8402d52d6a646a7e1e00a971db1c507","242":"b7cd9398c8797b4e90cdd90ec9f64300e6334e6a","243":"5aeed89b3b0eba74cea863b59a43c63c81be5989","244":"382698efc4e5ff54a4155e1f2c40547ac3b2aa64","245":"786e6492919d0d1eb07b5988f67e0ee61aa05c21","246":"f7605af56f29b42e72f9c2cbbd4ad8e443a8dae0","247":"e2a033646231bd947a3948d3aac198d34d04ea38","248":"bff7146aafe1a5b84631bd279112c8c5b95d2802","249":"4e21eea3c32d00b2fcfc5bcfd16d8dc9d0d8874d","250":"9bfa05ff62ddd960cb9fb3e9dff70d800ea1c0a1","251":"02e11fa83d18975f95c5d5047d0439897308c73b","252":"dfc889db0d02cebaadacc6726a8622a40f45eb5e","253":"03955e2748064dcfac121e35e4e060cf6f48e259","254":"bf7696c10077e73d06752c564ea35cc7e5e336ca","255":"6011e2ef7791738f3b78fa9e122360029df7c9ed","256":"f16df07e24654858a6b04c3ecb0670dcfc42337d","257":"f4f3f6144dd143d6ec43ece9ab0fdd740ed610f1","258":"e402c5ea1ba23d776062f18306690296a708d469","259":"d9bb402315f47764bf0f6002e513cd7e89c7c804","260":"e4ba7abdb25b00308f67589458cb9380a2ccd5e6","261":"79648bef7658bb824e4630740f6e1484c1b0620b","262":"72267d131001da8cdf253105c367fd913db79523","263":"3120e204e1b4928fd784ae78fa754bc937352c98","264":"26923a2648b9864e2ec6f0cc66b8b6fcfbbdd491","265":"7e3fdb60969ef0f7219cbcb9b05f7d1537af1c8d","266":"66abec7cba89b35c7b6cab2140c3532049de0157","267":"04cd413008c353ca558ab901c0d88132c25772c2","268":"957474e32057f19ef863c1c8ba3d16389cf58eed","269":"d1bdf5a5ea942b8236e48c17c3c07e3bd49ae5c8","270":"59004f5610548e626ad27cd4a7b92daa3ccfc9c8","271":"5f18e24665f62b8e9a3492af247978073fea54f9","272":"17af425d904f21f8500bf965b16d07603e01d125","273":"e3d7c73110dd6edd9e96b1f3d9b0dea91d83ce2d","274":"e2164a4cce391e1f4228e2e89689793ec037135e","275":"fb53c42ba7d5719e730f67c5356766d84e5f3619","276":"1cf1b3a313de0b3b22a61dd3741c1bd5a3d14c66","277":"79648bef7658bb824e4630740f6e1484c1b0620b","278":"cf6f466d227c041df3b892dff394df43ecf99b8b","279":"dd27a200fd3dd5500a0b5bbfc0e4a9289af486e5","280":"2d6dcf8bf9f1a758f135929de4a6fd81e26a38da","281":"7152f2dc8e0aceb0412e802653271cd9e59bf23e","282":"855035b23011e2a09182025a63a9252e19033163","283":"1055563879363d9ee2fba1d9fd1628eca6bcbb4e","284":"c8741ec6f4f24324a96041efaf2f627a99d946e6"},"model_name_for_query":{"0":"davidkim205\/Rhea-72b-v0.5","1":"MTSAIR\/MultiVerse_70B","2":"MTSAIR\/MultiVerse_70B","3":"SF-Foundation\/Ein-72B-v0.11","4":"SF-Foundation\/Ein-72B-v0.13","5":"SF-Foundation\/Ein-72B-v0.12","6":"abacusai\/Smaug-72B-v0.1","7":"ibivibiv\/alpaca-dragon-72b-v1","8":"moreh\/MoMo-72B-lora-1.8.7-DPO","9":"cloudyu\/TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO_f16","10":"saltlux\/luxia-21.4b-alignment-v1.0","11":"cloudyu\/TomGrc_FusionNet_34Bx2_MoE_v0.1_full_linear_DPO","12":"zhengr\/MixTAO-7Bx2-MoE-v8.1","13":"yunconglong\/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B","14":"JaeyeonKang\/CCK_Asura_v1","15":"fblgit\/UNA-SimpleSmaug-34b-v1beta","16":"TomGrc\/FusionNet_34Bx2_MoE_v0.1","17":"migtissera\/Tess-72B-v1.5b","18":"moreh\/MoMo-72B-lora-1.8.6-DPO","19":"abacusai\/Smaug-34B-v0.1","20":"cloudyu\/Truthful_DPO_TomGrc_FusionNet_34Bx2_MoE","21":"ibivibiv\/orthorus-125b-v2","22":"ConvexAI\/Luminex-34B-v0.2","23":"yunconglong\/DARE_TIES_13B","24":"yunconglong\/13B_MATH_DPO","25":"TomGrc\/FusionNet_34Bx2_MoE","26":"ConvexAI\/Luminex-34B-v0.1","27":"yunconglong\/MoE_13B_DPO","28":"JaeyeonKang\/CCK_Asura_v3.0","29":"cloudyu\/4bit_quant_TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO","30":"yam-peleg\/Experiment26-7B","31":"MTSAIR\/multi_verse_model","32":"chihoonlee10\/T3Q-Mistral-Orca-Math-DPO","33":"yam-peleg\/Experiment26-7B","34":"rwitz\/experiment26-truthy-iter-0","35":"yam-peleg\/Experiment30-7B","36":"yam-peleg\/Experiment28-7B","37":"MaziyarPanahi\/Calme-7B-Instruct-v0.2","38":"rwitz\/experiment26-truthy-iter-1","39":"rwitz\/experiment26-truthy-iter-2","40":"chlee10\/T3Q-Merge-Mistral7B","41":"LeroyDyer\/Mixtral_AI_Cyber_3.m1","42":"yam-peleg\/Experiment31-7B","43":"yam-peleg\/Experiment31-7B","44":"yam-peleg\/Experiment24-7B","45":"zhengr\/MixTAO-7Bx2-MoE-Instruct-v7.0","46":"bobofrut\/ladybird-base-7B-v8","47":"yam-peleg\/Experiment29-7B","48":"yam-peleg\/Experiment30-7B","49":"CorticalStack\/pastiche-crown-clown-7b-dare-dpo","50":"MaziyarPanahi\/Calme-7B-Instruct-v0.1.1","51":"mlabonne\/UltraMerge-7B","52":"cloudyu\/Truthful_DPO_cloudyu_Mixtral_34Bx2_MoE_60B","53":"yam-peleg\/Experiment27-7B","54":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO","55":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2","56":"cloudyu\/Yi-34Bx2-MoE-60B-DPO","57":"chihoonlee10\/T3Q-EN-DPO-Mistral-7B","58":"jefferylovely\/AiMaven-Merkaba-7b","59":"bardsai\/jaskier-7b-dpo-v5.6","60":"JaeyeonKang\/CCK_Asura_v2.1","61":"yam-peleg\/Experiment25-7B","62":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v3","63":"CorticalStack\/neurotic-crown-clown-7b-tak-stack-dpo","64":"jan-hq\/stealth-v2","65":"bardsai\/jaskier-7b-dpo-v6.1","66":"eren23\/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v4-test","67":"chihoonlee10\/T3Q-DPO-Mistral-7B","68":"Kukedlc\/Jupiter-k-7B-slerp","69":"moreh\/MoMo-72B-lora-1.8.4-DPO","70":"TomGrc\/FusionNet_7Bx2_MoE_v0.1","71":"macadeliccc\/MBX-7B-v3-DPO","72":"vicgalle\/CarbonBeagle-11B-truthy","73":"dddsaty\/FusionNet_7Bx2_MoE_Ko_DPO_Adapter_Attach","74":"vicgalle\/RoleBeagle-11B","75":"MaziyarPanahi\/Calme-7B-Instruct-v0.5","76":"FelixChao\/Capricorn-7B-DPO","77":"rwitz\/experiment26-SPIN-iter-0","78":"Kukedlc\/NeuralKrishna-7B-V2-DPO","79":"abideen\/AlphaMonarch-laser","80":"touqir\/Cyrax-7B","81":"Eric111\/UltraCatunaMayo-DPO","82":"abideen\/AlphaMonarch-daser","83":"yam-peleg\/Experiment21-7B","84":"TomGrc\/FusionNet_7Bx2_MoE_14B","85":"yam-peleg\/Experiment22-7B","86":"cloudyu\/Yi-34Bx2-MOE-200K","87":"NeverSleep\/MiquMaid-v2-2x70B-DPO","88":"abideen\/AlphaMonarch-dora","89":"AiMavenAi\/Prometheus-1.3","90":"FelixChao\/Capricorn-7B","91":"yleo\/EmertonMonarch-7B","92":"yam-peleg\/Experiment20-7B","93":"ibivibiv\/multimaster-7b-v6","94":"abacusai\/Smaug-Mixtral-v0.1","95":"daxiongshu\/Pluto_24B_DPO_63","96":"abacusai\/Smaug-Mixtral-v0.1","97":"cloudyu\/Phoenix_DPO_60B","98":"Weyaxi\/Helion-4x34B","99":"ibivibiv\/multimaster-7b-v4","100":"fblgit\/UNA-34BeagleSimpleMath-32K-v1","101":"ShinojiResearch\/Senku-70B-Full","102":"fblgit\/UNA-34Beagles-32K-v1","103":"one-man-army\/UNA-34Beagles-32K-bf16-v1","104":"FelixChao\/Scorpio-7B","105":"vicgalle\/ConfigurableBeagle-11B","106":"Weyaxi\/Cosmosis-3x34B","107":"macadeliccc\/WestLake-7B-v2-laser-truthy-dpo","108":"yam-peleg\/Experiment19-7B","109":"ShinojiResearch\/Senku-70B-Full","110":"yam-peleg\/Experiment23-7B","111":"maywell\/kiqu-70b","112":"FelixChao\/WestSeverus-7B-DPO-v2","113":"migtissera\/Tess-70B-v1.6","114":"alnrg2arg\/test3_sft_16bit","115":"FelixChao\/Faraday-7B","116":"Weyaxi\/Astralis-4x34B","117":"FelixChao\/Faraday-7B","118":"PetroGPT\/WestSeverus-7B-DPO","119":"FelixChao\/Sectumsempra-7B-DPO","120":"NeverSleep\/MiquMaid-v1-70B","121":"Weyaxi\/Bagel-Hermes-2x34B","122":"BarryFutureman\/WestLakeX-7B-EvoMerge-Variant2","123":"ibivibiv\/multimaster-7b-v5","124":"alnrg2arg\/test3_sft_16bit_dpo2","125":"ChaoticNeutrals\/Eris_Floramix_DPO_7B","126":"abhishekchohan\/SOLAR-10.7B-Instruct-Forest-DPO-v1","127":"abacusai\/MetaMath-Bagel-DPO-34B","128":"cognitivecomputations\/WestLake-7B-v2-laser","129":"cloudyu\/60B_MoE_Coder_v3","130":"ChaoticNeutrals\/Eris_Remix_DPO_7B","131":"Eric111\/CatunaLaserPi-DPO","132":"jondurbin\/nontoxic-bagel-34b-v0.2","133":"jondurbin\/bagel-dpo-34b-v0.2","134":"senseable\/WestLake-7B-v2","135":"moreh\/MoMo-72B-LoRA-V1.4","136":"MaziyarPanahi\/Calme-7B-Instruct-v0.4","137":"kevin009\/llamaRAGdrama","138":"vicgalle\/Mixtral-7Bx2-truthy","139":"moreh\/MoMo-72B-LoRA-V1.4","140":"jondurbin\/bagel-dpo-34b-v0.2","141":"senseable\/Westlake-7B","142":"rizla\/trrapi-16b","143":"abacusai\/MM-OV-bagel-DPO-34b-c1000-250","144":"BarryFutureman\/WestLakeX-7B-EvoMerge","145":"yunconglong\/Truthful_DPO_MOE_19B","146":"Kukedlc\/NeuralExperiment-7b-MagicCoder-v7.5","147":"ResplendentAI\/Datura_7B","148":"FelixChao\/Patronum-7B","149":"bhavinjawade\/SOLAR-10B-OrcaDPO-Jawade","150":"ResplendentAI\/Flora_DPO_7B","151":"ResplendentAI\/Flora_7B","152":"NeuralNovel\/Valor-7B-v0.1","153":"VAGOsolutions\/SauerkrautLM-SOLAR-Instruct","154":"upstage\/SOLAR-10.7B-Instruct-v1.0","155":"fblgit\/UNA-SOLAR-10.7B-Instruct-v1.0","156":"bhavinjawade\/SOLAR-10B-Nector-DPO-Jawade","157":"abacusai\/Liberated-Qwen1.5-72B","158":"dddsaty\/SOLAR-Instruct-ko-Adapter-Attach","159":"macadeliccc\/SOLAR-10.7b-Instruct-truthy-dpo","160":"abacusai\/Liberated-Qwen1.5-72B","161":"cloudyu\/19B_MATH_DPO","162":"dhanushreddy29\/BrokenKeyboard","163":"fblgit\/UNA-SOLAR-10.7B-Instruct-v1.0","164":"fblgit\/UNA-POLAR-10.7B-InstructMath-v2","165":"fblgit\/UNAversal-2x7B-v1","166":"dddsaty\/Merge_Sakura_Solar","167":"rishiraj\/meow","168":"vicgalle\/ConfigurableSOLAR-10.7B","169":"fblgit\/UNA-TheBeagle-7b-v1","170":"vicgalle\/OpenBeagle-11B","171":"InferenceIllusionist\/Excalibur-7b-DPO","172":"JaeyeonKang\/CCK_Gony_v3","173":"Sao10K\/Typhon-Mixtral-v1","174":"fblgit\/UNAversal-8x7B-v1beta","175":"sophosympatheia\/Aurora-Nights-70B-v1.0","176":"allenai\/tulu-2-dpo-70b","177":"Steelskull\/Lumosia-v2-MoE-4x10.7","178":"NousResearch\/Nous-Hermes-2-Yi-34B","179":"decruz07\/kellemar-DPO-Orca-Distilled-7B-SLERP","180":"abacusai\/MM-Orc-Vic-bagel-34b-c1000","181":"JaeyeonKang\/CCK_Asura_v2","182":"Qwen\/Qwen-72B","183":"yam-peleg\/Experiment7-7B","184":"macadeliccc\/SOLAR-10.7b-Instruct-dpo","185":"yam-peleg\/Experiment15-7B","186":"yam-peleg\/Experiment10-7B","187":"yam-peleg\/Experiment8-7B","188":"cloudyu\/Mixtral-8x7B-Instruct-v0.1-DPO","189":"Neuronovo\/neuronovo-9B-v0.4","190":"cloudyu\/Mixtral_7Bx5_MoE_30B","191":"yam-peleg\/Experiment9-7B","192":"yam-peleg\/Experiment1-7B","193":"yam-peleg\/Experiment2-7B","194":"yam-peleg\/Experiment4-7B","195":"Sao10K\/Franziska-Mixtral-v1","196":"NousResearch\/Nous-Hermes-2-Mixtral-8x7B-DPO","197":"ResplendentAI\/DaturaCookie_7B","198":"ibndias\/Nous-Hermes-2-MoE-2x34B","199":"gradientai\/v-alpha-tross","200":"carsenk\/flippa-exp26-v3-7b","201":"SUSTech\/SUS-Chat-34B","202":"Sao10K\/SOLAR-10.7B-NahIdWin","203":"yunconglong\/7Bx4_DPO","204":"gradientai\/v-alpha-tross","205":"ResplendentAI\/Luna-2x7B-MoE","206":"NousResearch\/Nous-Hermes-2-Mixtral-8x7B-DPO","207":"ibivibiv\/multimaster-7b-v3","208":"yunconglong\/7Bx4_DPO_2e","209":"argilla\/notux-8x7b-v1","210":"The-Face-Of-Goonery\/HuginnV5.5-12.6B","211":"Qwen\/Qwen1.5-72B","212":"logicker\/SkkuDS-DPO-72B-v1","213":"VAGOsolutions\/SauerkrautLM-Mixtral-8x7B-Instruct","214":"Himitsui\/Kaiju-11B","215":"PetroGPT\/Severus-7B-DPO","216":"S-miguel\/The-Trinity-Coder-7B","217":"logicker\/SkkuDS-DPO-72B-v3","218":"PSanni\/MPOMixtral-8x7B-Instruct-v0.1","219":"cloudyu\/19B_TRUTH_DPO","220":"JaeyeonKang\/CCK_Gony_v3.3","221":"VAGOsolutions\/SauerkrautLM-Mixtral-8x7B-Instruct","222":"tenyx\/TenyxChat-8x7B-v1","223":"mistralai\/Mixtral-8x7B-Instruct-v0.1","224":"ChaoticNeutrals\/RPMix-4x7B-MoE","225":"SJ-Donald\/SJ-SOLAR-10.7b-DPO","226":"senseable\/garten2-7b","227":"Azure99\/blossom-v5-34b","228":"Sao10K\/Fimbulvetr-11B-v2","229":"mistralai\/Mixtral-8x7B-Instruct-v0.1","230":"FelixChao\/Severus-7B","231":"Himitsui\/KuroMitsu-11B","232":"maywell\/PiVoT-SUS-RP","233":"jondurbin\/bagel-dpo-8x7b-v0.2","234":"ignos\/Mistral-T5-7B-v1","235":"SanjiWatsuki\/Kunoichi-DPO-v2-7B","236":"Brillibits\/Instruct_Mixtral-8x7B-v0.1_Dolly15K","237":"Sao10K\/Fimbulvetr-11B-v2","238":"SanjiWatsuki\/Kunoichi-DPO-v2-7B","239":"cognitivecomputations\/mixtral-instruct-0.1-laser","240":"cognitivecomputations\/laserxtral","241":"OpenBuddy\/openbuddy-deepseek-67b-v15.2","242":"macadeliccc\/piccolo-math-2x7b","243":"JaeyeonKang\/CCK_Gony_v0.1","244":"R136a1\/InfinityKuno-2x7B","245":"jan-ai\/Solar-10.7B-SLERP","246":"mncai\/yi-34B-v3","247":"NeverSleep\/CausalLM-RP-34B","248":"Sao10K\/Fimbulvetr-10.7B-v1","249":"SanjiWatsuki\/Kunoichi-DPO-7B","250":"jan-hq\/supermario-slerp-v3","251":"viethq188\/LeoScorpius-7B","252":"JaeyeonKang\/CCK_Gony_v3.1","253":"adonlee\/Mistral_7B_SFT_DPO_v0","254":"mncai\/yi-34B-v2","255":"NousResearch\/Nous-Hermes-2-Mixtral-8x7B-SFT","256":"CausalLM\/72B-preview-llamafied-qwen-llamafy","257":"OpenPipe\/mistral-ft-optimized-1218","258":"bn22\/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED","259":"arlineka\/Brunhilde-2x7b-MOE-DPO-v.01.5","260":"OpenBuddy\/openbuddy-deepseek-67b-v18.1-4k","261":"deepseek-ai\/deepseek-llm-67b-chat","262":"mlabonne\/NeuralDarewin-7B","263":"OpenBuddy\/openbuddy-deepseek-67b-v15.1","264":"migtissera\/Tess-M-Creative-v1.0","265":"VitalContribution\/Evangelion-7B","266":"bhenrym14\/platypus-yi-34b","267":"RatanRohith\/NeuralPizza-7B-V0.3","268":"PracticeLLM\/SOLAR-tail-10.7B-Merge-v1.0","269":"Azure99\/blossom-v4-yi-34b","270":"llmixer\/BigWeave-v15-103b","271":"MaziyarPanahi\/Calme-7B-Instruct-v0.1","272":"Samee-ur\/NeuralPipe-7B-slerp-DPO","273":"VAGOsolutions\/SauerkrautLM-14b-MoE-LaserChat","274":"RatanRohith\/NeuralPizza-7B-V0.2","275":"RatanRohith\/NeuralPizza-7B-V0.1","276":"R136a1\/InfinityKumon-2x7B","277":"deepseek-ai\/deepseek-llm-67b-chat","278":"Sao10K\/14B-Glacier-Stack","279":"jan-hq\/supermario-slerp-v2","280":"dillfrescott\/amadeus-v0.1","281":"OpenBuddy\/openbuddy-deepseek-67b-v15.3-4k","282":"KnutJaegersberg\/Deita-20b","283":"LDCC\/LDCC-SOLAR-10.7B","284":"LDCC\/LDCC-SOLAR-10.7B"}} \ No newline at end of file diff --git a/demos/mini_leaderboard/run.ipynb b/demos/mini_leaderboard/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..dff59be39d2ce38253b856d39719dcec4d589cfb --- /dev/null +++ b/demos/mini_leaderboard/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: mini_leaderboard"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('assets')\n", "!wget -q -O assets/__init__.py https://github.com/gradio-app/gradio/raw/main/demo/mini_leaderboard/assets/__init__.py\n", "!wget -q -O assets/custom_css.css https://github.com/gradio-app/gradio/raw/main/demo/mini_leaderboard/assets/custom_css.css\n", "!wget -q -O assets/leaderboard_data.json https://github.com/gradio-app/gradio/raw/main/demo/mini_leaderboard/assets/leaderboard_data.json"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pandas as pd\n", "from pathlib import Path\n", "\n", "abs_path = Path(__file__).parent.absolute()\n", "\n", "df = pd.read_json(str(abs_path / \"assets/leaderboard_data.json\"))\n", "invisible_df = df.copy()\n", "\n", "\n", "COLS = [\n", " \"T\",\n", " \"Model\",\n", " \"Average \u2b06\ufe0f\",\n", " \"ARC\",\n", " \"HellaSwag\",\n", " \"MMLU\",\n", " \"TruthfulQA\",\n", " \"Winogrande\",\n", " \"GSM8K\",\n", " \"Type\",\n", " \"Architecture\",\n", " \"Precision\",\n", " \"Merged\",\n", " \"Hub License\",\n", " \"#Params (B)\",\n", " \"Hub \u2764\ufe0f\",\n", " \"Model sha\",\n", " \"model_name_for_query\",\n", "]\n", "ON_LOAD_COLS = [\n", " \"T\",\n", " \"Model\",\n", " \"Average \u2b06\ufe0f\",\n", " \"ARC\",\n", " \"HellaSwag\",\n", " \"MMLU\",\n", " \"TruthfulQA\",\n", " \"Winogrande\",\n", " \"GSM8K\",\n", " \"model_name_for_query\",\n", "]\n", "TYPES = [\n", " \"str\",\n", " \"markdown\",\n", " \"number\",\n", " \"number\",\n", " \"number\",\n", " \"number\",\n", " \"number\",\n", " \"number\",\n", " \"number\",\n", " \"str\",\n", " \"str\",\n", " \"str\",\n", " \"str\",\n", " \"bool\",\n", " \"str\",\n", " \"number\",\n", " \"number\",\n", " \"bool\",\n", " \"str\",\n", " \"bool\",\n", " \"bool\",\n", " \"str\",\n", "]\n", "NUMERIC_INTERVALS = {\n", " \"?\": pd.Interval(-1, 0, closed=\"right\"),\n", " \"~1.5\": pd.Interval(0, 2, closed=\"right\"),\n", " \"~3\": pd.Interval(2, 4, closed=\"right\"),\n", " \"~7\": pd.Interval(4, 9, closed=\"right\"),\n", " \"~13\": pd.Interval(9, 20, closed=\"right\"),\n", " \"~35\": pd.Interval(20, 45, closed=\"right\"),\n", " \"~60\": pd.Interval(45, 70, closed=\"right\"),\n", " \"70+\": pd.Interval(70, 10000, closed=\"right\"),\n", "}\n", "MODEL_TYPE = [str(s) for s in df[\"T\"].unique()]\n", "Precision = [str(s) for s in df[\"Precision\"].unique()]\n", "\n", "\n", "# Searching and filtering\n", "def update_table(\n", " hidden_df: pd.DataFrame,\n", " columns: list,\n", " type_query: list,\n", " precision_query: str,\n", " size_query: list,\n", " query: str,\n", "):\n", " filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) # type: ignore\n", " filtered_df = filter_queries(query, filtered_df)\n", " df = select_columns(filtered_df, columns)\n", " return df\n", "\n", "\n", "def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:\n", " return df[(df[\"model_name_for_query\"].str.contains(query, case=False))] # type: ignore\n", "\n", "\n", "def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:\n", " # We use COLS to maintain sorting\n", " filtered_df = df[[c for c in COLS if c in df.columns and c in columns]]\n", " return filtered_df # type: ignore\n", "\n", "\n", "def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:\n", " final_df = []\n", " if query != \"\":\n", " queries = [q.strip() for q in query.split(\";\")]\n", " for _q in queries:\n", " _q = _q.strip()\n", " if _q != \"\":\n", " temp_filtered_df = search_table(filtered_df, _q)\n", " if len(temp_filtered_df) > 0:\n", " final_df.append(temp_filtered_df)\n", " if len(final_df) > 0:\n", " filtered_df = pd.concat(final_df)\n", " filtered_df = filtered_df.drop_duplicates( # type: ignore\n", " subset=[\"Model\", \"Precision\", \"Model sha\"]\n", " )\n", "\n", " return filtered_df\n", "\n", "\n", "def filter_models(\n", " df: pd.DataFrame,\n", " type_query: list,\n", " size_query: list,\n", " precision_query: list,\n", ") -> pd.DataFrame:\n", " # Show all models\n", " filtered_df = df\n", "\n", " type_emoji = [t[0] for t in type_query]\n", " filtered_df = filtered_df.loc[df[\"T\"].isin(type_emoji)]\n", " filtered_df = filtered_df.loc[df[\"Precision\"].isin(precision_query + [\"None\"])]\n", "\n", " numeric_interval = pd.IntervalIndex(\n", " sorted([NUMERIC_INTERVALS[s] for s in size_query]) # type: ignore\n", " )\n", " params_column = pd.to_numeric(df[\"#Params (B)\"], errors=\"coerce\")\n", " mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) # type: ignore\n", " filtered_df = filtered_df.loc[mask]\n", "\n", " return filtered_df\n", "\n", "\n", "demo = gr.Blocks(css=str(abs_path / \"assets/leaderboard_data.json\"))\n", "with demo:\n", " gr.Markdown(\"\"\"Test Space of the LLM Leaderboard\"\"\", elem_classes=\"markdown-text\")\n", "\n", " with gr.Tabs(elem_classes=\"tab-buttons\") as tabs:\n", " with gr.TabItem(\"\ud83c\udfc5 LLM Benchmark\", elem_id=\"llm-benchmark-tab-table\", id=0):\n", " with gr.Row():\n", " with gr.Column():\n", " with gr.Row():\n", " search_bar = gr.Textbox(\n", " placeholder=\" \ud83d\udd0d Search for your model (separate multiple queries with `;`) and press ENTER...\",\n", " show_label=False,\n", " elem_id=\"search-bar\",\n", " )\n", " with gr.Row():\n", " shown_columns = gr.CheckboxGroup(\n", " choices=COLS,\n", " value=ON_LOAD_COLS,\n", " label=\"Select columns to show\",\n", " elem_id=\"column-select\",\n", " interactive=True,\n", " )\n", " with gr.Column(min_width=320):\n", " filter_columns_type = gr.CheckboxGroup(\n", " label=\"Model types\",\n", " choices=MODEL_TYPE,\n", " value=MODEL_TYPE,\n", " interactive=True,\n", " elem_id=\"filter-columns-type\",\n", " )\n", " filter_columns_precision = gr.CheckboxGroup(\n", " label=\"Precision\",\n", " choices=Precision,\n", " value=Precision,\n", " interactive=True,\n", " elem_id=\"filter-columns-precision\",\n", " )\n", " filter_columns_size = gr.CheckboxGroup(\n", " label=\"Model sizes (in billions of parameters)\",\n", " choices=list(NUMERIC_INTERVALS.keys()),\n", " value=list(NUMERIC_INTERVALS.keys()),\n", " interactive=True,\n", " elem_id=\"filter-columns-size\",\n", " )\n", "\n", " leaderboard_table = gr.components.Dataframe(\n", " value=df[ON_LOAD_COLS],\n", " headers=ON_LOAD_COLS,\n", " datatype=TYPES,\n", " elem_id=\"leaderboard-table\",\n", " interactive=False,\n", " visible=True,\n", " column_widths=[\"2%\", \"33%\"],\n", " )\n", "\n", " # Dummy leaderboard for handling the case when the user uses backspace key\n", " hidden_leaderboard_table_for_search = gr.components.Dataframe(\n", " value=invisible_df[COLS],\n", " headers=COLS,\n", " datatype=TYPES,\n", " visible=False,\n", " )\n", " search_bar.submit(\n", " update_table,\n", " [\n", " hidden_leaderboard_table_for_search,\n", " shown_columns,\n", " filter_columns_type,\n", " filter_columns_precision,\n", " filter_columns_size,\n", " search_bar,\n", " ],\n", " leaderboard_table,\n", " )\n", " for selector in [\n", " shown_columns,\n", " filter_columns_type,\n", " filter_columns_precision,\n", " filter_columns_size,\n", " ]:\n", " selector.change(\n", " update_table,\n", " [\n", " hidden_leaderboard_table_for_search,\n", " shown_columns,\n", " filter_columns_type,\n", " filter_columns_precision,\n", " filter_columns_size,\n", " search_bar,\n", " ],\n", " leaderboard_table,\n", " queue=True,\n", " )\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.queue(default_concurrency_limit=40).launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/mini_leaderboard/run.py b/demos/mini_leaderboard/run.py new file mode 100644 index 0000000000000000000000000000000000000000..93a44d6120857cbfbe4b448c973b188633fc2a19 --- /dev/null +++ b/demos/mini_leaderboard/run.py @@ -0,0 +1,244 @@ +import gradio as gr +import pandas as pd +from pathlib import Path + +abs_path = Path(__file__).parent.absolute() + +df = pd.read_json(str(abs_path / "assets/leaderboard_data.json")) +invisible_df = df.copy() + + +COLS = [ + "T", + "Model", + "Average ⬆️", + "ARC", + "HellaSwag", + "MMLU", + "TruthfulQA", + "Winogrande", + "GSM8K", + "Type", + "Architecture", + "Precision", + "Merged", + "Hub License", + "#Params (B)", + "Hub ❤️", + "Model sha", + "model_name_for_query", +] +ON_LOAD_COLS = [ + "T", + "Model", + "Average ⬆️", + "ARC", + "HellaSwag", + "MMLU", + "TruthfulQA", + "Winogrande", + "GSM8K", + "model_name_for_query", +] +TYPES = [ + "str", + "markdown", + "number", + "number", + "number", + "number", + "number", + "number", + "number", + "str", + "str", + "str", + "str", + "bool", + "str", + "number", + "number", + "bool", + "str", + "bool", + "bool", + "str", +] +NUMERIC_INTERVALS = { + "?": pd.Interval(-1, 0, closed="right"), + "~1.5": pd.Interval(0, 2, closed="right"), + "~3": pd.Interval(2, 4, closed="right"), + "~7": pd.Interval(4, 9, closed="right"), + "~13": pd.Interval(9, 20, closed="right"), + "~35": pd.Interval(20, 45, closed="right"), + "~60": pd.Interval(45, 70, closed="right"), + "70+": pd.Interval(70, 10000, closed="right"), +} +MODEL_TYPE = [str(s) for s in df["T"].unique()] +Precision = [str(s) for s in df["Precision"].unique()] + + +# Searching and filtering +def update_table( + hidden_df: pd.DataFrame, + columns: list, + type_query: list, + precision_query: str, + size_query: list, + query: str, +): + filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) # type: ignore + filtered_df = filter_queries(query, filtered_df) + df = select_columns(filtered_df, columns) + return df + + +def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: + return df[(df["model_name_for_query"].str.contains(query, case=False))] # type: ignore + + +def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: + # We use COLS to maintain sorting + filtered_df = df[[c for c in COLS if c in df.columns and c in columns]] + return filtered_df # type: ignore + + +def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: + final_df = [] + if query != "": + queries = [q.strip() for q in query.split(";")] + for _q in queries: + _q = _q.strip() + if _q != "": + temp_filtered_df = search_table(filtered_df, _q) + if len(temp_filtered_df) > 0: + final_df.append(temp_filtered_df) + if len(final_df) > 0: + filtered_df = pd.concat(final_df) + filtered_df = filtered_df.drop_duplicates( # type: ignore + subset=["Model", "Precision", "Model sha"] + ) + + return filtered_df + + +def filter_models( + df: pd.DataFrame, + type_query: list, + size_query: list, + precision_query: list, +) -> pd.DataFrame: + # Show all models + filtered_df = df + + type_emoji = [t[0] for t in type_query] + filtered_df = filtered_df.loc[df["T"].isin(type_emoji)] + filtered_df = filtered_df.loc[df["Precision"].isin(precision_query + ["None"])] + + numeric_interval = pd.IntervalIndex( + sorted([NUMERIC_INTERVALS[s] for s in size_query]) # type: ignore + ) + params_column = pd.to_numeric(df["#Params (B)"], errors="coerce") + mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) # type: ignore + filtered_df = filtered_df.loc[mask] + + return filtered_df + + +demo = gr.Blocks(css=str(abs_path / "assets/leaderboard_data.json")) +with demo: + gr.Markdown("""Test Space of the LLM Leaderboard""", elem_classes="markdown-text") + + with gr.Tabs(elem_classes="tab-buttons") as tabs: + with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): + with gr.Row(): + with gr.Column(): + with gr.Row(): + search_bar = gr.Textbox( + placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", + show_label=False, + elem_id="search-bar", + ) + with gr.Row(): + shown_columns = gr.CheckboxGroup( + choices=COLS, + value=ON_LOAD_COLS, + label="Select columns to show", + elem_id="column-select", + interactive=True, + ) + with gr.Column(min_width=320): + filter_columns_type = gr.CheckboxGroup( + label="Model types", + choices=MODEL_TYPE, + value=MODEL_TYPE, + interactive=True, + elem_id="filter-columns-type", + ) + filter_columns_precision = gr.CheckboxGroup( + label="Precision", + choices=Precision, + value=Precision, + interactive=True, + elem_id="filter-columns-precision", + ) + filter_columns_size = gr.CheckboxGroup( + label="Model sizes (in billions of parameters)", + choices=list(NUMERIC_INTERVALS.keys()), + value=list(NUMERIC_INTERVALS.keys()), + interactive=True, + elem_id="filter-columns-size", + ) + + leaderboard_table = gr.components.Dataframe( + value=df[ON_LOAD_COLS], + headers=ON_LOAD_COLS, + datatype=TYPES, + elem_id="leaderboard-table", + interactive=False, + visible=True, + column_widths=["2%", "33%"], + ) + + # Dummy leaderboard for handling the case when the user uses backspace key + hidden_leaderboard_table_for_search = gr.components.Dataframe( + value=invisible_df[COLS], + headers=COLS, + datatype=TYPES, + visible=False, + ) + search_bar.submit( + update_table, + [ + hidden_leaderboard_table_for_search, + shown_columns, + filter_columns_type, + filter_columns_precision, + filter_columns_size, + search_bar, + ], + leaderboard_table, + ) + for selector in [ + shown_columns, + filter_columns_type, + filter_columns_precision, + filter_columns_size, + ]: + selector.change( + update_table, + [ + hidden_leaderboard_table_for_search, + shown_columns, + filter_columns_type, + filter_columns_precision, + filter_columns_size, + search_bar, + ], + leaderboard_table, + queue=True, + ) + + +if __name__ == "__main__": + demo.queue(default_concurrency_limit=40).launch() diff --git a/demos/model3D/files/Bunny.obj b/demos/model3D/files/Bunny.obj new file mode 100644 index 0000000000000000000000000000000000000000..9baeb363cce8feb5dd62ecaf8d64a14b6c50ce37 --- /dev/null +++ b/demos/model3D/files/Bunny.obj @@ -0,0 +1,7474 @@ +# OBJ file format with ext .obj +# vertex count = 2503 +# face count = 4968 +v -3.4101800e-003 1.3031957e-001 2.1754370e-002 +v -8.1719160e-002 1.5250145e-001 2.9656090e-002 +v -3.0543480e-002 1.2477885e-001 1.0983400e-003 +v -2.4901590e-002 1.1211138e-001 3.7560240e-002 +v -1.8405680e-002 1.7843055e-001 -2.4219580e-002 +v 1.9067940e-002 1.2144925e-001 3.1968440e-002 +v 6.0412000e-003 1.2494359e-001 3.2652890e-002 +v -1.3469030e-002 1.6299355e-001 -1.2000020e-002 +v -3.4393240e-002 1.7236688e-001 -9.8213000e-004 +v -8.4314160e-002 1.0957263e-001 3.7097300e-003 +v -4.2233540e-002 1.7211574e-001 -4.1799800e-003 +v -6.3308390e-002 1.5660615e-001 -1.3838790e-002 +v -7.6903950e-002 1.6708033e-001 -2.6931360e-002 +v -7.2253920e-002 1.1539550e-001 5.1670300e-002 +v 1.2981330e-002 1.1366375e-001 3.8302950e-002 +v -3.7857280e-002 1.7010102e-001 1.4236000e-003 +v 4.8689400e-003 3.7962370e-002 4.5867630e-002 +v -5.7180550e-002 4.0918830e-002 4.6301340e-002 +v -4.5209070e-002 3.8839100e-002 4.4503770e-002 +v -3.3761490e-002 1.2617876e-001 1.7132300e-003 +v -5.0242270e-002 1.5773747e-001 9.3944500e-003 +v -2.1216950e-002 1.5887938e-001 -4.6923700e-003 +v -5.6472950e-002 1.5778406e-001 8.1786500e-003 +v -5.2802060e-002 4.1319860e-002 4.6169800e-002 +v -4.9960340e-002 4.3101950e-002 4.4462650e-002 +v -2.9748750e-002 3.6539860e-002 5.2493310e-002 +v -3.5438900e-003 4.2659770e-002 4.7541530e-002 +v 4.9304900e-003 4.1982660e-002 4.5723390e-002 +v -3.9088180e-002 1.6872020e-001 -1.1924680e-002 +v -5.6901000e-002 4.5437000e-002 4.3236960e-002 +v -4.1244880e-002 4.3098890e-002 4.2129560e-002 +v -2.6471980e-002 4.5034530e-002 5.1219460e-002 +v -2.1866970e-002 4.4022930e-002 5.3243800e-002 +v -3.6996250e-002 1.6899301e-001 1.3256300e-003 +v -6.7216590e-002 1.6171340e-001 -1.3733710e-002 +v 4.9760060e-002 7.0235220e-002 2.3732020e-002 +v -4.9186640e-002 4.6411230e-002 4.1170040e-002 +v -4.4590380e-002 4.3797990e-002 4.2685460e-002 +v -4.3686470e-002 4.7154500e-002 4.0286310e-002 +v -2.2491950e-002 4.6513620e-002 5.1885310e-002 +v -6.5174200e-003 4.5036200e-002 4.7502780e-002 +v 3.7699000e-004 4.4935790e-002 4.6519930e-002 +v 3.4023920e-002 1.1353879e-001 2.4595280e-002 +v -2.6467900e-002 1.8104250e-001 -8.0811700e-003 +v -1.7533470e-002 4.7964250e-002 4.8829630e-002 +v -7.0012600e-003 4.6416520e-002 4.7485540e-002 +v 5.9862300e-003 4.6689140e-002 4.9073620e-002 +v 9.1007200e-003 4.8474490e-002 4.9353190e-002 +v -3.5453700e-002 1.1244769e-001 3.5055410e-002 +v -7.5983200e-002 1.3820800e-001 4.9216580e-002 +v 3.4838440e-002 4.3153410e-002 2.8954310e-002 +v -5.2655550e-002 4.8494220e-002 3.8731190e-002 +v -4.7378940e-002 4.8456670e-002 3.9126790e-002 +v -3.8933750e-002 4.6364270e-002 4.0364780e-002 +v -2.6468940e-002 4.7816430e-002 4.9322590e-002 +v -2.2365790e-002 4.8073650e-002 5.0126500e-002 +v -1.3373430e-002 4.7892410e-002 4.7883850e-002 +v -1.2193490e-002 4.9470300e-002 4.9484490e-002 +v -6.3364000e-004 4.7193060e-002 4.9136900e-002 +v 2.0656800e-003 5.0104680e-002 5.2290220e-002 +v -2.2749270e-002 4.9883880e-002 4.6605520e-002 +v -1.8002080e-002 4.9917850e-002 4.6947970e-002 +v -7.8036800e-003 5.0169310e-002 5.0988650e-002 +v -2.6843800e-003 5.1247420e-002 5.3186790e-002 +v -6.3875650e-002 1.6140094e-001 -2.0064210e-002 +v 3.2434000e-002 4.5333970e-002 3.0316760e-002 +v -8.8064570e-002 1.2496764e-001 5.7412000e-004 +v -4.1503710e-002 1.6748512e-001 3.2765900e-003 +v -6.4457010e-002 1.5342891e-001 -5.1180400e-003 +v -3.4303190e-002 5.0520150e-002 3.8286020e-002 +v -2.2949400e-002 5.1020650e-002 4.3926450e-002 +v -1.4354710e-002 5.4428200e-002 5.0710310e-002 +v 1.3773100e-003 5.2302710e-002 5.3149010e-002 +v 3.6285000e-003 5.3198640e-002 5.3422710e-002 +v 8.0723800e-003 5.1574140e-002 5.1773560e-002 +v -7.2665890e-002 1.3005582e-001 5.1668200e-002 +v 3.7992780e-002 4.9793200e-002 3.1902020e-002 +v 3.8497260e-002 4.8062400e-002 3.1737450e-002 +v 2.1503510e-002 1.2563988e-001 2.1252620e-002 +v -7.6481330e-002 1.4827412e-001 -8.9376200e-003 +v -8.7240410e-002 1.1967213e-001 -1.7813000e-004 +v -4.3719960e-002 1.6822738e-001 2.3425000e-003 +v -4.0652200e-002 1.2266506e-001 2.6290300e-002 +v -4.6686180e-002 5.4570720e-002 3.7587370e-002 +v -4.4071750e-002 5.1058250e-002 3.8977810e-002 +v -3.8144110e-002 5.0599600e-002 3.9302160e-002 +v -1.9875770e-002 5.1607710e-002 4.6142000e-002 +v -1.6911250e-002 5.1843550e-002 4.8459320e-002 +v -1.6249190e-002 5.4292110e-002 5.0306940e-002 +v -1.0446540e-002 5.3685970e-002 5.1958610e-002 +v -4.3090900e-003 5.4467500e-002 5.3908250e-002 +v 7.8152700e-003 5.5050680e-002 5.2750250e-002 +v 3.7955090e-002 1.0488710e-001 -3.2031800e-003 +v -7.9003790e-002 1.2850550e-001 5.3149340e-002 +v -7.9778990e-002 1.3448894e-001 5.0990290e-002 +v -5.9129700e-002 1.5039712e-001 3.4489540e-002 +v -6.5691790e-002 1.4961818e-001 3.8160980e-002 +v -3.1951660e-002 1.2518394e-001 1.9400580e-002 +v -6.9372590e-002 1.6061775e-001 -9.1905000e-003 +v -4.5225500e-002 1.2935459e-001 2.0377520e-002 +v -4.1879110e-002 5.6164390e-002 3.9796700e-002 +v -3.0614840e-002 5.4412650e-002 3.6694290e-002 +v -2.4787600e-002 5.2606220e-002 4.0839760e-002 +v -2.1588860e-002 5.6836920e-002 4.5467040e-002 +v -2.4264000e-004 5.4536020e-002 5.4641200e-002 +v -8.0900510e-002 1.2558713e-001 5.2155370e-002 +v -2.9996210e-002 1.7811137e-001 -5.2358200e-003 +v 3.5515390e-002 5.0449570e-002 3.1439830e-002 +v 4.3315550e-002 5.2145550e-002 3.2492110e-002 +v -6.3938540e-002 1.5262699e-001 3.4481070e-002 +v -4.4489440e-002 6.1077710e-002 3.9545320e-002 +v -3.8979900e-002 5.7996270e-002 4.0151390e-002 +v -7.9087730e-002 1.7044488e-001 -4.1373170e-002 +v -4.6247300e-003 5.7759650e-002 5.3990710e-002 +v -1.4985500e-003 5.5925480e-002 5.4630800e-002 +v 5.1981700e-003 5.7017990e-002 5.3423530e-002 +v 3.0920000e-005 1.2315746e-001 3.4749660e-002 +v 3.3568300e-002 1.1523716e-001 2.1798410e-002 +v 3.8686300e-002 5.6450590e-002 3.1188930e-002 +v -3.4385780e-002 5.4096000e-002 3.8060290e-002 +v -8.5308300e-003 6.0159420e-002 5.5308950e-002 +v -4.4024000e-004 5.8343410e-002 5.4483410e-002 +v -9.1078730e-002 1.1506037e-001 4.0141810e-002 +v 4.0775480e-002 5.4557490e-002 3.2014740e-002 +v 4.5636880e-002 5.7402620e-002 3.1992220e-002 +v 2.0358850e-002 1.2448747e-001 2.5906340e-002 +v -1.4169700e-002 1.2767892e-001 1.3080500e-003 +v -1.1987590e-002 5.7493210e-002 5.2752420e-002 +v 3.2514500e-003 5.9828640e-002 5.5464300e-002 +v -1.2395240e-002 1.2264726e-001 3.3588280e-002 +v 1.3813780e-002 1.2322188e-001 3.2502590e-002 +v -7.7004310e-002 1.5521281e-001 2.4534770e-002 +v -2.8001360e-002 6.1075420e-002 3.7471210e-002 +v -8.5480000e-004 6.0593520e-002 5.5824810e-002 +v -3.8050200e-002 1.1527068e-001 3.3178540e-002 +v -1.6231340e-002 1.2382942e-001 2.9576990e-002 +v -2.5373550e-002 1.5840012e-001 -1.4801300e-003 +v -6.7818590e-002 1.5454353e-001 3.0233720e-002 +v -4.3082600e-003 6.1418570e-002 5.5688490e-002 +v -3.1958900e-003 1.1912518e-001 3.8349580e-002 +v -6.4292400e-003 1.2201090e-001 3.5740890e-002 +v 4.2312960e-002 5.9099150e-002 3.0848420e-002 +v 4.8510010e-002 6.1780760e-002 3.0347250e-002 +v 5.0412290e-002 6.0312610e-002 3.0245060e-002 +v -3.9185590e-002 6.3074530e-002 4.1382890e-002 +v -3.4448660e-002 6.0780500e-002 3.9543990e-002 +v -1.4746030e-002 6.5583910e-002 5.3730860e-002 +v 2.6645200e-003 6.2700010e-002 5.6525210e-002 +v -1.3991610e-002 1.1962575e-001 3.6251540e-002 +v 1.9659170e-002 1.1236219e-001 3.7545270e-002 +v -3.2597160e-002 1.7498725e-001 -2.5953100e-003 +v -2.1513900e-003 9.9437380e-002 4.9849750e-002 +v -5.6001390e-002 6.1830670e-002 2.7931150e-002 +v -5.4707260e-002 6.3461570e-002 3.1670590e-002 +v -5.1307940e-002 6.0521660e-002 3.1434930e-002 +v -4.1979320e-002 6.9629980e-002 4.1824930e-002 +v -3.0272490e-002 6.2474660e-002 3.7982220e-002 +v -1.1387860e-002 6.4742460e-002 5.4918000e-002 +v 6.9544900e-003 6.4700130e-002 5.5599150e-002 +v 4.3015090e-002 9.7690960e-002 1.0258300e-003 +v 4.0635900e-002 6.1574860e-002 2.9841250e-002 +v 4.6183560e-002 6.1910110e-002 3.0223400e-002 +v 3.7552960e-002 1.0685291e-001 2.6303470e-002 +v -7.8640730e-002 1.6387238e-001 -2.8387790e-002 +v -6.1996240e-002 1.4761484e-001 -4.3256800e-003 +v -5.7499800e-003 6.5488980e-002 5.6173390e-002 +v 2.5369000e-004 6.5741170e-002 5.6569260e-002 +v -2.0542550e-002 1.1979518e-001 3.3003670e-002 +v 4.3155900e-003 1.2782561e-001 2.8646880e-002 +v -4.6549580e-002 6.7652130e-002 3.9635790e-002 +v -1.7420580e-002 6.9659490e-002 5.4089530e-002 +v -1.5242190e-002 7.0909900e-002 5.5004790e-002 +v -1.0282890e-002 6.8926360e-002 5.5289610e-002 +v -1.1289000e-004 6.9288200e-002 5.6579790e-002 +v -3.6309330e-002 1.1876943e-001 3.0674020e-002 +v -7.0325800e-002 6.3367770e-002 1.9809180e-002 +v 4.3023100e-002 6.3795810e-002 2.8039210e-002 +v 4.2831110e-002 8.5556040e-002 2.7873760e-002 +v 1.6981600e-002 1.2715003e-001 2.2931490e-002 +v -4.2121490e-002 1.2825104e-001 1.0751500e-003 +v 1.6329230e-002 1.2251895e-001 3.1375390e-002 +v -8.1264160e-002 1.5381172e-001 2.5897830e-002 +v -3.2257870e-002 8.8192600e-002 -2.5130960e-002 +v -1.3774950e-002 7.0887950e-002 5.4695630e-002 +v 5.2929600e-003 6.8006030e-002 5.5670490e-002 +v 7.6962500e-003 7.2375600e-002 5.6062150e-002 +v 3.4830600e-003 1.2002635e-001 3.6911950e-002 +v 6.6532500e-003 1.1673563e-001 3.8716340e-002 +v 4.6086570e-002 6.6473930e-002 2.6808990e-002 +v 5.2327290e-002 6.4327070e-002 2.8281890e-002 +v -6.1897630e-002 1.2297065e-001 -8.7725500e-003 +v -6.3934700e-003 1.0524472e-001 -2.2841900e-002 +v -3.5218330e-002 6.8559830e-002 4.1381470e-002 +v -3.2689880e-002 6.7729720e-002 4.0124390e-002 +v -2.9245440e-002 6.9551520e-002 3.9369010e-002 +v -5.0024500e-003 6.9655000e-002 5.6892510e-002 +v 1.6573960e-002 1.1890153e-001 3.5042300e-002 +v -8.9385100e-002 9.9024040e-002 1.7521830e-002 +v 4.5719230e-002 6.9489400e-002 2.3549340e-002 +v 5.4537210e-002 6.8796720e-002 2.4517690e-002 +v -4.4989450e-002 7.1577330e-002 4.1929250e-002 +v -4.2439400e-003 1.2914902e-001 2.5829230e-002 +v -7.3880090e-002 1.2091638e-001 5.3395800e-002 +v -7.4033870e-002 1.4406894e-001 4.4994970e-002 +v 5.0400010e-002 6.7292480e-002 2.6851470e-002 +v -5.4056890e-002 1.5671602e-001 -2.4865900e-003 +v 2.6148110e-002 1.2014725e-001 2.7308010e-002 +v -1.0736490e-002 1.2990285e-001 1.0993790e-002 +v -4.5078840e-002 8.7261130e-002 -2.1865520e-002 +v -3.8340900e-002 6.8843770e-002 4.1846470e-002 +v -2.9255580e-002 7.5169210e-002 4.1186430e-002 +v -4.7311210e-002 1.6296037e-001 6.0740300e-003 +v -1.1866030e-002 7.3183750e-002 5.6250050e-002 +v -6.3734600e-003 7.2184340e-002 5.7972980e-002 +v -2.9935300e-003 7.2186440e-002 5.8167190e-002 +v -2.5781060e-002 9.3778180e-002 -2.8388220e-002 +v -1.6692560e-002 1.1568553e-001 3.7853150e-002 +v -8.4123410e-002 1.0832050e-001 2.4730980e-002 +v -7.4294080e-002 1.6356850e-001 -1.5534220e-002 +v -9.4297150e-002 1.2617744e-001 1.9224650e-002 +v -3.5207090e-002 1.2505219e-001 2.1635690e-002 +v -4.9495940e-002 7.3436340e-002 4.1673570e-002 +v -3.3064160e-002 7.6654840e-002 4.1277900e-002 +v -7.3157300e-003 7.3919590e-002 5.7971690e-002 +v 2.1850000e-005 7.3496040e-002 5.7696650e-002 +v 4.1934400e-003 7.2915170e-002 5.6298730e-002 +v -7.7256080e-002 1.4565854e-001 4.3122930e-002 +v 4.1073260e-002 8.8724320e-002 -9.7879400e-003 +v 3.7418710e-002 1.0850822e-001 3.3973000e-004 +v -5.5111380e-002 7.4687840e-002 4.1939740e-002 +v -4.2740230e-002 7.6995340e-002 4.2804080e-002 +v -6.8531190e-002 1.5630045e-001 2.0997710e-002 +v -9.9440200e-003 7.6343100e-002 5.7388560e-002 +v -3.2479200e-003 7.5710690e-002 5.8714640e-002 +v 1.3414380e-002 9.3073740e-002 5.1467750e-002 +v -7.3504440e-002 9.3883340e-002 -1.4751720e-002 +v -7.4471830e-002 1.3507476e-001 5.0688900e-002 +v -2.5851310e-002 1.2182948e-001 2.6079670e-002 +v -3.4022940e-002 1.7597076e-001 -3.7271600e-003 +v -7.5405850e-002 1.6839072e-001 -2.6792980e-002 +v -3.6658410e-002 7.5087300e-002 4.2006940e-002 +v -1.7795480e-002 7.7486190e-002 5.6087240e-002 +v -1.1378660e-002 7.9877150e-002 5.7698880e-002 +v -1.0415000e-004 7.6881950e-002 5.8190740e-002 +v 2.7381400e-003 7.9105680e-002 5.6719190e-002 +v 5.5681200e-003 7.6397140e-002 5.6327220e-002 +v -6.1895860e-002 1.5424247e-001 -1.9018600e-002 +v -7.2646960e-002 1.4098943e-001 4.6976640e-002 +v 1.5799740e-002 1.2901416e-001 1.3236870e-002 +v -1.1703420e-002 9.7355720e-002 5.1592080e-002 +v -5.8922160e-002 7.7545490e-002 4.2961390e-002 +v -5.3121320e-002 7.7912430e-002 4.3334920e-002 +v -5.0745740e-002 7.6148400e-002 4.3137630e-002 +v -4.7401820e-002 7.5550340e-002 4.2630140e-002 +v -4.5055620e-002 7.8796280e-002 4.2341310e-002 +v -3.9517650e-002 7.8127780e-002 4.2918620e-002 +v -1.5245570e-002 8.2940770e-002 5.6934590e-002 +v -1.4557790e-002 7.6582160e-002 5.6493250e-002 +v -5.9406000e-003 7.9038240e-002 5.7969830e-002 +v 3.7176540e-002 1.1064404e-001 1.8811330e-002 +v 2.3929700e-003 1.3162713e-001 1.1955100e-002 +v -9.3644210e-002 1.1789378e-001 1.8662080e-002 +v -6.3939810e-002 7.8621830e-002 4.2083520e-002 +v -4.5376460e-002 8.2383550e-002 4.3282120e-002 +v -3.6505460e-002 8.1152260e-002 4.3162320e-002 +v -3.3244340e-002 8.2266590e-002 4.1852180e-002 +v -3.0800650e-002 8.0068420e-002 4.1798070e-002 +v -2.0578500e-003 8.0998290e-002 5.7553840e-002 +v 8.1848100e-003 8.0756170e-002 5.5374510e-002 +v -1.2953370e-002 1.1593580e-001 3.8920230e-002 +v -7.8081470e-002 1.2351940e-001 5.2136990e-002 +v -2.6580930e-002 1.5567694e-001 -4.1963400e-003 +v -8.2471600e-002 1.1624130e-001 -2.3236300e-003 +v -2.7538480e-002 7.9964780e-002 4.7697210e-002 +v 1.2556400e-003 8.3845570e-002 5.7446440e-002 +v 6.1508300e-003 8.3406240e-002 5.6463500e-002 +v -6.2433240e-002 8.4035270e-002 4.4203120e-002 +v -5.9867170e-002 8.0540510e-002 4.3277090e-002 +v -5.5238340e-002 8.1999450e-002 4.4984770e-002 +v -5.4000400e-002 8.0568410e-002 4.4601460e-002 +v -5.0027020e-002 8.1311330e-002 4.4264180e-002 +v -4.1996120e-002 8.1083670e-002 4.2456150e-002 +v -3.9357940e-002 8.3631380e-002 4.3502350e-002 +v -8.6161480e-002 1.0838594e-001 1.8244920e-002 +v -8.6723010e-002 9.9917250e-002 3.5537100e-003 +v -2.2413700e-002 8.3283520e-002 5.5590700e-002 +v -1.6993180e-002 8.2555820e-002 5.7523880e-002 +v -1.2406010e-002 8.5222570e-002 5.7267780e-002 +v -7.4442100e-003 1.1693417e-001 3.9283850e-002 +v -2.1452000e-003 1.1143287e-001 4.2436620e-002 +v -7.5718220e-002 1.2522734e-001 5.3087330e-002 +v -7.7056660e-002 1.3193469e-001 5.2462430e-002 +v -6.1121040e-002 1.5569660e-001 2.2517050e-002 +v -3.7538540e-002 1.2744127e-001 1.5320870e-002 +v -2.0516700e-003 1.0093469e-001 4.5625920e-002 +v -6.4992150e-002 8.4550900e-002 4.4120060e-002 +v -5.7861950e-002 8.3944360e-002 4.4186030e-002 +v -4.5681080e-002 8.4988010e-002 4.4159500e-002 +v -3.5022640e-002 8.2888160e-002 4.2912760e-002 +v -2.9982010e-002 8.5402300e-002 4.3745080e-002 +v -8.8892260e-002 9.9209100e-002 9.5703200e-003 +v -1.9135300e-002 8.3474800e-002 5.7217390e-002 +v -8.3489710e-002 1.0724729e-001 7.5790000e-004 +v -7.0112800e-002 1.1790350e-001 5.2714160e-002 +v -3.5526320e-002 1.7595563e-001 -4.8676200e-003 +v -7.0831390e-002 1.2254425e-001 5.3274880e-002 +v 4.5133810e-002 9.3630690e-002 6.2336800e-003 +v -5.3616700e-002 8.5346850e-002 4.5332470e-002 +v -4.9000840e-002 8.6221680e-002 4.5352040e-002 +v -3.6744880e-002 8.6083690e-002 4.3612890e-002 +v -1.0872600e-002 8.8826770e-002 5.6665490e-002 +v -3.8450200e-003 8.4787810e-002 5.7197980e-002 +v -4.9020070e-002 1.1771293e-001 3.1581430e-002 +v -4.2914400e-002 1.1835991e-001 3.0645040e-002 +v -5.7684530e-002 1.5561695e-001 1.2983110e-002 +v -2.5411730e-002 1.2472533e-001 1.2886000e-004 +v 1.9012230e-002 1.2736197e-001 1.7786580e-002 +v -5.9498600e-002 8.8845470e-002 4.5109290e-002 +v -5.6931050e-002 8.8101500e-002 4.4692930e-002 +v 3.5765600e-003 1.3138981e-001 7.2086000e-003 +v -1.6683350e-002 8.7266690e-002 5.6741190e-002 +v -8.4980800e-003 8.3990470e-002 5.7605220e-002 +v 3.5078200e-003 8.6339520e-002 5.7048320e-002 +v -2.8398700e-002 1.8070650e-001 -7.8469500e-003 +v -7.6565830e-002 1.1674037e-001 5.1489350e-002 +v 1.7869430e-002 9.0898610e-002 4.8712940e-002 +v -4.0342100e-002 1.1669551e-001 3.2460200e-002 +v 5.9105700e-003 1.3140929e-001 1.6823750e-002 +v -8.5777550e-002 9.1701370e-002 -4.6970000e-005 +v -5.0372230e-002 8.8844660e-002 4.5188000e-002 +v -4.4434130e-002 8.7654530e-002 4.3477620e-002 +v -4.2056390e-002 8.6711520e-002 4.2534630e-002 +v -3.3058460e-002 8.6185500e-002 4.2560350e-002 +v -2.9241910e-002 9.0453360e-002 4.4236610e-002 +v -6.8964100e-003 8.4432910e-002 5.7168580e-002 +v -6.6210600e-003 9.0415250e-002 5.6879750e-002 +v -1.2439100e-003 8.9093200e-002 5.6552120e-002 +v 9.4076000e-003 9.0328050e-002 5.4214140e-002 +v 4.0194810e-002 1.0231597e-001 -2.0048600e-003 +v -8.6227130e-002 1.1466841e-001 2.2102000e-003 +v -8.9495490e-002 9.5632430e-002 1.4234810e-002 +v -6.7132160e-002 1.5709447e-001 -6.2032000e-003 +v -5.2935640e-002 9.0913520e-002 4.4568870e-002 +v -3.6744910e-002 8.8886950e-002 4.3312050e-002 +v -1.3626110e-002 8.9787930e-002 5.6674380e-002 +v 2.3337130e-002 1.2353449e-001 2.4874140e-002 +v -3.7053790e-002 1.2715094e-001 3.5474000e-004 +v -7.3696690e-002 1.5613015e-001 1.4359790e-002 +v -6.5592380e-002 9.1042400e-002 4.4092080e-002 +v -5.8997380e-002 9.2030670e-002 4.5335270e-002 +v -3.3238910e-002 8.8573580e-002 4.3697040e-002 +v -3.1834990e-002 9.0722970e-002 4.4173460e-002 +v -2.0022170e-002 8.8032110e-002 5.5589350e-002 +v -1.1213830e-002 9.2366370e-002 5.6105260e-002 +v 3.9108440e-002 1.0829072e-001 1.3142330e-002 +v 2.8675700e-002 1.1959600e-001 2.4545910e-002 +v -6.8940210e-002 1.5652777e-001 -1.9716000e-003 +v -6.2615110e-002 9.1126880e-002 4.5090730e-002 +v 3.0444560e-002 1.1886441e-001 2.0821750e-002 +v -1.5241090e-002 9.1821720e-002 5.5817230e-002 +v -5.6221700e-003 9.3235010e-002 5.5893630e-002 +v 4.7989900e-003 9.1654840e-002 5.4715170e-002 +v -6.8282400e-002 9.2376840e-002 4.2388730e-002 +v -5.5623730e-002 9.2187420e-002 4.5054970e-002 +v -5.1901030e-002 9.5457620e-002 4.3937650e-002 +v -4.8809030e-002 9.1083890e-002 4.4456690e-002 +v -4.5411560e-002 9.1002130e-002 4.3252770e-002 +v -4.4514550e-002 9.4860420e-002 4.2972490e-002 +v -3.9430320e-002 8.9597620e-002 4.3177890e-002 +v -3.5642240e-002 9.2617410e-002 4.4238490e-002 +v -1.2246000e-004 9.3201160e-002 5.5398380e-002 +v 9.5104600e-003 9.5483870e-002 5.0910600e-002 +v 2.1441660e-002 9.1354960e-002 4.8043360e-002 +v -8.9830300e-003 1.6926449e-001 -2.2683480e-002 +v -7.3019050e-002 1.5602104e-001 2.2419340e-002 +v -6.4760430e-002 1.5311588e-001 -2.0371200e-003 +v -6.9368510e-002 9.5242790e-002 4.2129000e-002 +v -6.0117140e-002 9.5552910e-002 4.4183820e-002 +v -2.9241690e-002 9.4290440e-002 4.4821190e-002 +v -2.6561430e-002 9.3289510e-002 4.4975420e-002 +v -1.4394030e-002 9.4587640e-002 5.3993500e-002 +v -8.8691600e-003 9.5400260e-002 5.4445980e-002 +v -1.2188700e-003 9.6201750e-002 5.3815910e-002 +v 4.0479000e-003 9.5817360e-002 5.2936770e-002 +v -4.6019400e-003 1.2428544e-001 3.3471960e-002 +v -7.8436460e-002 1.3928013e-001 4.8329360e-002 +v 1.0774610e-002 1.3079162e-001 1.4341740e-002 +v -5.6623730e-002 9.6322170e-002 4.3667910e-002 +v -3.6298870e-002 9.5695620e-002 4.3580310e-002 +v -2.4379930e-002 9.5866450e-002 4.4434530e-002 +v 1.0915500e-002 1.2633629e-001 2.9857020e-002 +v -5.8622700e-003 9.7350210e-002 5.2743650e-002 +v 1.6973450e-002 9.7106620e-002 4.7440920e-002 +v -6.7231980e-002 9.9173950e-002 4.1593880e-002 +v -5.4994210e-002 9.9640820e-002 4.2955230e-002 +v -4.8617990e-002 9.6452700e-002 4.4183060e-002 +v -5.5369000e-002 1.5442476e-001 1.6160650e-002 +v -9.4243550e-002 1.2207432e-001 2.3568470e-002 +v 1.3242990e-002 9.6738240e-002 4.8750160e-002 +v 2.0639290e-002 9.6602480e-002 4.6971000e-002 +v 7.3429700e-003 1.2098188e-001 3.5973430e-002 +v -1.3493870e-002 1.2882438e-001 5.9690700e-003 +v -2.0110640e-002 1.2504545e-001 2.3588310e-002 +v -6.9438450e-002 1.6479930e-001 -1.7218700e-002 +v -6.4028050e-002 9.7838670e-002 4.2565330e-002 +v -5.1996350e-002 9.9707850e-002 4.2716590e-002 +v -4.3990880e-002 9.9425460e-002 4.2383430e-002 +v -3.9738250e-002 1.0215357e-001 4.0574410e-002 +v -3.5931490e-002 9.9809950e-002 4.2335800e-002 +v -3.0867600e-002 9.6914680e-002 4.4651400e-002 +v -2.8342070e-002 9.7782680e-002 4.3761280e-002 +v -2.5622580e-002 9.8713420e-002 4.4210890e-002 +v -8.5236620e-002 1.1077356e-001 2.4537670e-002 +v 7.1936000e-003 9.8859470e-002 4.8419510e-002 +v 9.6509200e-003 1.0108782e-001 4.7373080e-002 +v 1.3487100e-002 1.0076420e-001 4.7454290e-002 +v 7.7389800e-003 1.3147500e-001 1.1682970e-002 +v 8.0905000e-004 1.1633319e-001 4.0167560e-002 +v -7.2652570e-002 1.6567918e-001 -1.8212480e-002 +v -5.6009400e-003 1.3076674e-001 1.0516060e-002 +v -2.6303720e-002 1.2518875e-001 1.7392980e-002 +v -4.7590430e-002 1.0081180e-001 4.2349150e-002 +v -4.1460830e-002 9.8544800e-002 4.1778620e-002 +v -3.3582070e-002 1.0383908e-001 4.0737990e-002 +v -2.2870240e-002 1.0284737e-001 4.3544750e-002 +v -2.2361970e-002 9.8207610e-002 4.4765940e-002 +v -1.8870510e-002 9.8973200e-002 4.4489280e-002 +v -7.1433690e-002 7.7573520e-002 3.8060760e-002 +v -7.3001150e-002 1.1826712e-001 5.3034590e-002 +v -6.8466430e-002 1.3498146e-001 -8.3359800e-003 +v -7.4683810e-002 1.0786100e-001 -9.0477100e-003 +v -6.4958960e-002 1.5852021e-001 -1.2595320e-002 +v -7.8931700e-002 1.5093057e-001 3.5151900e-002 +v -7.4113550e-002 9.9442520e-002 3.8337710e-002 +v -7.0456930e-002 1.0098777e-001 3.9794060e-002 +v -5.9058760e-002 1.0041260e-001 4.2725130e-002 +v -4.9187330e-002 1.0452012e-001 4.0301390e-002 +v -2.9151180e-002 1.0197369e-001 4.2633060e-002 +v -1.1599720e-002 1.0107813e-001 4.4191660e-002 +v 5.1450400e-003 1.0163906e-001 4.5423010e-002 +v -5.1495700e-002 1.0496738e-001 4.0347210e-002 +v -2.0218210e-002 1.0214391e-001 4.3701160e-002 +v 4.2515900e-003 1.0523743e-001 4.2563550e-002 +v 1.6832800e-002 1.0337487e-001 4.5287270e-002 +v -2.5661080e-002 1.2562669e-001 4.5537500e-003 +v -7.2141950e-002 1.0536685e-001 3.7523210e-002 +v -6.4984570e-002 1.0371550e-001 4.0647810e-002 +v -6.0652480e-002 1.0467197e-001 4.0906390e-002 +v -5.5308980e-002 1.0365394e-001 4.1516690e-002 +v -4.4243240e-002 1.0431726e-001 4.1339990e-002 +v -1.5513340e-002 1.0436131e-001 4.2919420e-002 +v -7.6323200e-003 1.0304531e-001 4.3710640e-002 +v -7.8046900e-003 1.0516619e-001 4.3825460e-002 +v 9.7163200e-003 1.0523506e-001 4.3603830e-002 +v 3.0300390e-002 1.1553645e-001 2.8685010e-002 +v -4.7496910e-002 1.0635662e-001 4.0165640e-002 +v -3.8978950e-002 1.0683037e-001 3.8247660e-002 +v -2.5869310e-002 1.0426705e-001 4.2207540e-002 +v -1.8057930e-002 1.0503919e-001 4.2802830e-002 +v -1.5180030e-002 1.0807750e-001 4.2350430e-002 +v -3.8981500e-003 1.0566175e-001 4.4047190e-002 +v 2.6820000e-005 1.0446731e-001 4.3775910e-002 +v 1.1978350e-002 1.0403629e-001 4.5396310e-002 +v 1.5004970e-002 1.0726898e-001 4.1811990e-002 +v 2.6488060e-002 1.2230287e-001 2.0398110e-002 +v -3.6225630e-002 1.0634244e-001 3.8644860e-002 +v -2.1126780e-002 1.0932290e-001 4.0715320e-002 +v -1.2819810e-002 1.0457100e-001 4.3465690e-002 +v 5.2847900e-003 1.0943666e-001 4.1674980e-002 +v 8.9403700e-003 1.0710645e-001 4.1243400e-002 +v -5.1839670e-002 1.6062039e-001 7.1421300e-003 +v -5.4201370e-002 1.1451730e-001 3.4843990e-002 +v 1.3226250e-002 1.2958070e-001 1.9689610e-002 +v -6.9382410e-002 1.0865787e-001 3.7507800e-002 +v -6.7691040e-002 1.0734145e-001 3.8018440e-002 +v -6.3782400e-002 1.1037270e-001 3.7579790e-002 +v -5.0749390e-002 1.0928682e-001 3.8297580e-002 +v -9.3936200e-003 1.0742813e-001 4.3454570e-002 +v 1.1760100e-003 1.0932531e-001 4.2662800e-002 +v 9.8020300e-003 1.1003994e-001 3.9945400e-002 +v 2.0131290e-002 1.0732778e-001 4.0323840e-002 +v -2.7872800e-003 1.0577531e-001 -2.2459030e-002 +v -5.4996890e-002 1.0774199e-001 3.9424590e-002 +v -4.5966740e-002 1.0905146e-001 3.8754110e-002 +v -4.2324540e-002 1.0737278e-001 3.9456440e-002 +v -3.2161240e-002 1.0896504e-001 3.8102720e-002 +v -3.0770180e-002 1.1597313e-001 3.2858800e-002 +v -1.1608610e-002 1.0983707e-001 4.2475330e-002 +v -2.9428320e-002 9.3166620e-002 -2.4931860e-002 +v -8.0043570e-002 9.2080160e-002 -9.4198200e-003 +v -4.9797430e-002 1.1342104e-001 3.5117920e-002 +v -4.3723850e-002 1.6191369e-001 5.7713400e-003 +v -5.7981740e-002 1.0943152e-001 3.7997640e-002 +v -4.1491180e-002 1.1224766e-001 3.5873450e-002 +v -2.4929830e-002 1.1592775e-001 3.4094730e-002 +v -2.0881690e-002 1.1409528e-001 3.7872990e-002 +v -7.5519700e-003 1.1183813e-001 4.2039690e-002 +v 3.7667200e-003 1.1240547e-001 4.1494710e-002 +v -6.2829620e-002 1.5189480e-001 -9.2373400e-003 +v -5.9195950e-002 1.1320797e-001 3.6234680e-002 +v -5.1079080e-002 9.3892810e-002 -2.1761690e-002 +v -7.3945370e-002 8.4374880e-002 -1.5154490e-002 +v -7.2146240e-002 1.3486431e-001 -7.7592200e-003 +v -1.9408870e-002 1.7041104e-001 -2.0994830e-002 +v -5.5530450e-002 1.4905531e-001 -1.9602100e-003 +v 1.6688460e-002 3.6976600e-002 4.3000600e-002 +v -5.2277330e-002 1.1775075e-001 3.3769460e-002 +v -6.9201380e-002 9.3039200e-002 -1.6486120e-002 +v 2.6579210e-002 1.1702438e-001 3.0867940e-002 +v -2.3574310e-002 3.7036910e-002 5.4144750e-002 +v -7.3775100e-003 3.8988430e-002 4.8929450e-002 +v 1.3234660e-002 3.8453060e-002 4.4501470e-002 +v 1.9487350e-002 4.0809290e-002 4.2641060e-002 +v -6.3953930e-002 1.4694729e-001 3.8484200e-002 +v -4.9579470e-002 3.6096540e-002 4.5955360e-002 +v -4.3323650e-002 3.6286400e-002 4.4042360e-002 +v -2.9047200e-002 1.2556338e-001 7.7617700e-003 +v -1.7343100e-003 3.9476800e-002 4.7262900e-002 +v -3.1358130e-002 1.5362199e-001 -4.6738900e-003 +v 2.5822000e-003 1.0747582e-001 -2.0606030e-002 +v -5.6802300e-002 1.4514674e-001 3.1740300e-002 +v -5.6464330e-002 3.7683110e-002 4.6819640e-002 +v -5.0964750e-002 3.8312290e-002 4.6286140e-002 +v -5.0980410e-002 1.3486613e-001 2.7585000e-002 +v -2.5647410e-002 3.8860730e-002 5.4161390e-002 +v -2.2542110e-002 4.0615780e-002 5.3986030e-002 +v -1.7618010e-002 3.8911170e-002 5.2403440e-002 +v -1.9711750e-002 1.6829145e-001 -1.3020960e-002 +v 2.3780070e-002 9.5222940e-002 4.6347330e-002 +v 1.4744290e-002 4.2716950e-002 4.4510310e-002 +v 2.1691360e-002 4.0161530e-002 4.0846450e-002 +v -6.4067240e-002 9.0172190e-002 -1.8855520e-002 +v 2.0319150e-002 1.0041961e-001 4.5760520e-002 +v -3.6425000e-002 9.3630690e-002 -2.3534630e-002 +v -1.4981170e-002 4.2571420e-002 5.1404530e-002 +v -5.7335340e-002 1.2340101e-001 4.0231470e-002 +v -5.4172560e-002 1.2337919e-001 3.7576440e-002 +v 2.2625210e-002 4.3621680e-002 4.0904580e-002 +v 2.8810520e-002 4.3352290e-002 3.2157720e-002 +v -4.2764160e-002 1.5727487e-001 5.2016200e-003 +v 9.2231900e-003 4.4125090e-002 4.5057440e-002 +v 1.5048210e-002 4.5755840e-002 4.3793870e-002 +v -6.3757290e-002 1.0251144e-001 -1.7484400e-002 +v -3.4070430e-002 1.6148975e-001 -1.3786960e-002 +v -8.2191500e-002 7.5610200e-002 1.6542620e-002 +v -6.6299420e-002 1.2337119e-001 5.0615920e-002 +v -1.5510100e-002 4.5283110e-002 5.0653040e-002 +v 1.8928020e-002 4.4249610e-002 4.3009830e-002 +v 2.5821800e-002 4.6326610e-002 3.8277230e-002 +v 2.7268700e-002 4.4547790e-002 3.6152520e-002 +v -4.5301340e-002 1.5695057e-001 7.2036900e-003 +v 2.3855760e-002 1.0616625e-001 3.9378080e-002 +v 2.1632670e-002 4.8127270e-002 4.0694430e-002 +v 4.3785360e-002 4.8803700e-002 3.1343420e-002 +v 4.8074790e-002 4.8969960e-002 2.8165490e-002 +v 5.2663090e-002 4.7673620e-002 2.1201270e-002 +v -5.2722450e-002 4.4722850e-002 4.4143250e-002 +v -3.0071610e-002 1.7258324e-001 -6.3597700e-003 +v -3.4508050e-002 1.5447469e-001 1.6504600e-003 +v 1.0629710e-002 4.6711810e-002 4.6472020e-002 +v 1.6743440e-002 4.8439000e-002 4.3678630e-002 +v 2.8827050e-002 9.2133370e-002 4.3920090e-002 +v -5.9937100e-002 1.2726188e-001 4.0771270e-002 +v -3.6752090e-002 1.5802075e-001 4.1862000e-003 +v -3.7885390e-002 1.6199719e-001 2.4686000e-004 +v -2.2047790e-002 1.8348586e-001 -1.2094990e-002 +v -2.4364620e-002 1.8096836e-001 -9.8312000e-003 +v -4.4882280e-002 1.5052959e-001 7.6451700e-003 +v 2.6996760e-002 5.1317780e-002 3.8752040e-002 +v 4.7735750e-002 5.2751040e-002 3.0797290e-002 +v 5.1703790e-002 4.8857380e-002 2.4147970e-002 +v -6.7504360e-002 1.1424088e-001 4.8036050e-002 +v -1.6257520e-002 1.6031250e-001 -9.6926000e-003 +v -6.3926300e-002 1.6792441e-001 -4.0730420e-002 +v -4.1665290e-002 1.4996141e-001 4.5405000e-003 +v -3.5203230e-002 1.6493551e-001 -2.6810000e-003 +v 4.1318770e-002 9.9496740e-002 2.4275750e-002 +v 1.4055220e-002 5.2523910e-002 4.8593880e-002 +v 1.9421220e-002 5.1321300e-002 4.4798910e-002 +v 2.3677990e-002 5.1474390e-002 4.1053270e-002 +v 3.4258130e-002 5.1930810e-002 3.2757880e-002 +v 5.5957340e-002 5.3147410e-002 2.3197720e-002 +v -3.9937960e-002 1.4922850e-001 1.6017200e-003 +v -4.6988800e-002 1.2600802e-001 2.6985500e-002 +v -2.7708370e-002 9.0081290e-002 -3.1911460e-002 +v 1.9204630e-002 5.5166510e-002 4.7722150e-002 +v 2.1886000e-002 5.3927560e-002 4.5102460e-002 +v 3.1286270e-002 5.2863840e-002 3.6913620e-002 +v 4.6661160e-002 5.4719230e-002 3.1976810e-002 +v 5.1823730e-002 5.3276700e-002 2.7927010e-002 +v -2.9264880e-002 1.6140418e-001 -2.1039500e-003 +v -6.8700770e-002 1.4463537e-001 4.3041630e-002 +v -5.6070060e-002 1.5000706e-001 2.9867640e-002 +v 4.4717850e-002 9.4802660e-002 1.2024710e-002 +v -4.1804090e-002 1.5582081e-001 6.4548200e-003 +v -6.8369340e-002 1.2289287e-001 5.2437860e-002 +v -6.4114810e-002 9.5509880e-002 -1.8114610e-002 +v -1.8383130e-002 1.8543664e-001 -1.7136370e-002 +v 1.1745400e-002 5.6678340e-002 5.1914060e-002 +v -5.9375360e-002 1.1998238e-001 4.0548240e-002 +v 5.9092080e-002 5.7956980e-002 2.0270120e-002 +v 4.3547740e-002 9.7389400e-002 1.7314650e-002 +v -2.6291780e-002 1.5963381e-001 -5.1845000e-004 +v 1.4904780e-002 5.6350380e-002 4.9522780e-002 +v 2.4286200e-002 5.4958580e-002 4.3086850e-002 +v 2.8952610e-002 5.6125250e-002 4.0388970e-002 +v -4.9507770e-002 1.2949500e-001 3.0259270e-002 +v 4.0824790e-002 9.5170220e-002 2.8657920e-002 +v 1.7774800e-002 5.8243780e-002 4.8864720e-002 +v 3.3573840e-002 5.8515260e-002 3.8310990e-002 +v 3.6385040e-002 5.6996480e-002 3.3601460e-002 +v -6.4205010e-002 1.2243894e-001 4.8008340e-002 +v -6.5424500e-002 1.4011279e-001 4.1308960e-002 +v 5.0801340e-002 5.7308080e-002 3.0001390e-002 +v 5.6671750e-002 5.6970820e-002 2.4291920e-002 +v -4.9349930e-002 1.4913519e-001 1.1274060e-002 +v -6.9760570e-002 1.3442855e-001 4.8265220e-002 +v 1.9537060e-002 6.0003780e-002 4.8576140e-002 +v 2.7013910e-002 5.9952790e-002 4.3454420e-002 +v 5.7679430e-002 6.1392970e-002 2.4201790e-002 +v -5.6916540e-002 1.2623512e-001 3.9426610e-002 +v 2.3469280e-002 1.1656262e-001 3.3537270e-002 +v -5.8298640e-002 1.3885500e-001 3.2937460e-002 +v 6.4598400e-003 6.0297430e-002 5.4780030e-002 +v 1.0406020e-002 5.9162400e-002 5.2484370e-002 +v 2.3183950e-002 5.8654360e-002 4.5871060e-002 +v 3.3040360e-002 6.1773840e-002 3.9781440e-002 +v -6.4348220e-002 1.2628088e-001 4.6650200e-002 +v -5.7031440e-002 1.1562007e-001 3.6494880e-002 +v 5.4451560e-002 5.8342890e-002 2.7653010e-002 +v -3.0134400e-002 1.7011322e-001 -7.3591600e-003 +v -3.7077100e-002 1.5986369e-001 1.6096500e-003 +v -5.6032760e-002 1.3731083e-001 3.1970590e-002 +v -6.7676470e-002 1.4150325e-001 4.3868140e-002 +v 9.9911700e-003 6.2735270e-002 5.4009240e-002 +v 1.4521510e-002 6.1382890e-002 5.0500900e-002 +v 3.0051740e-002 6.2169610e-002 4.1545810e-002 +v 3.7519170e-002 6.1062710e-002 3.4366020e-002 +v 5.3944010e-002 6.1391550e-002 2.8268530e-002 +v 5.9119900e-002 6.3128810e-002 2.1561830e-002 +v -2.4366390e-002 1.7693266e-001 -1.1719630e-002 +v -1.3253420e-002 1.6627152e-001 -1.4120370e-002 +v 3.9218740e-002 1.0669250e-001 2.0450190e-002 +v -1.7968980e-002 1.8078031e-001 -1.8103430e-002 +v 2.1902390e-002 6.0875970e-002 4.7282360e-002 +v 3.5341750e-002 6.1630030e-002 3.7606020e-002 +v -6.2145620e-002 1.3599775e-001 3.6700970e-002 +v 5.6820620e-002 6.3691150e-002 2.5286090e-002 +v -3.2800040e-002 1.5948699e-001 2.1962800e-003 +v 1.1212140e-002 6.6584120e-002 5.3982180e-002 +v 1.2919590e-002 6.4203580e-002 5.2441150e-002 +v 2.0126950e-002 6.3851330e-002 4.7919660e-002 +v 3.5971760e-002 6.6669610e-002 3.7781400e-002 +v 3.9906940e-002 6.4361260e-002 3.1686660e-002 +v -6.6702350e-002 1.3210600e-001 4.5480940e-002 +v -4.1601430e-002 1.5978000e-001 3.5374700e-003 +v 3.3044580e-002 1.0766252e-001 3.1916150e-002 +v 2.4672100e-002 6.3694500e-002 4.5204640e-002 +v 2.6108660e-002 6.8007640e-002 4.3902690e-002 +v 3.3363940e-002 6.7054760e-002 3.9729480e-002 +v 4.2915790e-002 6.6707700e-002 2.6994720e-002 +v 5.4714960e-002 6.4697160e-002 2.6979680e-002 +v -1.6530940e-002 1.6325000e-001 -9.2475200e-003 +v -1.7891600e-002 1.6113800e-001 -6.7072700e-003 +v 4.1118120e-002 9.7491260e-002 -3.9756700e-003 +v 2.3386770e-002 7.0075990e-002 4.7012620e-002 +v 3.8102900e-002 6.5678440e-002 3.5132520e-002 +v 1.0145240e-002 1.2221678e-001 3.4718950e-002 +v 5.8392410e-002 6.6741240e-002 2.1979460e-002 +v 3.8302050e-002 8.4549140e-002 -1.4478830e-002 +v 3.4126440e-002 9.7053980e-002 3.7590390e-002 +v -3.1355740e-002 1.5809888e-001 1.9128800e-003 +v -5.8259510e-002 1.4099493e-001 3.2440640e-002 +v -6.6817230e-002 1.1951525e-001 5.1490220e-002 +v -6.8090040e-002 1.1647050e-001 5.1151230e-002 +v 1.6568300e-002 6.6269890e-002 5.1009890e-002 +v 2.9362870e-002 6.6509780e-002 4.2289380e-002 +v 3.7027180e-002 9.3949630e-002 -1.1674040e-002 +v 5.6412730e-002 6.7659930e-002 2.3969320e-002 +v -6.1295740e-002 1.4519988e-001 3.7137830e-002 +v 8.3873000e-003 1.1336223e-001 3.9792610e-002 +v 1.1807030e-002 7.0920980e-002 5.4240490e-002 +v 2.9741730e-002 7.0647100e-002 4.1653890e-002 +v 3.6294410e-002 7.1220700e-002 3.7114610e-002 +v 3.9899680e-002 7.0294820e-002 3.2720020e-002 +v -6.2763130e-002 1.3778012e-001 3.6678590e-002 +v -1.5815440e-002 1.7504938e-001 -1.8654160e-002 +v -9.2268990e-002 1.1475156e-001 1.7017380e-002 +v -9.4964000e-004 1.0141111e-001 4.4290070e-002 +v -6.3712920e-002 1.1274250e-001 3.8006760e-002 +v -6.1096020e-002 1.1701650e-001 3.9654020e-002 +v 2.0991870e-002 6.9335450e-002 4.9003540e-002 +v 2.5658530e-002 7.0550460e-002 4.4539930e-002 +v 3.2978560e-002 7.3500690e-002 4.0486510e-002 +v 4.2156130e-002 6.9717580e-002 2.8318230e-002 +v -5.5516860e-002 1.2956070e-001 3.6598450e-002 +v -4.0802290e-002 1.6436059e-001 3.7448800e-003 +v -6.2546500e-003 1.0121650e-001 4.4322030e-002 +v -1.0986820e-002 1.6621199e-001 -1.6047550e-002 +v -3.0351420e-002 1.6448158e-001 -5.3291400e-003 +v 2.6110920e-002 1.0088990e-001 4.1733260e-002 +v -6.5599940e-002 1.1329504e-001 4.2318710e-002 +v 2.8814660e-002 9.6712680e-002 4.2257700e-002 +v 1.5263280e-002 7.1571940e-002 5.2717390e-002 +v 2.8982400e-002 7.4088480e-002 4.3447240e-002 +v 4.4872540e-002 7.5516710e-002 2.3155250e-002 +v -7.8225230e-002 1.4962481e-001 -2.5019400e-003 +v -4.6094940e-002 1.5296850e-001 9.0029700e-003 +v -5.2369030e-002 1.4682913e-001 1.8934650e-002 +v -2.1592100e-002 1.5763440e-001 -6.8623600e-003 +v 1.7176770e-002 7.3066230e-002 5.1826600e-002 +v 2.2687500e-002 7.5149180e-002 4.9312500e-002 +v 3.5472040e-002 7.3076670e-002 3.8482270e-002 +v -8.9480840e-002 1.3839976e-001 2.5061450e-002 +v -5.3216730e-002 1.3221978e-001 3.2978380e-002 +v -3.7776780e-002 1.5551947e-001 4.3700800e-003 +v -9.0549380e-002 1.3511875e-001 2.1680550e-002 +v -6.3366580e-002 1.3037076e-001 4.1669940e-002 +v 1.4074270e-002 7.6651720e-002 5.4221350e-002 +v 1.8109790e-002 7.5806590e-002 5.2488260e-002 +v 4.2209940e-002 7.8861480e-002 2.9187200e-002 +v -5.2115930e-002 1.4179906e-001 2.0510310e-002 +v 2.9063090e-002 1.1149602e-001 3.3805790e-002 +v -5.4731460e-002 1.4267229e-001 2.8980480e-002 +v 2.5903640e-002 7.5536040e-002 4.6416650e-002 +v 3.1298760e-002 7.5907440e-002 4.2699060e-002 +v 3.8446170e-002 7.5649430e-002 3.5050640e-002 +v 4.6351670e-002 7.4079520e-002 1.8354320e-002 +v -4.7656560e-002 1.3077525e-001 2.5523570e-002 +v -1.1447430e-002 1.7131059e-001 -1.9602980e-002 +v -3.6647240e-002 1.6640131e-001 -2.8167000e-004 +v -4.6653530e-002 1.5917824e-001 7.8019000e-003 +v -4.5569890e-002 1.4663612e-001 5.6514200e-003 +v 4.1438880e-002 9.2365100e-002 -7.4587000e-003 +v -6.4287420e-002 1.3463625e-001 3.9945640e-002 +v -6.1128890e-002 1.3178328e-001 3.8915910e-002 +v -4.7843540e-002 1.2215063e-001 2.8833160e-002 +v -4.9536830e-002 1.2491344e-001 3.1778440e-002 +v -7.1135380e-002 1.3817656e-001 4.7853960e-002 +v 1.0113870e-002 7.6468110e-002 5.5256790e-002 +v 1.7897450e-002 7.9516550e-002 5.2759530e-002 +v 2.1740850e-002 8.0250650e-002 5.0425390e-002 +v 2.5271590e-002 7.8724920e-002 4.8026570e-002 +v 3.0885040e-002 7.8999480e-002 4.3388770e-002 +v -6.2441930e-002 1.4084781e-001 3.6965840e-002 +v -6.2165060e-002 1.5666850e-001 -1.7837760e-002 +v 2.0657260e-002 1.0416830e-001 4.3004680e-002 +v -6.3602800e-002 1.1571453e-001 4.2572290e-002 +v 1.4424020e-002 8.0085500e-002 5.3755600e-002 +v 2.8779340e-002 8.2553250e-002 4.4527350e-002 +v 4.4450130e-002 8.1846900e-002 2.4552920e-002 +v 4.5541990e-002 8.3338380e-002 1.9700850e-002 +v -4.9665810e-002 1.2063801e-001 3.2163270e-002 +v -2.9177290e-002 1.7619959e-001 -5.6241100e-003 +v -5.8203130e-002 1.3270975e-001 3.6918680e-002 +v 3.8997050e-002 9.7088220e-002 -7.7799300e-003 +v -5.4725800e-002 1.2071262e-001 3.7451450e-002 +v 1.3189120e-002 8.4211180e-002 5.3065830e-002 +v -1.9926300e-002 1.6489742e-001 -9.9900200e-003 +v 2.0153130e-002 1.1849719e-001 3.4271250e-002 +v -5.5859940e-002 1.1774313e-001 3.7253480e-002 +v 1.8045260e-002 8.3623160e-002 5.1285840e-002 +v -6.3757130e-002 1.5912175e-001 -5.0155730e-002 +v -1.8527620e-002 1.7653197e-001 -1.7043540e-002 +v 2.8734400e-002 1.0360053e-001 3.8035240e-002 +v 4.1414010e-002 1.0284216e-001 1.6578920e-002 +v 2.4411730e-002 9.8016880e-002 4.4687400e-002 +v 2.0925180e-002 8.6311430e-002 4.9433120e-002 +v 3.0445010e-002 8.4959560e-002 4.3011090e-002 +v 3.3030090e-002 8.3781640e-002 4.1636930e-002 +v 3.6975090e-002 7.9876480e-002 3.7198390e-002 +v -7.7721460e-002 1.1355888e-001 4.8155990e-002 +v 2.9250000e-002 1.0651935e-001 3.6590330e-002 +v -5.3078180e-002 1.3754688e-001 2.8266470e-002 +v -6.2990590e-002 1.1999459e-001 4.5235530e-002 +v -6.5398320e-002 1.1751956e-001 4.8735570e-002 +v 3.3373910e-002 1.1227890e-001 2.7788130e-002 +v 3.8413590e-002 8.7489930e-002 3.5185850e-002 +v -6.1945930e-002 1.6479234e-001 -5.6647670e-002 +v -2.2876480e-002 1.7392813e-001 -1.3431140e-002 +v 4.3766230e-002 8.8390020e-002 -3.5708800e-003 +v 3.9291530e-002 1.0125969e-001 2.7550520e-002 +v 1.0936230e-002 8.6027290e-002 5.4732670e-002 +v 2.4108720e-002 8.4492600e-002 4.8292310e-002 +v 3.6758390e-002 9.9195470e-002 3.2837670e-002 +v -5.1941640e-002 1.2565987e-001 3.4587860e-002 +v -3.1582110e-002 1.6641850e-001 -5.7320000e-003 +v 7.6405900e-003 8.6427230e-002 5.6117850e-002 +v 1.6771020e-002 8.8644690e-002 5.0522960e-002 +v 3.4404610e-002 8.6932850e-002 4.0574270e-002 +v 3.6143820e-002 8.4439200e-002 3.7936930e-002 +v 4.1258830e-002 1.0361081e-001 2.6760600e-003 +v 2.4766140e-002 1.1081111e-001 3.6728360e-002 +v -2.2601590e-002 1.6250449e-001 -6.0717000e-003 +v -1.2893670e-002 1.7879041e-001 -2.2624750e-002 +v -2.4939150e-002 1.7031135e-001 -1.1329700e-002 +v -4.8468630e-002 1.4559606e-001 8.3661500e-003 +v 1.2534490e-002 8.9593930e-002 5.3394630e-002 +v 2.5872860e-002 8.8482290e-002 4.6655260e-002 +v 3.2756470e-002 8.8969130e-002 4.2215450e-002 +v -2.3343620e-002 1.6103450e-001 -3.1862400e-003 +v -9.2594970e-002 1.1943826e-001 2.6802950e-002 +v -7.4314840e-002 1.3761738e-001 -6.6698800e-003 +v -9.2499230e-002 1.2131500e-001 2.9256200e-002 +v -7.7378260e-002 1.5764266e-001 -1.4133650e-002 +v -9.2907340e-002 1.2307021e-001 3.6523230e-002 +v 2.8423340e-002 8.8011080e-002 4.4234200e-002 +v 3.5251680e-002 9.0836820e-002 3.9183920e-002 +v 1.5760560e-002 9.3203560e-002 4.9939310e-002 +v 3.8785530e-002 9.4954300e-002 3.2520220e-002 +v -6.1511220e-002 1.2373565e-001 4.3062680e-002 +v -6.8145120e-002 1.2748676e-001 5.0148970e-002 +v -2.0616710e-002 1.8237588e-001 -1.4299100e-002 +v 1.5137190e-002 1.1571495e-001 3.7031980e-002 +v -5.0718270e-002 1.5276300e-001 1.1816680e-002 +v 3.0168690e-002 1.0048686e-001 3.9404710e-002 +v -8.7426500e-002 9.5469530e-002 4.0312400e-003 +v -6.0010390e-002 1.4284463e-001 3.5449690e-002 +v -5.8603310e-002 1.4637237e-001 3.3808800e-002 +v 3.2411650e-002 9.3736150e-002 4.0890240e-002 +v -7.5917780e-002 1.4997690e-001 -1.6842050e-002 +v 1.8596570e-002 3.5293940e-002 -8.6782200e-003 +v 1.7209800e-002 3.5259400e-002 -1.4685160e-002 +v 4.4326540e-002 9.0818120e-002 2.2097520e-002 +v 3.8335910e-002 3.8830830e-002 3.0938100e-003 +v 2.2192920e-002 3.6775320e-002 -2.0919300e-003 +v 1.9636020e-002 3.8234010e-002 -1.2507670e-002 +v 2.3682120e-002 3.9762540e-002 3.7148760e-002 +v 4.6693280e-002 4.2465320e-002 6.5649500e-003 +v 2.1621110e-002 3.7657240e-002 -4.7021600e-003 +v 1.6638610e-002 3.8196090e-002 -1.9884930e-002 +v -9.0253980e-002 1.1366307e-001 3.7720210e-002 +v -9.0593870e-002 1.1373094e-001 1.0276770e-002 +v -6.2541690e-002 1.7679461e-001 -5.7821820e-002 +v -1.1091940e-002 1.7992082e-001 -2.5996430e-002 +v -6.2263130e-002 1.5219935e-001 -2.2578880e-002 +v -4.2276760e-002 9.4982570e-002 -2.2562420e-002 +v 4.3293410e-002 4.1864140e-002 2.0634400e-003 +v 4.3779590e-002 4.4530720e-002 -1.2622500e-003 +v 2.1696990e-002 4.0427270e-002 -9.4629500e-003 +v -1.1183700e-002 1.6450000e-001 -1.6151690e-002 +v -6.2372570e-002 1.5313041e-001 -2.8997120e-002 +v -9.2489300e-003 1.7725850e-001 -2.8270200e-002 +v 4.1477400e-002 8.5509410e-002 -9.1575000e-003 +v -8.1268710e-002 1.0879438e-001 2.9440660e-002 +v 4.9575680e-002 4.3815900e-002 1.4582960e-002 +v 5.2987960e-002 4.7747690e-002 5.0420000e-003 +v 2.1977540e-002 4.2855330e-002 -1.4536230e-002 +v 1.8505700e-002 3.8294100e-002 -1.7136500e-002 +v -3.5100500e-002 1.5203437e-001 -1.3279000e-004 +v 4.8749130e-002 4.5265000e-002 2.3023500e-003 +v 3.1912900e-002 9.9870060e-002 -1.4620980e-002 +v -1.4222520e-002 1.6167426e-001 -1.3349060e-002 +v -4.8663640e-002 1.3638523e-001 6.8063900e-003 +v -9.5837200e-003 1.7426102e-001 -2.8390760e-002 +v 5.2801850e-002 4.6539940e-002 1.0427720e-002 +v 5.1433800e-002 4.8485200e-002 1.0401000e-003 +v 2.3911240e-002 9.8021670e-002 -2.0807290e-002 +v 2.4567060e-002 4.4130110e-002 -1.0820840e-002 +v 2.0356810e-002 4.3662400e-002 -2.0456280e-002 +v -2.1882420e-002 1.1087418e-001 -1.9695320e-002 +v -5.3831800e-002 1.4981693e-001 2.5066610e-002 +v 5.4114210e-002 4.7773090e-002 1.7484000e-002 +v 5.6730570e-002 5.0515740e-002 1.0627080e-002 +v 4.5941820e-002 4.8138820e-002 -3.8715700e-003 +v -8.3817760e-002 1.1109094e-001 2.8524490e-002 +v 2.9207770e-002 4.7450250e-002 -8.5081800e-003 +v 2.8454920e-002 4.8067390e-002 -1.2847240e-002 +v 2.6637260e-002 4.7607100e-002 -1.6427740e-002 +v 2.2040110e-002 4.4992500e-002 -1.7528500e-002 +v 1.9120080e-002 4.7167750e-002 -2.2114680e-002 +v -1.5782200e-002 1.0072957e-001 -2.3724130e-002 +v -6.2514170e-002 1.7213119e-001 -5.2788100e-002 +v -6.2345600e-002 1.4745498e-001 -7.6600200e-003 +v 4.5598180e-002 8.8151720e-002 1.3124070e-002 +v -4.9422610e-002 1.4283525e-001 8.9728300e-003 +v -8.2761860e-002 1.1162341e-001 4.4221460e-002 +v -5.2166220e-002 1.5013661e-001 1.7448750e-002 +v -6.3616740e-002 1.4801371e-001 -2.0170260e-002 +v -5.1492690e-002 1.3796388e-001 2.3662180e-002 +v -6.1517580e-002 1.7517449e-001 -6.0631700e-002 +v 5.6524870e-002 5.0125660e-002 1.5564490e-002 +v 5.5257900e-002 5.1416260e-002 3.2062600e-003 +v 5.0318130e-002 5.2786370e-002 -3.4166300e-003 +v -6.2681950e-002 1.6744086e-001 -4.5713890e-002 +v 5.6520150e-002 5.1179900e-002 1.9940560e-002 +v 5.6907980e-002 5.1578130e-002 7.2538300e-003 +v 5.2854160e-002 5.1898670e-002 -6.2070000e-004 +v -3.8921140e-002 3.3767390e-002 -2.9042560e-002 +v 2.9740700e-002 5.0324690e-002 -1.3990860e-002 +v -6.8796190e-002 3.5117720e-002 -5.2067400e-003 +v 5.8826020e-002 5.5503780e-002 1.8647920e-002 +v -2.6160570e-002 1.2309988e-001 -4.4735500e-003 +v -5.3341960e-002 1.4401200e-001 2.4261390e-002 +v 5.8177390e-002 5.2821320e-002 1.5182420e-002 +v 5.9798140e-002 5.6840180e-002 1.3342730e-002 +v 5.4549870e-002 5.6044630e-002 -6.6158000e-004 +v 2.6775460e-002 5.1423450e-002 -2.0234060e-002 +v -8.6960400e-003 1.7291588e-001 -2.6708770e-002 +v -7.7039560e-002 7.1967020e-002 2.6405070e-002 +v -6.3069890e-002 1.5897471e-001 -4.2951850e-002 +v 3.5706690e-002 5.6083040e-002 -8.9993300e-003 +v 3.2600380e-002 5.3707520e-002 -1.1006150e-002 +v 2.9739960e-002 5.2538430e-002 -1.6224950e-002 +v 5.9238530e-002 5.6362780e-002 9.4530800e-003 +v 5.7421750e-002 5.6012210e-002 4.0245600e-003 +v 2.9062990e-002 5.5210580e-002 -1.8042060e-002 +v -1.7224410e-002 9.5214090e-002 -3.2085300e-002 +v -8.5911380e-002 1.0968787e-001 7.6582400e-003 +v 6.0594930e-002 6.1677210e-002 1.5591560e-002 +v 5.9531640e-002 6.0504600e-002 5.8397000e-003 +v 5.7306470e-002 5.9944620e-002 1.8886400e-003 +v 3.8829380e-002 5.9839830e-002 -6.4252500e-003 +v 3.0662770e-002 5.7300390e-002 -1.6518370e-002 +v -2.7762070e-002 1.2068537e-001 -9.0152900e-003 +v -8.8194590e-002 1.0314633e-001 1.7509020e-002 +v 6.0778800e-002 6.1646560e-002 1.0463990e-002 +v 3.5915080e-002 5.9916380e-002 -1.1966510e-002 +v 2.4251860e-002 5.6457470e-002 -2.4254800e-002 +v -6.1954390e-002 1.6865320e-001 -5.2621160e-002 +v -9.0557930e-002 1.1275994e-001 1.6141030e-002 +v -8.8469220e-002 1.1124294e-001 1.2679160e-002 +v 5.9558010e-002 6.3099260e-002 5.9471000e-003 +v 3.0940440e-002 6.0518080e-002 -1.8132720e-002 +v -9.3575750e-002 1.2474629e-001 2.6213300e-002 +v -9.3189820e-002 1.2019919e-001 3.7913720e-002 +v -9.2296100e-003 1.7314463e-001 -2.4197660e-002 +v -8.1739460e-002 7.6861340e-002 2.3313610e-002 +v -3.6992750e-002 1.5063932e-001 -2.0372300e-003 +v 6.0093570e-002 6.5693450e-002 1.8533320e-002 +v 5.9837240e-002 6.6423180e-002 8.5139400e-003 +v 4.0706180e-002 6.4475310e-002 -5.5920300e-003 +v 3.4745940e-002 6.3261340e-002 -1.4646740e-002 +v -6.1879660e-002 1.6000450e-001 -2.5806250e-002 +v -7.6537810e-002 1.5344875e-001 -1.2898750e-002 +v 3.8111070e-002 6.4811810e-002 -1.1142000e-002 +v 3.1909340e-002 6.4657050e-002 -1.8473410e-002 +v -8.3159350e-002 1.4674277e-001 3.0757900e-003 +v -8.7055900e-002 1.0562761e-001 9.7651100e-003 +v -7.1448330e-002 1.8105301e-001 -5.5478550e-002 +v -8.5632110e-002 1.2461094e-001 -2.7335800e-003 +v 6.0728970e-002 6.5806600e-002 1.3974830e-002 +v 3.9909650e-002 6.8171740e-002 -9.5698200e-003 +v 3.4981790e-002 6.7740790e-002 -1.5683210e-002 +v -9.1822030e-002 1.2747346e-001 3.6458650e-002 +v -6.2425420e-002 1.6366637e-001 -4.9667290e-002 +v -7.1168950e-002 1.4740156e-001 -2.7590940e-002 +v -5.0364760e-002 1.3715763e-001 1.9526100e-003 +v -5.0492650e-002 1.4159899e-001 1.6291740e-002 +v 5.9886670e-002 6.8513050e-002 1.6171610e-002 +v -6.1406990e-002 1.7268822e-001 -5.8265750e-002 +v 2.4990740e-002 6.5897320e-002 -2.3568270e-002 +v -7.4852750e-002 1.4993112e-001 -2.7752940e-002 +v -6.2225690e-002 6.0265200e-002 2.0449290e-002 +v -6.2001940e-002 3.6435020e-002 4.3918940e-002 +v 5.8374570e-002 7.1186410e-002 1.3072740e-002 +v -3.6125040e-002 1.2286688e-001 -8.2927900e-003 +v 2.9216510e-002 6.7850250e-002 -2.0418570e-002 +v -4.1681700e-002 1.2575112e-001 -7.0193300e-003 +v -7.4226550e-002 1.6437012e-001 -3.8240340e-002 +v -9.7845700e-003 1.6928488e-001 -2.4756660e-002 +v -8.9577950e-002 1.2078310e-001 3.5229100e-003 +v -6.2311930e-002 1.6371109e-001 -4.0623990e-002 +v 4.3514770e-002 9.1519890e-002 -2.6468100e-003 +v -4.8434350e-002 1.3754973e-001 1.3244980e-002 +v -8.9313160e-002 1.3653006e-001 3.0458750e-002 +v -7.4230190e-002 1.5652681e-001 -2.5167090e-002 +v 3.7378600e-002 7.3093410e-002 -1.2635370e-002 +v 2.6321810e-002 7.0240650e-002 -2.3878680e-002 +v -4.8023620e-002 1.4426649e-001 4.2498600e-003 +v -9.2019580e-002 1.1611534e-001 3.5842730e-002 +v -7.1305510e-002 7.3899020e-002 3.5969780e-002 +v -6.2059290e-002 1.5697807e-001 -3.3784580e-002 +v -9.7015300e-003 1.6738863e-001 -1.9360250e-002 +v 4.3342140e-002 7.1676120e-002 -2.2304600e-003 +v 4.1772460e-002 6.9568020e-002 -6.1596000e-003 +v 3.3505410e-002 7.2809860e-002 -1.7034800e-002 +v 2.9665000e-002 7.1506830e-002 -2.1282340e-002 +v -2.9460160e-002 1.5550263e-001 -1.1914700e-003 +v -8.6396440e-002 1.0479356e-001 5.9820600e-003 +v -5.4910700e-002 1.4662313e-001 2.8438970e-002 +v 4.4203810e-002 8.5204260e-002 -2.1170500e-003 +v 4.3264350e-002 7.5810540e-002 -3.8843900e-003 +v 1.3096990e-002 9.1126480e-002 -2.9269770e-002 +v -6.7069210e-002 9.1144610e-002 -1.7425950e-002 +v -9.0821680e-002 1.2276896e-001 6.0998500e-003 +v 4.5620000e-002 7.4684430e-002 2.6073900e-003 +v -9.3039800e-002 1.2026416e-001 1.1216820e-002 +v 4.4635590e-002 9.2794290e-002 1.7832070e-002 +v -1.1243390e-002 1.6457514e-001 -1.8240780e-002 +v 4.5511190e-002 8.6953050e-002 3.8865500e-003 +v 4.6252720e-002 7.7373870e-002 6.9140800e-003 +v 4.0281640e-002 7.2637130e-002 -9.2881000e-003 +v 4.3218200e-002 9.9486740e-002 5.0153300e-003 +v -5.1108270e-002 1.4520219e-001 1.4279480e-002 +v 4.4692980e-002 9.2688550e-002 2.2466700e-003 +v 4.3422540e-002 9.1860370e-002 2.4538450e-002 +v 4.0751360e-002 1.0554729e-001 7.5074100e-003 +v -8.5613030e-002 9.6277110e-002 -6.6514000e-004 +v 4.0721470e-002 7.8475530e-002 -8.2130000e-003 +v 3.5538080e-002 7.6062960e-002 -1.4434750e-002 +v -9.2736510e-002 1.2073095e-001 3.2692730e-002 +v -6.2278520e-002 1.5166598e-001 -1.4672730e-002 +v 4.4960220e-002 8.0942630e-002 6.1119000e-004 +v 3.7814740e-002 7.9698150e-002 -1.3289630e-002 +v 3.3864490e-002 7.8656690e-002 -1.7632490e-002 +v -9.1044280e-002 1.4199862e-001 2.1729630e-002 +v -7.4004450e-002 1.7818523e-001 -5.3916320e-002 +v -6.1768650e-002 1.6067957e-001 -3.4046350e-002 +v -4.9747450e-002 1.4112519e-001 5.2937500e-003 +v 4.1065440e-002 9.0460700e-002 2.9888620e-002 +v -7.2916360e-002 6.5057400e-002 1.8794620e-002 +v -9.0949690e-002 1.3895375e-001 1.7371130e-002 +v 4.2879050e-002 1.0093777e-001 9.4753200e-003 +v -7.2455480e-002 1.7610676e-001 -5.3535420e-002 +v -7.5862940e-002 1.5071299e-001 -9.0209000e-003 +v -8.5269820e-002 1.0267793e-001 1.3935600e-003 +v -7.7025570e-002 1.1396763e-001 -4.6168100e-003 +v 4.6280880e-002 7.8702020e-002 1.4786330e-002 +v 4.2106910e-002 8.1533160e-002 -6.6690900e-003 +v 3.6523880e-002 8.1991750e-002 -1.6229590e-002 +v -3.7420220e-002 4.5428500e-002 -2.4226790e-002 +v -8.5148910e-002 1.3965520e-001 2.4808500e-003 +v -6.3313300e-002 1.6503258e-001 -3.2895120e-002 +v -6.1591410e-002 1.5681572e-001 -2.5945630e-002 +v 4.5918540e-002 8.7036220e-002 8.4236300e-003 +v 4.4631140e-002 8.4178380e-002 8.2665000e-004 +v -4.4842870e-002 1.4629393e-001 1.7114800e-003 +v -6.4124180e-002 1.7953625e-001 -5.8730420e-002 +v -6.7070300e-002 1.8072682e-001 -5.6618620e-002 +v -6.4793760e-002 1.7885275e-001 -5.5883250e-002 +v -6.4371030e-002 1.7296209e-001 -4.9225660e-002 +v -7.0381530e-002 1.8071180e-001 -5.3172590e-002 +v -7.5269270e-002 1.5232949e-001 3.4374060e-002 +v -1.6273090e-002 1.2844514e-001 1.6683610e-002 +v -6.2116150e-002 1.5600787e-001 1.8034420e-002 +v -5.6010790e-002 1.5381662e-001 2.5369280e-002 +v -3.7277920e-002 1.7289068e-001 -8.6627000e-004 +v -7.4158700e-002 1.7987275e-001 -5.0794750e-002 +v -7.9039960e-002 1.5537445e-001 1.5141810e-002 +v -7.2505530e-002 1.5459529e-001 2.9588830e-002 +v -6.7738180e-002 1.7728865e-001 -5.0375960e-002 +v -7.5346900e-003 1.0021302e-001 4.7488700e-002 +v -5.9575620e-002 1.5472401e-001 2.6373250e-002 +v -7.7382710e-002 1.5346600e-001 3.0894990e-002 +v -8.1496670e-002 1.5473104e-001 1.9697340e-002 +v -7.2223320e-002 1.5896734e-001 -5.4242300e-003 +v -1.3708500e-002 1.8491150e-001 -2.5549550e-002 +v -4.3465340e-002 1.2451145e-001 2.2518890e-002 +v -6.9103650e-002 1.5559479e-001 1.6370800e-003 +v -7.3748080e-002 1.5539253e-001 2.3491700e-003 +v -6.8192410e-002 1.7439828e-001 -4.5365870e-002 +v -6.0052850e-002 1.5280350e-001 3.2887630e-002 +v -2.3459490e-002 1.2615386e-001 1.6613770e-002 +v -7.2777220e-002 1.7854465e-001 -4.8208800e-002 +v -7.6595580e-002 1.7753227e-001 -4.7118080e-002 +v 1.3906410e-002 1.2790838e-001 2.5110240e-002 +v -8.6367510e-002 1.0906537e-001 1.1980640e-002 +v -3.1358850e-002 1.2140977e-001 2.5971090e-002 +v -4.9104590e-002 1.3666879e-001 1.9314030e-002 +v -4.2930640e-002 1.2928436e-001 9.2700700e-003 +v -6.5320350e-002 1.5390322e-001 9.1386000e-004 +v -3.7606490e-002 1.2422605e-001 2.4313530e-002 +v 9.5078400e-003 1.3041865e-001 2.0715020e-002 +v -1.7976800e-003 1.3117283e-001 1.6360660e-002 +v 3.6231700e-003 1.3076791e-001 2.1168600e-002 +v -9.2674700e-002 1.1701945e-001 1.1889520e-002 +v -6.5739720e-002 1.5565338e-001 2.6017600e-002 +v -8.6561940e-002 1.4249188e-001 8.4326800e-003 +v -7.0731530e-002 1.5569959e-001 6.9058200e-003 +v -8.0840700e-003 1.3030537e-001 1.6872280e-002 +v -4.4286250e-002 1.2606625e-001 2.0795220e-002 +v -7.0222260e-002 1.5143521e-001 3.6718910e-002 +v -1.5210690e-002 1.8463639e-001 -2.2057240e-002 +v -1.7270750e-002 1.8699602e-001 -1.9977570e-002 +v -8.3560950e-002 1.5255943e-001 7.6806700e-003 +v -8.8130280e-002 9.7540510e-002 5.6788000e-003 +v -8.8399240e-002 1.3899000e-001 1.0640660e-002 +v -6.7780550e-002 1.5614453e-001 1.4276320e-002 +v -6.5864600e-003 1.2641717e-001 3.0226390e-002 +v -8.8746180e-002 1.3625578e-001 7.1477800e-003 +v -7.7206730e-002 1.5639950e-001 -1.8972540e-002 +v -9.3176480e-002 1.1821016e-001 2.3362360e-002 +v -2.3506850e-002 1.2672006e-001 1.0996900e-002 +v -6.6546650e-002 1.7171115e-001 -4.2127770e-002 +v -6.9136000e-002 1.7247836e-001 -3.9013330e-002 +v 5.7180270e-002 7.1107690e-002 8.0307600e-003 +v -7.5390870e-002 1.7952824e-001 -5.2402050e-002 +v -3.1828840e-002 1.2639115e-001 1.0013410e-002 +v -8.9888800e-003 1.2952269e-001 2.2026810e-002 +v 3.4325880e-002 1.1193312e-001 -2.2406500e-003 +v -8.1414950e-002 9.7100250e-002 -6.8745800e-003 +v -2.3298830e-002 1.8324307e-001 -1.7923000e-002 +v -6.1641660e-002 1.5582039e-001 1.1099820e-002 +v -8.8826450e-002 9.0483320e-002 2.1204700e-002 +v 5.8373130e-002 6.8067590e-002 5.7247600e-003 +v -4.3045630e-002 1.2785122e-001 1.6842260e-002 +v 3.0835720e-002 1.1554234e-001 -3.1785500e-003 +v -8.8631270e-002 9.4881200e-002 7.9337600e-003 +v -9.1715140e-002 1.1709957e-001 3.0809400e-002 +v -7.2083780e-002 1.7499844e-001 -4.1930320e-002 +v -6.9540630e-002 1.5308527e-001 3.3865720e-002 +v 6.0078690e-002 6.8129260e-002 1.1454500e-002 +v -4.0081060e-002 1.2628381e-001 1.9607250e-002 +v 3.2819930e-002 1.1655625e-001 4.4458600e-003 +v -7.2823220e-002 1.4510601e-001 -1.5654680e-002 +v -8.5270210e-002 1.0551770e-001 2.3290940e-002 +v -7.6051320e-002 1.1103825e-001 -6.2722100e-003 +v -8.6537730e-002 1.5154801e-001 2.5875370e-002 +v 5.5888480e-002 7.2579250e-002 1.0669650e-002 +v -5.4642360e-002 1.5522963e-001 1.2612400e-002 +v 3.6729960e-002 1.1116756e-001 3.8670600e-003 +v 3.1501870e-002 1.1725172e-001 1.6855100e-003 +v -7.8751550e-002 9.5240290e-002 -1.0600670e-002 +v -8.9408160e-002 1.4352815e-001 3.0924750e-002 +v -2.0891130e-002 1.8595338e-001 -1.5037360e-002 +v -7.0863560e-002 1.6136525e-001 -9.7324600e-003 +v -7.0919760e-002 1.7136688e-001 -3.2763750e-002 +v -3.0771290e-002 1.2564075e-001 1.6594770e-002 +v -5.4454180e-002 1.5297699e-001 2.2505190e-002 +v -1.5539500e-003 1.2754717e-001 2.9232870e-002 +v 2.9130550e-002 1.2027445e-001 6.1117500e-003 +v 2.5725940e-002 1.2122705e-001 -3.6150000e-005 +v -8.9318970e-002 9.9546980e-002 1.3418110e-002 +v -7.5429500e-002 1.7095605e-001 -3.2879890e-002 +v -2.8596020e-002 1.1901156e-001 2.9888170e-002 +v 2.1069780e-002 1.2497756e-001 1.0998100e-003 +v -9.2240760e-002 1.1816838e-001 4.1201730e-002 +v 2.4094600e-003 1.0016785e-001 4.6938070e-002 +v -5.6627620e-002 1.5270606e-001 2.9629030e-002 +v -5.7264800e-002 1.5506250e-001 1.9322430e-002 +v -3.6452070e-002 1.2199869e-001 2.7670650e-002 +v -7.4108160e-002 1.7355729e-001 -3.7986840e-002 +v 5.1537130e-002 7.3496690e-002 1.2698700e-002 +v -6.6096040e-002 1.5532529e-001 7.1561800e-003 +v 3.6102000e-002 1.1266103e-001 1.0491780e-002 +v 1.6715210e-002 1.2689851e-001 2.2331000e-004 +v -8.0767920e-002 1.4301400e-001 -1.5312800e-003 +v -9.1757600e-002 1.4334588e-001 1.7790710e-002 +v -8.6824940e-002 1.5280775e-001 1.5521450e-002 +v -6.5808100e-002 1.6764344e-001 -3.0558670e-002 +v -7.8217340e-002 1.6873975e-001 -3.3564250e-002 +v -7.2567060e-002 1.4753230e-001 4.1714090e-002 +v 5.8439960e-002 7.0200810e-002 1.7779620e-002 +v 5.6847560e-002 7.2017160e-002 1.7139380e-002 +v 5.4919390e-002 7.3161610e-002 1.5223590e-002 +v 4.7446900e-002 7.3691410e-002 1.2430020e-002 +v 1.2319360e-002 1.2903768e-001 1.3336200e-003 +v -7.9790640e-002 1.0351662e-001 -6.6275400e-003 +v -7.6655210e-002 1.5509766e-001 7.9686300e-003 +v 2.1747320e-002 1.2118456e-001 3.0878810e-002 +v -7.5260490e-002 1.4938613e-001 3.9175980e-002 +v -2.5919610e-002 1.8272826e-001 -1.3541090e-002 +v -6.7983790e-002 1.6974781e-001 -3.1627490e-002 +v 1.6831110e-002 1.2487146e-001 2.8425580e-002 +v 5.4016490e-002 7.2883850e-002 1.8678010e-002 +v 5.0522750e-002 7.3397910e-002 1.6166890e-002 +v -5.9582440e-002 1.5623338e-001 7.9209900e-003 +v 2.5343500e-002 1.2374750e-001 9.9818800e-003 +v 1.9262750e-002 1.2689390e-001 5.5552100e-003 +v -9.0758520e-002 1.4223375e-001 2.6008130e-002 +v -4.6548490e-002 1.3320769e-001 1.6889630e-002 +v -2.4106950e-002 1.8380887e-001 -1.1544760e-002 +v 8.6784400e-003 1.2894574e-001 2.6156880e-002 +v 2.4919200e-003 1.2983563e-001 2.4847110e-002 +v 5.7345150e-002 6.9482720e-002 2.1153510e-002 +v -8.5329840e-002 1.5339912e-001 2.0378290e-002 +v 3.2877320e-002 1.1691463e-001 9.2957500e-003 +v 2.4246630e-002 1.2377758e-001 4.8764500e-003 +v -4.7765650e-002 1.3301969e-001 2.2874020e-002 +v -6.3541830e-002 1.6332115e-001 -2.5912990e-002 +v -6.6605200e-002 1.6477375e-001 -2.0670760e-002 +v -6.8504220e-002 1.6732018e-001 -2.3959570e-002 +v -7.2759160e-002 1.6965906e-001 -2.7013420e-002 +v 4.8206850e-002 7.2698580e-002 1.6994630e-002 +v -2.7383180e-002 1.2324257e-001 2.1658860e-002 +v -4.5077500e-002 1.3124443e-001 1.1145770e-002 +v 2.9253150e-002 1.2057701e-001 1.2299330e-002 +v 1.3677610e-002 1.2967262e-001 6.9327400e-003 +v 8.4210900e-003 1.3090986e-001 6.2754400e-003 +v 9.6836000e-004 1.3064303e-001 2.5865900e-003 +v 3.0802000e-003 9.8307360e-002 5.0535640e-002 +v -5.2420170e-002 1.5310101e-001 1.2927370e-002 +v -7.0359720e-002 1.6906988e-001 -2.6144260e-002 +v 5.4359390e-002 7.1467260e-002 2.1381250e-002 +v 4.5161440e-002 7.1030380e-002 2.2530690e-002 +v 1.9320440e-002 1.2738348e-001 1.1296310e-002 +v -9.3281210e-002 1.2691094e-001 1.3505010e-002 +v -8.7405060e-002 1.0593990e-001 1.3645920e-002 +v -2.2851640e-002 9.0635040e-002 5.2280460e-002 +v -6.2099370e-002 1.5406697e-001 3.0837360e-002 +v -4.5851560e-002 1.2072981e-001 2.7665040e-002 +v 5.0781670e-002 7.2155170e-002 2.0680180e-002 +v -8.9607270e-002 1.3971105e-001 2.9308560e-002 +v -5.3323050e-002 1.5273520e-001 1.6213860e-002 +v -1.5227080e-002 1.2784878e-001 2.1545200e-002 +v 3.3663540e-002 1.1574212e-001 1.7181290e-002 +v 2.4000260e-002 1.2468761e-001 1.5517930e-002 +v -8.4166840e-002 9.7756820e-002 -3.2761900e-003 +v -3.6223590e-002 1.2777519e-001 9.8501500e-003 +v -3.9189580e-002 1.2828193e-001 5.0346300e-003 +v -3.3674050e-002 1.7774449e-001 -8.1799500e-003 +v -7.4488620e-002 1.5649443e-001 -2.5954600e-003 +v -4.6755620e-002 1.3284294e-001 8.1212800e-003 +v -8.4970410e-002 1.5322309e-001 1.2654460e-002 +v -1.0866210e-002 1.2691699e-001 2.7575440e-002 +v -3.1074000e-003 1.3072898e-001 5.6428500e-003 +v -8.8760540e-002 9.7037440e-002 2.1079040e-002 +v -6.4811320e-002 3.4530640e-002 1.5508440e-002 +v -6.4300260e-002 3.5086450e-002 2.4272050e-002 +v -6.6727020e-002 3.5895770e-002 3.3849430e-002 +v 1.9838510e-002 9.6518890e-002 -2.2785880e-002 +v -3.8670510e-002 1.6070199e-001 -1.2357760e-002 +v -7.6890090e-002 1.3041906e-001 -6.9570100e-003 +v -7.2539730e-002 3.5399270e-002 7.0298800e-003 +v -6.9209050e-002 3.5454810e-002 1.2042140e-002 +v -6.4160810e-002 3.5900770e-002 1.7687570e-002 +v -6.6804150e-002 3.7377740e-002 3.3296290e-002 +v -6.2928350e-002 3.9061660e-002 4.2707680e-002 +v -7.1752230e-002 3.6789350e-002 8.6966700e-003 +v -6.5171380e-002 3.7289500e-002 2.5953770e-002 +v -6.6392030e-002 3.7712350e-002 2.9621950e-002 +v -6.4558720e-002 3.9639900e-002 3.9411530e-002 +v -6.0145790e-002 4.1202050e-002 4.4293830e-002 +v -6.0318430e-002 3.8442990e-002 4.5245950e-002 +v -3.6756310e-002 8.8663360e-002 -2.3868800e-002 +v -3.9494750e-002 3.7551570e-002 4.2870900e-002 +v -7.2016030e-002 3.7572700e-002 3.9789400e-003 +v -7.1693630e-002 3.9461000e-002 6.0145000e-003 +v -7.1165950e-002 3.9366310e-002 8.1142100e-003 +v -6.9000300e-002 3.8467710e-002 1.0768900e-002 +v -6.7253420e-002 3.8142160e-002 1.3533960e-002 +v -6.1125670e-002 3.7790050e-002 1.9710900e-002 +v -3.9179680e-002 4.2406740e-002 4.1476070e-002 +v -3.5145960e-002 3.8585920e-002 4.7732690e-002 +v -2.8950940e-002 3.9285940e-002 5.3309090e-002 +v -1.8223900e-002 9.7494570e-002 4.6847940e-002 +v -6.6916260e-002 1.2278907e-001 -8.9077400e-003 +v -6.3754640e-002 3.8250120e-002 1.6593500e-002 +v -6.4415760e-002 4.1283840e-002 2.8243480e-002 +v -8.5856340e-002 9.7025390e-002 2.7414960e-002 +v -3.7501130e-002 4.0221900e-002 4.4296550e-002 +v -3.4333970e-002 4.0923630e-002 4.8425810e-002 +v -3.1172890e-002 4.0294330e-002 5.1312460e-002 +v -6.9997320e-002 4.2073080e-002 6.6897800e-003 +v -8.0379330e-002 9.7800660e-002 3.3645750e-002 +v -2.6273160e-002 7.7631160e-002 4.8356180e-002 +v -3.7501450e-002 4.2736690e-002 4.2988400e-002 +v -2.6177500e-002 4.2498930e-002 5.3315220e-002 +v -6.9637250e-002 4.1881270e-002 3.1825800e-003 +v -6.7156510e-002 4.1972860e-002 1.0240940e-002 +v -8.7405510e-002 1.0205209e-001 2.2020360e-002 +v -2.3944380e-002 7.8800140e-002 5.3534730e-002 +v -6.0902360e-002 4.3429500e-002 4.2678530e-002 +v -3.1217880e-002 4.3847510e-002 4.9780920e-002 +v -7.5729440e-002 1.0354026e-001 3.6070970e-002 +v -6.2425320e-002 4.1885720e-002 1.4646770e-002 +v -6.1051660e-002 4.4392230e-002 1.2421940e-002 +v 2.5855060e-002 8.9610660e-002 -2.2701840e-002 +v -7.7644960e-002 8.2214940e-002 3.5797660e-002 +v -6.0381270e-002 4.5921420e-002 4.0088740e-002 +v -2.4982010e-002 8.1777650e-002 5.3421060e-002 +v -3.4453850e-002 4.4563960e-002 4.5422990e-002 +v -2.9842910e-002 4.6782280e-002 4.7746920e-002 +v -1.5119580e-002 9.9930020e-002 4.4500270e-002 +v -6.7306470e-002 4.4176830e-002 7.5958300e-003 +v -5.7852990e-002 4.6444500e-002 1.1062610e-002 +v -5.1815260e-002 1.6392582e-001 1.7488800e-003 +v -5.5174130e-002 4.8383880e-002 3.8517780e-002 +v -7.8849150e-002 1.1867375e-001 5.0622870e-002 +v -2.7229070e-002 8.7991480e-002 4.7909730e-002 +v -7.5536880e-002 1.5977062e-001 -1.0438650e-002 +v -3.6151280e-002 4.6505140e-002 4.0740900e-002 +v -2.5439220e-002 9.0677870e-002 4.8852330e-002 +v -8.0050370e-002 1.1670406e-001 4.8762460e-002 +v -5.2513640e-002 4.7577880e-002 1.4858440e-002 +v -3.2043560e-002 5.0461830e-002 3.9341520e-002 +v -3.1487770e-002 4.6930210e-002 4.5253210e-002 +v -2.0321500e-002 9.3999570e-002 5.1588540e-002 +v -7.2145040e-002 9.1556450e-002 4.1494780e-002 +v -5.3644200e-002 4.9358170e-002 1.2201850e-002 +v -8.2403890e-002 1.2186563e-001 4.9365030e-002 +v -4.9754420e-002 4.9738300e-002 3.7037110e-002 +v -3.2332060e-002 4.8672840e-002 4.2523960e-002 +v -2.3122950e-002 9.4515900e-002 4.7358870e-002 +v -8.6347140e-002 9.1722090e-002 2.6811080e-002 +v -5.7713110e-002 4.8717820e-002 7.2765100e-003 +v -8.6970360e-002 8.8912090e-002 2.4879860e-002 +v -9.2237750e-002 1.2488519e-001 4.0786530e-002 +v -1.5862800e-002 9.7021620e-002 5.0139360e-002 +v -2.7720040e-002 5.0502090e-002 4.3340720e-002 +v -8.5918770e-002 1.4263412e-001 3.9849810e-002 +v -7.5097360e-002 9.0073560e-002 3.9581000e-002 +v -8.9430840e-002 1.4730552e-001 2.7694960e-002 +v -5.3288350e-002 5.1925760e-002 1.1730350e-002 +v -5.0168720e-002 5.3462260e-002 1.6255440e-002 +v -8.5986050e-002 1.4670902e-001 3.4827030e-002 +v -6.9937250e-002 8.6076860e-002 4.2175690e-002 +v -5.0399320e-002 5.1831330e-002 3.4037400e-002 +v -8.3298980e-002 1.4960772e-001 3.3740890e-002 +v -2.9174820e-002 5.2264530e-002 3.7637320e-002 +v -8.8763730e-002 1.1944938e-001 4.6560090e-002 +v -7.7693460e-002 1.7367969e-001 -4.1478670e-002 +v -8.3418140e-002 9.4127440e-002 3.0898450e-002 +v -5.6067510e-002 5.3470630e-002 7.3718200e-003 +v -7.8935630e-002 1.4817228e-001 3.9463070e-002 +v -6.7902770e-002 8.7817230e-002 4.3526990e-002 +v -4.4111240e-002 9.2883990e-002 -2.2373210e-002 +v -8.6605100e-002 1.3226807e-001 4.6783020e-002 +v -9.2654280e-002 1.2084025e-001 4.1629650e-002 +v -5.0887310e-002 5.2727900e-002 1.4455790e-002 +v -4.9763410e-002 5.6241200e-002 3.3624250e-002 +v -8.9771330e-002 1.2904861e-001 4.3022990e-002 +v -2.8054240e-002 5.4551030e-002 3.6786850e-002 +v -2.5867080e-002 5.6689210e-002 3.9182240e-002 +v -8.3702200e-002 1.2226381e-001 -3.7301400e-003 +v -8.1455470e-002 1.3012213e-001 5.2117660e-002 +v -5.1458550e-002 5.5878150e-002 1.5900350e-002 +v -7.8597700e-002 1.7441574e-001 -4.6607580e-002 +v -5.2909820e-002 5.7043070e-002 2.0988410e-002 +v -5.2978500e-002 5.9553770e-002 2.6211920e-002 +v -5.2130640e-002 5.6302970e-002 2.6672460e-002 +v -4.7714500e-002 6.1944520e-002 3.6705820e-002 +v -8.3539790e-002 8.1169560e-002 2.7014070e-002 +v -1.8340000e-002 5.7489970e-002 4.9763020e-002 +v -8.0069810e-002 9.0586130e-002 3.4593070e-002 +v -8.3812250e-002 8.6337700e-002 2.9223270e-002 +v -5.5436650e-002 5.9420250e-002 2.3018970e-002 +v -8.2227680e-002 1.4513771e-001 4.0600080e-002 +v -2.4187580e-002 7.2269150e-002 4.7681090e-002 +v -2.5353150e-002 6.2567200e-002 4.0642170e-002 +v -9.1132110e-002 1.2282100e-001 4.4115160e-002 +v -4.6076290e-002 1.6819719e-001 7.3744000e-004 +v -8.7829280e-002 1.4351461e-001 3.5707670e-002 +v -8.6990640e-002 1.3812326e-001 4.2316550e-002 +v -1.5715900e-002 6.0822970e-002 5.2365440e-002 +v -8.3803580e-002 1.2561100e-001 5.0440490e-002 +v -6.2786680e-002 1.1274190e-001 -1.3605440e-002 +v -8.1033840e-002 8.4698180e-002 3.3106400e-002 +v -8.8563540e-002 1.1624535e-001 4.5392840e-002 +v -2.0268380e-002 6.2266810e-002 4.8212120e-002 +v -1.2619630e-002 6.1635030e-002 5.4424080e-002 +v -7.0491190e-002 8.1818160e-002 4.0609890e-002 +v -8.3882520e-002 1.3331465e-001 4.9113540e-002 +v -5.6560350e-002 4.8355540e-002 3.6607050e-002 +v 9.9444900e-003 1.0919723e-001 -1.9472810e-002 +v -5.5928250e-002 3.5917310e-002 4.6376100e-002 +v -7.6003260e-002 1.6361344e-001 -1.8021110e-002 +v -8.3798850e-002 1.0290691e-001 2.8038330e-002 +v -8.8252110e-002 1.2692730e-001 4.6141300e-002 +v -7.9126720e-002 1.0619883e-001 3.2050700e-002 +v -8.8206230e-002 9.4485700e-002 2.3744010e-002 +v -8.9110330e-002 1.3851394e-001 3.7658780e-002 +v -1.9321360e-002 9.2123890e-002 5.3820650e-002 +v -5.8265630e-002 9.0926390e-002 -2.0948690e-002 +v -2.7046310e-002 6.7014450e-002 3.9672140e-002 +v -2.1416300e-002 1.7977662e-001 -2.1732520e-002 +v -7.8240000e-003 1.0924112e-001 -2.2185670e-002 +v -2.3988340e-002 8.5995590e-002 5.3716430e-002 +v -6.0483580e-002 1.5567975e-001 4.3343800e-003 +v -8.6389150e-002 1.2168475e-001 4.8412440e-002 +v -7.4084360e-002 1.4987744e-001 -3.2610050e-002 +v -2.0580600e-002 7.9572500e-002 5.6013880e-002 +v -8.3837500e-002 1.3927865e-001 4.4893850e-002 +v -2.2933960e-002 3.5632910e-002 5.2865490e-002 +v -8.6153620e-002 1.2735612e-001 4.8563960e-002 +v -6.5728590e-002 1.0709818e-001 -1.4317670e-002 +v -2.1481090e-002 7.4194460e-002 5.2857680e-002 +v -7.6423900e-002 1.5736285e-001 -9.0354600e-003 +v -7.7216010e-002 8.5594880e-002 3.7420770e-002 +v -8.4150830e-002 1.2955013e-001 5.0483700e-002 +v -8.1221440e-002 8.1003250e-002 3.1255840e-002 +v -8.1704000e-002 1.0167226e-001 3.0939660e-002 +v -8.6252730e-002 1.0106846e-001 2.5413770e-002 +v -8.0944970e-002 1.3903572e-001 4.7359080e-002 +v -7.8908350e-002 9.4830900e-002 3.5435500e-002 +v -7.3440160e-002 9.5412600e-002 4.0210650e-002 +v -5.2675780e-002 8.8220740e-002 -2.1886300e-002 +v -7.6440670e-002 7.7511060e-002 3.3748300e-002 +v -2.1791140e-002 1.0658035e-001 -2.2327000e-002 +v -8.8360940e-002 1.4996706e-001 2.6044170e-002 +v -2.4078870e-002 6.7906700e-002 4.5178370e-002 +v -2.0018090e-002 6.7569300e-002 5.1565340e-002 +v -8.3577750e-002 1.2052625e-001 4.9177500e-002 +v -1.4655950e-002 1.7456543e-001 -2.5972690e-002 +v -2.7395940e-002 8.4108300e-002 4.8745680e-002 +v -4.1933580e-002 8.8463400e-002 -2.2126350e-002 +v -3.1693900e-002 1.0261265e-001 -2.2352310e-002 +v -2.7890200e-002 1.0440703e-001 -2.2830920e-002 +v -7.3790400e-002 1.2016662e-001 -7.8851200e-003 +v -4.6124160e-002 1.0506369e-001 -2.0457580e-002 +v -2.7412650e-002 7.3269450e-002 4.2641380e-002 +v -4.5532880e-002 3.4736480e-002 -2.1363200e-002 +v -4.4993030e-002 3.9017010e-002 -2.1097830e-002 +v -4.6462610e-002 3.6800270e-002 -1.7778710e-002 +v -8.8366460e-002 1.1361863e-001 5.8227800e-003 +v 5.1746240e-002 7.2897250e-002 9.0647400e-003 +v -7.0385250e-002 3.7450300e-002 -9.3190000e-004 +v -6.0923170e-002 3.8621820e-002 2.2468850e-002 +v -7.7696720e-002 1.7027889e-001 -4.3117910e-002 +v -4.3793210e-002 1.6955506e-001 -7.3026400e-003 +v -7.7587180e-002 1.7717875e-001 -5.0221090e-002 +v -4.0541880e-002 3.8886010e-002 -2.7364950e-002 +v -4.4215850e-002 3.6131460e-002 -2.4252210e-002 +v -6.6634880e-002 4.0430310e-002 -5.0180700e-003 +v -6.9242120e-002 4.1474050e-002 1.9289000e-004 +v -7.5640690e-002 1.5930400e-001 -2.6908460e-002 +v -6.3087030e-002 3.9614170e-002 2.5181560e-002 +v -7.2303020e-002 1.5186699e-001 -4.1544310e-002 +v -4.1051490e-002 4.1528620e-002 -2.4061000e-002 +v -4.6990580e-002 3.8892380e-002 -1.4016920e-002 +v -8.9559690e-002 1.2851666e-001 4.5457500e-003 +v -7.6987340e-002 1.5369375e-001 -2.2970800e-003 +v -7.0121670e-002 1.6882633e-001 -5.1173650e-002 +v -6.4792610e-002 4.1724530e-002 3.1616900e-002 +v -4.2148060e-002 1.2409627e-001 -9.5602500e-003 +v -4.8069700e-002 1.2493027e-001 -8.4076400e-003 +v -4.2150480e-002 4.3343970e-002 -2.1508710e-002 +v -6.7315160e-002 4.4034000e-002 1.5741800e-003 +v -7.3386640e-002 1.5463418e-001 -2.9943830e-002 +v -5.5352770e-002 4.2936210e-002 1.9135490e-002 +v -6.0067770e-002 4.1419500e-002 2.2953280e-002 +v -6.5488460e-002 4.0937780e-002 3.5315470e-002 +v -8.0066400e-002 1.5039650e-001 6.0518000e-004 +v -4.4031300e-002 4.1949070e-002 -1.7993960e-002 +v -4.5186510e-002 4.2453420e-002 -1.4193620e-002 +v -8.3109430e-002 1.0265445e-001 -3.2933400e-003 +v -6.5472800e-002 4.5627570e-002 4.5575400e-003 +v -7.5427730e-002 1.5201213e-001 -1.4393690e-002 +v -5.4473420e-002 4.5937510e-002 2.3612600e-002 +v -6.2464100e-002 4.3722000e-002 2.8493310e-002 +v -6.2832600e-002 4.5182750e-002 3.4622890e-002 +v -6.3538130e-002 4.3524020e-002 3.7974010e-002 +v -6.0255260e-002 4.4749620e-002 -4.1316200e-003 +v -6.3242050e-002 4.5549700e-002 4.8428000e-004 +v -6.2249430e-002 4.6540050e-002 7.1903500e-003 +v -9.1003650e-002 1.4885725e-001 2.1507030e-002 +v -5.7094130e-002 4.5996540e-002 2.6865280e-002 +v -5.7276490e-002 4.7299580e-002 2.9889950e-002 +v -3.9519900e-002 1.7385855e-001 -7.5752600e-003 +v -8.9641110e-002 1.3841920e-001 3.4141800e-002 +v -9.2601430e-002 1.3018652e-001 2.5183580e-002 +v -9.2280860e-002 1.2762053e-001 2.9751670e-002 +v -3.3957310e-002 4.1025060e-002 -2.9660250e-002 +v -9.0199540e-002 1.1657506e-001 5.6754900e-003 +v -5.8515890e-002 4.7731310e-002 2.1246000e-004 +v -7.1723560e-002 1.4617438e-001 -2.1567820e-002 +v -5.2389820e-002 4.5449130e-002 1.7686300e-002 +v -5.9414350e-002 4.7277990e-002 3.4172420e-002 +v -5.7520620e-002 1.5877600e-001 4.1621200e-003 +v -8.0959140e-002 1.0926674e-001 -2.0189900e-003 +v -5.1904000e-002 4.6100060e-002 1.9421290e-002 +v -5.1830050e-002 4.8568730e-002 2.1647030e-002 +v -7.7650400e-002 1.5658012e-001 -1.6599150e-002 +v -3.7416450e-002 4.7682130e-002 -1.7147280e-002 +v -7.8876110e-002 1.5347012e-001 3.9875800e-003 +v -5.7635420e-002 5.0425540e-002 4.6108400e-003 +v -5.2625440e-002 5.0434620e-002 2.9046740e-002 +v -5.2998720e-002 4.9169020e-002 3.3967600e-002 +v -7.3502600e-002 1.6871934e-001 -4.4791800e-002 +v -5.4420720e-002 4.7836520e-002 -5.9186900e-003 +v -5.2312740e-002 5.1085350e-002 2.4485690e-002 +v -7.9129930e-002 1.6736568e-001 -3.5506230e-002 +v 9.4115700e-003 1.2350285e-001 -9.8291000e-003 +v -3.2715700e-002 1.0896631e-001 -1.8941410e-002 +v -3.1133380e-002 4.9607260e-002 -1.9406940e-002 +v 4.5997330e-002 6.9814450e-002 3.0143300e-003 +v 3.3525460e-002 1.0966209e-001 -6.9894800e-003 +v -5.5047160e-002 5.2767560e-002 -3.9461300e-003 +v -5.6897890e-002 4.9655570e-002 -1.5319000e-003 +v -5.0290500e-002 4.9098930e-002 1.7164780e-002 +v -5.0595170e-002 4.9923270e-002 1.9174130e-002 +v -5.1887420e-002 5.3324670e-002 2.8705560e-002 +v -6.7684480e-002 1.6533627e-001 -5.5466400e-002 +v -3.0271440e-002 5.2106080e-002 -1.7676140e-002 +v -9.1087300e-003 1.1141669e-001 -2.0543230e-002 +v -5.7069360e-002 5.4424380e-002 2.3395500e-003 +v -3.2748380e-002 1.7759875e-001 -1.1627470e-002 +v -2.9009580e-002 5.1265290e-002 -2.2175780e-002 +v -3.1383130e-002 5.1791310e-002 -1.3886800e-002 +v -5.5673960e-002 5.6983850e-002 -3.3510400e-003 +v -5.0916050e-002 5.3813610e-002 1.9753140e-002 +v -8.8875380e-002 1.5169443e-001 2.0086580e-002 +v -7.7153050e-002 1.7378676e-001 -4.7867620e-002 +v -7.8577770e-002 1.6420639e-001 -3.1825860e-002 +v -2.7545910e-002 5.4021570e-002 -2.5147390e-002 +v -5.4463660e-002 5.5357450e-002 1.0326840e-002 +v -8.7041410e-002 1.3058932e-001 9.1161000e-004 +v -9.0009340e-002 1.3278082e-001 5.9220600e-003 +v -9.2232620e-002 1.3195400e-001 1.5430650e-002 +v -4.8639980e-002 1.6472475e-001 -5.0591500e-003 +v -5.4066480e-002 5.9959350e-002 -7.5992200e-003 +v -5.7434090e-002 5.7683500e-002 8.7259700e-003 +v -8.6794730e-002 1.3850688e-001 4.5575900e-003 +v -9.2989530e-002 1.3092307e-001 1.9919290e-002 +v -9.1282030e-002 1.3311897e-001 2.4688630e-002 +v 2.1815020e-002 1.1770533e-001 -1.0015300e-002 +v -2.9647120e-002 5.8104260e-002 -2.1311320e-002 +v -3.1289530e-002 5.5208570e-002 -1.4387840e-002 +v -5.9002160e-002 5.9234620e-002 2.6140800e-003 +v -9.0241700e-002 1.3575994e-001 1.4149160e-002 +v -6.1569420e-002 1.7084875e-001 -6.1679170e-002 +v -6.6070180e-002 1.6557822e-001 -5.8644080e-002 +v -2.4539930e-002 1.8005865e-001 -1.8726950e-002 +v -1.6131750e-002 1.8298848e-001 -2.6037190e-002 +v -3.0809390e-002 5.6998040e-002 -1.7835020e-002 +v 1.0464280e-002 9.6180450e-002 -2.5898970e-002 +v -5.7491630e-002 5.9530160e-002 -1.0786100e-003 +v -8.9146460e-002 1.3650500e-001 2.5952780e-002 +v 4.3714500e-003 1.0391901e-001 -2.1515100e-002 +v -9.0377040e-002 1.3252490e-001 3.1082650e-002 +v -9.0795450e-002 1.3855232e-001 2.0562560e-002 +v -9.4237710e-002 1.2615419e-001 2.2201450e-002 +v -9.0336910e-002 1.3119830e-001 3.8138790e-002 +v -4.5082610e-002 1.2218447e-001 -1.1569430e-002 +v 1.1348010e-002 9.8243750e-002 -2.3024250e-002 +v -3.9227920e-002 9.9184630e-002 -2.1912720e-002 +v -6.5509530e-002 1.5857325e-001 -5.5600270e-002 +v -7.7409510e-002 1.6260515e-001 -2.0754580e-002 +v -4.8580010e-002 1.6689211e-001 -2.5256100e-003 +v -7.6922910e-002 1.5351394e-001 -9.0785600e-003 +v -6.7750580e-002 1.5734825e-001 -5.3982110e-002 +v 5.2906410e-002 6.5230450e-002 -5.1112000e-004 +v -2.9054820e-002 6.1084120e-002 -2.4918230e-002 +v -3.1066920e-002 6.5058860e-002 -2.2751080e-002 +v 2.4249720e-002 1.0266151e-001 -1.8313830e-002 +v -5.5473660e-002 1.6050213e-001 1.3763500e-003 +v -6.6642850e-002 1.6040875e-001 -5.6842680e-002 +v -7.8200320e-002 1.6073213e-001 -2.3999690e-002 +v -1.8320680e-002 1.1968625e-001 -1.1110660e-002 +v 2.1712970e-002 1.0956342e-001 -1.5081090e-002 +v -6.8382640e-002 1.5980248e-001 -5.4208800e-002 +v -2.5445620e-002 6.0208550e-002 -3.0864700e-002 +v -2.6540330e-002 6.5084000e-002 -3.1664870e-002 +v -2.8425710e-002 6.2199610e-002 -2.7938500e-002 +v -3.2605750e-002 6.1264600e-002 -1.5453010e-002 +v -7.0872290e-002 1.1611638e-001 -7.9563700e-003 +v -6.9780530e-002 1.5938570e-001 -4.9418240e-002 +v -3.0324870e-002 6.7694720e-002 -2.7654950e-002 +v -3.2977370e-002 6.6365180e-002 -1.8385530e-002 +v 1.3533490e-002 1.0255388e-001 -2.1579310e-002 +v 4.4408530e-002 6.9758860e-002 9.4765000e-004 +v -2.1999000e-003 1.1215881e-001 -1.9658660e-002 +v -7.2028500e-002 6.7046610e-002 -7.2256000e-004 +v -7.8699630e-002 1.7313910e-001 -4.2720470e-002 +v -8.3211970e-002 1.5072131e-001 4.2128500e-003 +v -8.7439060e-002 1.3374875e-001 2.3974700e-003 +v 2.6348020e-002 8.4562230e-002 -2.3151710e-002 +v -7.4901490e-002 7.0419350e-002 -2.2854300e-003 +v -5.4576350e-002 9.1562950e-002 -2.2098700e-002 +v -7.3242520e-002 1.5231332e-001 -3.5703520e-002 +v -7.4550960e-002 1.7218738e-001 -4.7551010e-002 +v -2.8680680e-002 6.8283500e-002 -3.0610160e-002 +v 1.7372900e-002 1.0246037e-001 -2.1487700e-002 +v -8.1257430e-002 7.3025200e-002 7.1020400e-003 +v -7.4982300e-002 1.5407794e-001 -1.8974470e-002 +v -9.1556500e-002 1.3196262e-001 1.0638150e-002 +v -8.2448000e-004 9.5165120e-002 -3.2056320e-002 +v -7.7618830e-002 7.3999130e-002 -5.3263500e-003 +v -7.9858790e-002 7.2755040e-002 3.0420200e-003 +v -8.1627470e-002 7.3470610e-002 1.1161690e-002 +v -7.3679290e-002 1.4785987e-001 -2.0236290e-002 +v -9.1309820e-002 1.4848588e-001 1.6270070e-002 +v -9.0850140e-002 1.4625613e-001 1.4809050e-002 +v -6.8543890e-002 1.7513008e-001 -5.7187900e-002 +v -2.7253960e-002 1.0747453e-001 -2.1279680e-002 +v 2.1443580e-002 1.2273826e-001 -2.9316700e-003 +v -7.9061200e-002 7.3724300e-002 -8.4521000e-004 +v -8.2063500e-002 7.5993670e-002 1.7615500e-003 +v -8.3736580e-002 7.6771840e-002 8.9586000e-003 +v -9.0205720e-002 1.4947775e-001 1.3035090e-002 +v 8.4818000e-004 1.1670025e-001 -1.7337090e-002 +v -7.4577550e-002 1.5164041e-001 -2.8647990e-002 +v -2.9087460e-002 7.2924630e-002 -3.3354470e-002 +v -3.1184020e-002 7.3989530e-002 -3.0339870e-002 +v -3.2606620e-002 7.1955620e-002 -2.4866580e-002 +v -8.0575990e-002 7.6607800e-002 -2.9879400e-003 +v -8.9491020e-002 1.4392581e-001 1.2488490e-002 +v -7.7388410e-002 1.4656426e-001 -4.3543000e-003 +v -7.2896160e-002 1.5834962e-001 -3.4109420e-002 +v 7.1346500e-003 1.1468229e-001 -1.8345640e-002 +v -3.4502610e-002 7.6130020e-002 -2.2373150e-002 +v -8.3890740e-002 8.0789530e-002 2.2951400e-003 +v -8.3740480e-002 7.7240270e-002 4.6673300e-003 +v -8.6204620e-002 8.0930750e-002 1.0535420e-002 +v -8.6061500e-002 7.9931100e-002 1.4440780e-002 +v -8.1542760e-002 7.7950660e-002 2.6727280e-002 +v 2.6666170e-002 1.1268609e-001 -1.0509540e-002 +v -7.6041430e-002 1.5663068e-001 -2.1420480e-002 +v -9.0012110e-002 1.5083344e-001 1.5752740e-002 +v -7.1156510e-002 1.6335125e-001 -4.5360530e-002 +v -3.3210960e-002 7.6873190e-002 -2.7708380e-002 +v -7.3263090e-002 7.9983830e-002 -1.3749940e-002 +v -7.9285950e-002 8.0048830e-002 -7.0125500e-003 +v -8.6034510e-002 8.2645720e-002 1.9542680e-002 +v -8.4335410e-002 8.0729950e-002 2.2180460e-002 +v -7.1351460e-002 1.5727092e-001 -4.2183090e-002 +v -7.3548450e-002 1.6120822e-001 -3.5288420e-002 +v 1.6732620e-002 1.0991230e-001 -1.7020040e-002 +v -3.0978770e-002 7.7020860e-002 -3.2816490e-002 +v -6.2359240e-002 1.7544824e-001 -6.1485990e-002 +v -1.7587870e-002 1.1491318e-001 -1.7205040e-002 +v -8.2354050e-002 8.0876320e-002 -2.4038900e-003 +v -7.8578910e-002 1.4050129e-001 -4.6031000e-003 +v -2.8931080e-002 7.9247620e-002 -3.5049800e-002 +v -3.1225710e-002 8.0413100e-002 -3.2182320e-002 +v -3.3258680e-002 7.9621670e-002 -2.7146060e-002 +v -4.4697400e-002 1.1791537e-001 -1.4725860e-002 +v -7.9723740e-002 8.4226660e-002 -8.7608600e-003 +v -8.5042160e-002 8.3817830e-002 -7.7640000e-005 +v -8.6776400e-002 8.4344860e-002 1.2419030e-002 +v -8.6674670e-002 8.2665010e-002 1.5174340e-002 +v -8.5106250e-002 8.5176580e-002 2.5679440e-002 +v -7.6975760e-002 8.2935940e-002 -1.1450630e-002 +v -8.2776390e-002 8.3430890e-002 -4.3687000e-003 +v -8.6180440e-002 8.2572150e-002 6.3639000e-003 +v -9.1160820e-002 1.4144362e-001 1.5673910e-002 +v -7.4638800e-002 1.4398484e-001 -7.1504600e-003 +v -8.3448500e-002 1.3393299e-001 -1.6873200e-003 +v -7.5804700e-002 1.5134475e-001 -1.9881200e-002 +v -7.4924140e-002 1.5273013e-001 -1.9397440e-002 +v -5.2314440e-002 1.2159646e-001 -1.0798060e-002 +v -3.0734050e-002 8.5427560e-002 -3.0506670e-002 +v -3.2590560e-002 8.1942660e-002 -2.9100210e-002 +v -8.6454830e-002 8.6940490e-002 9.1667000e-004 +v -1.2501820e-002 1.0634409e-001 -2.2360190e-002 +v -8.8585880e-002 1.4605869e-001 9.8780000e-003 +v -8.5609750e-002 1.4712513e-001 6.5981100e-003 +v -8.7511210e-002 1.5061504e-001 1.0152460e-002 +v -6.0113540e-002 3.5550440e-002 4.4907580e-002 +v -8.8284200e-002 8.6869110e-002 8.1029200e-003 +v -8.8812560e-002 8.7765490e-002 1.4226540e-002 +v -8.8001070e-002 8.6626430e-002 1.5466680e-002 +v -8.6991110e-002 8.6444700e-002 2.2420950e-002 +v -7.4609990e-002 1.4727815e-001 -1.4172380e-002 +v -3.4707910e-002 8.4035880e-002 -2.4302260e-002 +v -8.4964900e-002 8.9962540e-002 -3.0068000e-003 +v -8.8091450e-002 8.7741580e-002 4.8489900e-003 +v -9.1490470e-002 1.4543178e-001 2.2277220e-002 +v -9.4380420e-002 1.2183919e-001 1.7904340e-002 +v -2.9164530e-002 8.5393440e-002 -3.3666780e-002 +v -3.0557790e-002 8.8625920e-002 -2.7550670e-002 +v -7.7770550e-002 8.7844840e-002 -1.1694810e-002 +v -8.0728260e-002 8.8204150e-002 -7.8003100e-003 +v -8.3272540e-002 8.9476690e-002 -5.6502900e-003 +v -8.9398710e-002 8.9539000e-002 1.1645550e-002 +v -8.9698390e-002 1.3971257e-001 1.3774760e-002 +v -7.7134890e-002 1.5151225e-001 -5.5823000e-003 +v -5.1121410e-002 1.6374125e-001 -2.6640500e-003 +v -8.6442960e-002 1.2767438e-001 -1.4864100e-003 +v -6.9605590e-002 1.5490763e-001 -5.0188670e-002 +v -8.7265180e-002 9.2110030e-002 4.2059000e-003 +v -8.9086250e-002 9.2377120e-002 1.0569860e-002 +v -8.9612340e-002 9.1599880e-002 1.7812280e-002 +v -8.2732460e-002 1.4196856e-001 1.2529100e-003 +v -7.2618370e-002 1.4368135e-001 -1.0987100e-002 +v -7.7677230e-002 1.6610992e-001 -3.6777320e-002 +v -1.5078060e-002 9.3863440e-002 -3.4317310e-002 +v -7.1057280e-002 1.5476885e-001 -4.5778530e-002 +v -9.2331920e-002 1.2523886e-001 9.1589500e-003 +v -7.6046700e-002 9.1037250e-002 -1.3643150e-002 +v -8.2942810e-002 9.3291700e-002 -6.1856300e-003 +v -1.0411170e-002 9.4592340e-002 -3.3784850e-002 +v -2.9331140e-002 1.1476230e-001 -1.5844640e-002 +v -3.7218250e-002 1.1594244e-001 -1.5173050e-002 +v -1.2429920e-002 1.0286006e-001 -2.3822480e-002 +v 6.6509600e-003 8.8144500e-002 -3.2945810e-002 +v -6.4119900e-003 9.2876210e-002 -3.4817640e-002 +v 1.5800150e-002 1.1996558e-001 -1.1415630e-002 +v 2.9102740e-002 1.0247506e-001 -1.5768380e-002 +v 4.2080690e-002 6.3480630e-002 -2.5405300e-003 +v 2.8723120e-002 9.7943220e-002 -1.7497350e-002 +v -1.9987640e-002 1.0278313e-001 -2.3392920e-002 +v 3.3748350e-002 8.3644140e-002 -1.8630450e-002 +v -1.8685680e-002 1.8689625e-001 -2.0248700e-002 +v 6.4154900e-003 1.1790181e-001 -1.6282740e-002 +v 5.6305210e-002 6.7769910e-002 2.6525000e-003 +v -5.3608300e-003 1.1289400e-001 -1.9613290e-002 +v 4.5769430e-002 6.4628800e-002 -1.2166100e-003 +v -1.0090870e-002 9.8229650e-002 -2.7731360e-002 +v -6.0458520e-002 1.1755645e-001 -1.1354580e-002 +v 1.2933940e-002 1.1887250e-001 -1.3979370e-002 +v 1.5235680e-002 9.4977900e-002 -2.4437140e-002 +v -3.0892950e-002 4.7409030e-002 -2.4954000e-002 +v -1.7766190e-002 1.8572344e-001 -2.3049280e-002 +v -1.3034890e-002 1.1002855e-001 -2.0161170e-002 +v -7.1206550e-002 3.8608570e-002 7.7218000e-004 +v 1.7904800e-002 1.0627709e-001 -1.7729250e-002 +v -3.3623490e-002 1.1840428e-001 -1.1927480e-002 +v -4.9906840e-002 1.1788332e-001 -1.4402480e-002 +v -6.6878100e-003 1.1747209e-001 -1.5359280e-002 +v -1.5451470e-002 1.8597600e-001 -2.4795870e-002 +v -3.0603900e-002 3.8038460e-002 -3.0123840e-002 +v -1.3220270e-002 1.8397188e-001 -2.7519460e-002 +v -4.7859450e-002 1.1162729e-001 -1.7482120e-002 +v -1.3098990e-002 9.0776040e-002 -3.6659270e-002 +v -6.3117340e-002 1.5425437e-001 2.9730400e-003 +v -5.5139750e-002 1.1051601e-001 -1.7672740e-002 +v -1.1096770e-002 1.8202324e-001 -2.8042450e-002 +v -2.6568900e-002 3.4695830e-002 -2.9113750e-002 +v -6.6396600e-003 1.0222209e-001 -2.3519320e-002 +v -5.6996400e-002 1.5741713e-001 6.0244000e-004 +v 1.9076550e-002 9.1870620e-002 -2.4890230e-002 +v 1.3473090e-002 1.2429893e-001 -6.8361400e-003 +v -2.1730490e-002 9.8410960e-002 -2.4306850e-002 +v -1.7142170e-002 9.8057460e-002 -2.4924330e-002 +v -5.8698110e-002 1.5137318e-001 -6.5801000e-004 +v 3.5641100e-003 1.2764883e-001 -4.4672400e-003 +v -8.5369800e-003 9.9921220e-002 -2.4351070e-002 +v -1.2171980e-002 1.8125102e-001 -2.9061170e-002 +v -6.1113980e-002 1.5305212e-001 9.9983000e-004 +v -2.9570620e-002 1.1713871e-001 -1.3675530e-002 +v 3.0530110e-002 1.1221207e-001 -8.1860600e-003 +v -3.1714100e-002 3.5111530e-002 -3.0658990e-002 +v -1.3691130e-002 1.7914707e-001 -2.8126410e-002 +v 1.1620840e-002 1.1548972e-001 -1.6385680e-002 +v -6.1993570e-002 1.5028063e-001 -1.6297100e-003 +v 3.6684020e-002 1.0099570e-001 -9.8485900e-003 +v 4.8512670e-002 7.1798180e-002 6.0005000e-003 +v -4.6583000e-004 1.1983662e-001 -1.3610580e-002 +v 1.6747170e-002 9.0113950e-002 -2.7127190e-002 +v 6.9832400e-003 9.7730080e-002 -2.4800310e-002 +v -4.3226830e-002 4.6263570e-002 -1.1771730e-002 +v -8.3562500e-003 1.1373600e-001 -1.8239810e-002 +v -1.2354410e-002 1.1556773e-001 -1.6486930e-002 +v 4.6834470e-002 7.4354100e-002 1.0139500e-002 +v 2.5319170e-002 1.0931725e-001 -1.3579660e-002 +v -4.2459500e-002 1.1392482e-001 -1.6188050e-002 +v 5.7744640e-002 6.4158440e-002 2.6277600e-003 +v -5.9710530e-002 3.6535780e-002 -9.4949000e-003 +v -3.2078400e-003 1.0962100e-001 -2.1523850e-002 +v 2.7020740e-002 6.1345700e-002 -2.2292060e-002 +v 7.1030200e-003 1.0191162e-001 -2.1230990e-002 +v -3.8225680e-002 1.2465525e-001 -7.3257400e-003 +v 2.5941540e-002 1.1576352e-001 -8.2193900e-003 +v -6.1297960e-002 3.3900220e-002 -9.3216600e-003 +v -5.9466670e-002 1.4743956e-001 -1.8885400e-003 +v 1.0506610e-002 1.0087700e-001 -2.2109510e-002 +v 3.3081340e-002 1.0273382e-001 -1.2787210e-002 +v 1.2517840e-002 1.0475378e-001 -1.9915960e-002 +v 2.3087990e-002 9.3998720e-002 -2.2210680e-002 +v 3.1555430e-002 9.2484730e-002 -1.8204280e-002 +v 6.2723100e-003 9.9910370e-002 -2.2296890e-002 +v -4.0917240e-002 4.6121780e-002 -1.7942580e-002 +v 3.5407360e-002 9.8188850e-002 -1.2008970e-002 +v 9.4135900e-003 1.2121902e-001 -1.2937780e-002 +v 5.3735190e-002 7.2027350e-002 6.8010000e-003 +v 2.5620340e-002 1.1880719e-001 -5.0330800e-003 +v -3.8150260e-002 4.2466610e-002 -2.6893990e-002 +v -2.8212410e-002 1.1116862e-001 -1.8001930e-002 +v -6.0253590e-002 1.4339100e-001 -3.7906300e-003 +v 1.9016880e-002 1.0401450e-001 -1.9333120e-002 +v 7.5446700e-003 9.1682150e-002 -3.1643140e-002 +v -7.0760800e-003 1.2240119e-001 -1.1364410e-002 +v -1.9047500e-002 9.6562130e-002 -2.7579900e-002 +v -1.6953390e-002 1.0669256e-001 -2.2002990e-002 +v -6.7307000e-004 1.0119875e-001 -2.2857770e-002 +v -9.0179300e-003 1.2528031e-001 -7.7912000e-003 +v -6.8136180e-002 1.8006113e-001 -5.8816050e-002 +v -2.3600190e-002 1.1513818e-001 -1.5577390e-002 +v -5.9831220e-002 4.2842260e-002 -6.6469100e-003 +v 5.3124070e-002 5.9012380e-002 -2.8853800e-003 +v -3.6931840e-002 3.7107370e-002 -2.9714170e-002 +v -5.6215140e-002 1.4139213e-001 -2.8027300e-003 +v 3.6695880e-002 1.0372844e-001 -7.9621500e-003 +v -3.5885070e-002 1.2040038e-001 -1.0640470e-002 +v -9.3569500e-003 8.5423730e-002 -3.8112540e-002 +v -6.0127340e-002 1.2041391e-001 -9.3791100e-003 +v -3.9842790e-002 1.2156113e-001 -1.1570310e-002 +v 2.8322200e-002 1.0847957e-001 -1.2623390e-002 +v -1.8733500e-003 1.1593910e-001 -1.7169430e-002 +v 3.8648150e-002 9.0153340e-002 -1.2549680e-002 +v -1.7359200e-003 9.2244170e-002 -3.4310460e-002 +v 5.0000820e-002 6.1612070e-002 -3.4649900e-003 +v 5.5858960e-002 6.2910170e-002 6.9037000e-004 +v 2.0461520e-002 1.1515372e-001 -1.3103780e-002 +v -1.5165840e-002 1.1798075e-001 -1.4465520e-002 +v -7.0859540e-002 7.1510150e-002 3.3895100e-002 +v 2.2674030e-002 8.6606050e-002 -2.4925490e-002 +v 3.5358840e-002 8.7438890e-002 -1.7109050e-002 +v 1.8400920e-002 1.2145507e-001 -7.6804200e-003 +v -2.5425900e-002 4.1421010e-002 -2.9204830e-002 +v -8.2085100e-003 9.6777440e-002 -3.0809780e-002 +v -5.6810660e-002 3.3873940e-002 -1.1166310e-002 +v -3.4588640e-002 4.4744960e-002 -2.7122900e-002 +v -4.0251680e-002 1.1827531e-001 -1.3674080e-002 +v 1.6387020e-002 1.1402346e-001 -1.5496900e-002 +v 4.2635280e-002 6.0797460e-002 -3.4583700e-003 +v -5.0687200e-002 3.5935870e-002 -1.2380790e-002 +v 7.3446800e-003 9.4509570e-002 -2.9683220e-002 +v -1.9706700e-002 9.2917340e-002 -3.4636880e-002 +v -1.2083040e-002 1.2219229e-001 -9.7120900e-003 +v 4.8805930e-002 6.8457810e-002 1.6952900e-003 +v -3.0869700e-003 9.8402500e-002 -2.7403170e-002 +v -5.3198790e-002 1.3672896e-001 -1.6580500e-003 +v -4.7290060e-002 1.3055355e-001 1.6909100e-003 +v 4.4651700e-003 1.2044039e-001 -1.3931400e-002 +v -2.3850100e-003 1.2290534e-001 -1.0382460e-002 +v -2.4833330e-002 9.5858030e-002 -2.5162110e-002 +v -4.2296900e-002 3.6291920e-002 -2.7253600e-002 +v -5.4388260e-002 1.3404922e-001 -3.9920400e-003 +v -5.0539380e-002 1.3336659e-001 -1.0872200e-003 +v 2.6040300e-003 9.6942660e-002 -2.8407060e-002 +v -7.8163100e-003 1.2821209e-001 -1.9430400e-003 +v 6.5111700e-003 1.3002517e-001 9.2881000e-004 +v 3.4742860e-002 9.2274140e-002 -1.5654590e-002 +v -6.7787700e-002 1.8088887e-001 -5.8191050e-002 +v -3.3715410e-002 1.1151566e-001 -1.8078440e-002 +v 4.4630400e-003 1.2427294e-001 -9.4291400e-003 +v -2.3370170e-002 9.3392760e-002 -3.2031820e-002 +v -4.8982070e-002 1.2980647e-001 -1.3229400e-003 +v -7.8164000e-004 1.2822918e-001 -3.2490000e-003 +v 2.4960400e-003 8.9857600e-002 -3.3628450e-002 +v 7.4553300e-003 1.1196790e-001 -1.9554260e-002 +v 2.8791140e-002 9.1157340e-002 -2.0370210e-002 +v -5.3590150e-002 1.2437450e-001 -7.3470400e-003 +v -4.7743630e-002 1.2064432e-001 -1.2812990e-002 +v -1.9616230e-002 1.2109197e-001 -9.5487700e-003 +v -6.5047370e-002 1.7999148e-001 -5.9758600e-002 +v -5.1704160e-002 3.7620360e-002 -1.1763450e-002 +v -5.2124270e-002 1.2929832e-001 -4.1187000e-003 +v -4.5334450e-002 1.2891494e-001 1.5819100e-003 +v -3.0471200e-003 1.2919453e-001 -1.0688000e-003 +v 7.2129600e-003 1.2721957e-001 -5.2073700e-003 +v 1.1669320e-002 1.2720154e-001 -3.1850900e-003 +v 5.3056400e-002 6.9708830e-002 3.1291400e-003 +v -6.3021150e-002 1.7810951e-001 -6.0393570e-002 +v 2.8204800e-002 6.4391270e-002 -2.0698040e-002 +v 3.4400180e-002 1.0503000e-001 -1.0224920e-002 +v 3.0975190e-002 1.0790250e-001 -1.1058430e-002 +v -4.8984390e-002 1.1480518e-001 -1.5966690e-002 +v -3.2821710e-002 1.2300500e-001 -5.9088300e-003 +v -5.0792860e-002 1.2716487e-001 -4.8183200e-003 +v -3.5301670e-002 1.2547815e-001 -3.1542800e-003 +v 5.6455250e-002 6.9951490e-002 4.9191700e-003 +v -1.6240450e-002 1.2512177e-001 -3.6499700e-003 +v -1.6970400e-002 1.1119793e-001 -1.9586410e-002 +v -5.4088120e-002 3.9781210e-002 -1.0544680e-002 +v -3.4190490e-002 4.7514010e-002 -2.2301500e-002 +v 1.3699090e-002 9.3914220e-002 -2.6427690e-002 +v 8.8000000e-004 9.9234930e-002 -2.4355670e-002 +v -4.6459460e-002 1.2723953e-001 -4.8843300e-003 +v -4.1735500e-002 1.2687599e-001 -4.1742000e-003 +v -2.1000480e-002 1.2313643e-001 -6.1190100e-003 +v -1.2130450e-002 1.2572568e-001 -5.2007900e-003 +v -4.3822400e-003 1.2640753e-001 -6.9495200e-003 +v 1.4085700e-003 3.4781990e-002 -2.3265200e-002 +v -1.4846200e-002 3.5070930e-002 -2.6071900e-002 +v -2.1399500e-002 3.4795120e-002 -2.7958820e-002 +v 1.2009220e-002 3.5961900e-002 -2.1735750e-002 +v 3.8249200e-003 3.6129220e-002 -2.3878090e-002 +v -5.1139560e-002 9.6617580e-002 -2.2095120e-002 +v -5.4813320e-002 9.8102480e-002 -2.1425370e-002 +v -2.7597040e-002 1.6979824e-001 -1.8170420e-002 +v 1.3359870e-002 3.9377410e-002 -2.2496330e-002 +v 4.3919300e-003 3.8674430e-002 -2.4170290e-002 +v -6.8478200e-003 3.6444540e-002 -2.5177120e-002 +v -1.3280260e-002 3.7699590e-002 -2.6391810e-002 +v -4.7672760e-002 3.6116650e-002 -1.3301210e-002 +v -4.5590120e-002 1.0853826e-001 -1.8796680e-002 +v -5.0095670e-002 1.0990925e-001 -1.8504510e-002 +v -6.5766640e-002 3.6469550e-002 -7.2073000e-003 +v -2.3455840e-002 1.6824727e-001 -1.8822880e-002 +v -4.5918000e-003 3.8404570e-002 -2.5412870e-002 +v -2.4954130e-002 3.7441060e-002 -2.9152720e-002 +v 2.9007770e-002 3.7358220e-002 -2.7474000e-004 +v -7.9468800e-003 4.1489920e-002 -2.5911270e-002 +v -1.6803800e-002 3.9753810e-002 -2.7565350e-002 +v -6.5156150e-002 1.4034537e-001 -7.6848600e-003 +v -4.7080100e-002 4.0700690e-002 -1.1869830e-002 +v -6.8470630e-002 3.7477700e-002 -4.9557400e-003 +v 3.7326850e-002 4.0209510e-002 -8.5850000e-004 +v 3.5349870e-002 4.1257050e-002 -2.8075100e-003 +v 5.1820700e-003 4.1536320e-002 -2.4065670e-002 +v 1.8660660e-002 1.0030784e-001 -2.2127290e-002 +v -6.0510780e-002 1.0748450e-001 -1.7042300e-002 +v -6.2374340e-002 4.0146090e-002 -7.4040200e-003 +v 2.5456950e-002 3.9483890e-002 -4.0251400e-003 +v -2.2828000e-004 4.3394940e-002 -2.5124420e-002 +v -8.1088400e-003 4.3439060e-002 -2.6140070e-002 +v -1.7362450e-002 4.3237420e-002 -2.7665190e-002 +v -2.6416670e-002 4.4674020e-002 -2.8209740e-002 +v 3.8064500e-003 1.0944331e-001 -2.0203790e-002 +v -5.8232370e-002 9.5690400e-002 -2.0616030e-002 +v -6.6122370e-002 4.2341260e-002 -2.7538800e-003 +v -6.0959920e-002 9.4173040e-002 -1.9015670e-002 +v 3.1352250e-002 4.2649280e-002 -4.6745000e-003 +v -3.3540900e-002 3.6342620e-002 4.9089960e-002 +v 1.7252780e-002 4.4335610e-002 -2.3067190e-002 +v 1.0637660e-002 4.4161560e-002 -2.4926170e-002 +v 4.3843100e-003 4.5806710e-002 -2.6788990e-002 +v -8.2506400e-003 4.5148720e-002 -2.8441070e-002 +v -1.5748410e-002 4.5043860e-002 -2.7877790e-002 +v 2.8990330e-002 4.4697850e-002 -6.1863000e-003 +v 8.1686400e-003 4.5053030e-002 -2.5178740e-002 +v -9.6291000e-004 4.5378230e-002 -2.7308280e-002 +v -1.7033400e-003 4.7819200e-002 -2.9928930e-002 +v -3.1535830e-002 4.4740410e-002 -2.8079410e-002 +v -3.3619650e-002 1.5691468e-001 -1.1024870e-002 +v -5.0751180e-002 4.3109620e-002 -1.0018680e-002 +v 3.6890890e-002 4.7353200e-002 -6.1057100e-003 +v 2.4975630e-002 4.2644580e-002 -7.0169900e-003 +v 2.4562420e-002 4.8369560e-002 -1.9672760e-002 +v 1.3964040e-002 4.5579170e-002 -2.4706510e-002 +v 1.3376130e-002 4.8630300e-002 -2.6551500e-002 +v 3.7308900e-003 4.8127990e-002 -2.9025970e-002 +v -8.7947000e-003 4.7056850e-002 -2.9881630e-002 +v -1.3753770e-002 5.1865060e-002 -3.2243480e-002 +v -2.1200840e-002 4.6657090e-002 -2.7951320e-002 +v 3.9693540e-002 4.5658580e-002 -4.5274100e-003 +v 3.3627400e-002 4.8717730e-002 -6.3904600e-003 +v -6.5352120e-002 9.9294570e-002 -1.6820150e-002 +v 1.2868100e-003 5.0383670e-002 -3.0357440e-002 +v -8.1797500e-003 4.9845800e-002 -3.1071390e-002 +v -1.7184350e-002 4.8210500e-002 -2.9741930e-002 +v -2.6049450e-002 4.7692500e-002 -2.6149500e-002 +v -8.4747010e-002 1.1078350e-001 3.9488380e-002 +v -5.1316870e-002 4.8270690e-002 -7.9310500e-003 +v -8.2506510e-002 1.2765487e-001 -4.6796400e-003 +v 3.8663690e-002 5.1696670e-002 -6.6910200e-003 +v -7.5643160e-002 9.9440450e-002 -1.1927610e-002 +v 2.0284470e-002 5.1349190e-002 -2.4895380e-002 +v 5.9436000e-003 5.0976660e-002 -2.9119360e-002 +v -2.5528290e-002 5.1472710e-002 -2.6884680e-002 +v -3.5562670e-002 4.9399890e-002 -1.2865040e-002 +v -4.2818980e-002 1.6220182e-001 -1.0337510e-002 +v -6.5593600e-002 1.7665711e-001 -6.0504730e-002 +v -3.4151080e-002 1.7442797e-001 -1.3312550e-002 +v 4.3673180e-002 5.0162230e-002 -5.9843500e-003 +v -5.0342410e-002 1.5546197e-001 -5.1927700e-003 +v 2.5464180e-002 5.4029700e-002 -2.1691010e-002 +v 1.0149790e-002 4.9258540e-002 -2.7750590e-002 +v -2.2043190e-002 5.3612020e-002 -3.0135610e-002 +v -3.2875520e-002 5.1677630e-002 -1.0888650e-002 +v -3.7613820e-002 4.9534770e-002 -1.1626140e-002 +v -4.0750630e-002 4.9285110e-002 -1.1286200e-002 +v -4.6385170e-002 4.7490850e-002 -1.0085980e-002 +v 4.4473170e-002 5.3293010e-002 -6.3327900e-003 +v 3.3205620e-002 5.1020650e-002 -7.2382500e-003 +v 1.5678350e-002 5.1169270e-002 -2.6397810e-002 +v 6.8341700e-003 5.5010170e-002 -3.0561130e-002 +v 2.1424700e-003 5.5502800e-002 -3.1334400e-002 +v 5.9285000e-004 5.2867950e-002 -3.0513830e-002 +v -3.6481400e-003 5.1869000e-002 -3.1457940e-002 +v -9.4245600e-003 5.5399220e-002 -3.3653980e-002 +v -1.9302150e-002 5.8224770e-002 -3.3919700e-002 +v -6.1084270e-002 1.3386190e-001 -7.2248900e-003 +v -4.3309760e-002 5.5656840e-002 -1.1402110e-002 +v -6.1080540e-002 1.6833773e-001 -5.9192060e-002 +v 4.7574690e-002 5.2943630e-002 -5.1300300e-003 +v -3.7403030e-002 1.1150775e-001 -1.8243310e-002 +v 1.9972490e-002 5.4409710e-002 -2.7108230e-002 +v 5.3974800e-003 5.8382570e-002 -3.0903760e-002 +v -1.0603590e-002 5.3602910e-002 -3.3403350e-002 +v -3.4998290e-002 5.2331560e-002 -1.0347380e-002 +v -4.6471230e-002 5.1304340e-002 -9.8299800e-003 +v -6.7945360e-002 1.1493603e-001 -9.5107300e-003 +v -7.1048210e-002 1.5161088e-001 -4.4679270e-002 +v -5.8903800e-003 3.4790620e-002 -2.4224470e-002 +v 1.6842140e-002 5.5555670e-002 -2.8284560e-002 +v 1.0711040e-002 5.4687610e-002 -2.9767520e-002 +v -1.1826800e-003 5.9492420e-002 -3.3360920e-002 +v -5.2325900e-003 5.5688960e-002 -3.2840220e-002 +v -5.1705830e-002 5.2470760e-002 -7.4047200e-003 +v -5.2626360e-002 6.0043760e-002 -8.9566900e-003 +v -7.2598590e-002 9.7762720e-002 -1.4434510e-002 +v 4.4331260e-002 5.5818010e-002 -6.0362700e-003 +v 3.8463400e-002 5.4934820e-002 -6.1822500e-003 +v 3.8838620e-002 5.7808260e-002 -5.2584800e-003 +v -9.2015400e-003 5.9510130e-002 -3.4437110e-002 +v -3.5262560e-002 5.5284900e-002 -1.0545060e-002 +v -3.8336450e-002 5.4503540e-002 -1.0905320e-002 +v -1.7727540e-002 3.6289540e-002 5.2222250e-002 +v 5.0006490e-002 5.8095800e-002 -4.6211800e-003 +v 4.6133970e-002 5.9278810e-002 -4.7769600e-003 +v 1.5110300e-002 5.9819840e-002 -2.8645750e-002 +v 1.0312380e-002 5.7586530e-002 -2.9995250e-002 +v -6.1353400e-003 6.0256790e-002 -3.4695830e-002 +v -1.2318220e-002 5.9396390e-002 -3.5268510e-002 +v -1.4466910e-002 6.3136020e-002 -3.6865870e-002 +v -4.6650260e-002 5.9840950e-002 -1.2135840e-002 +v -5.6572080e-002 1.2480275e-001 -7.1885700e-003 +v -7.9237500e-002 1.2055419e-001 -5.6744800e-003 +v -7.9334790e-002 1.2560650e-001 -6.1175900e-003 +v 2.2340000e-002 5.8492230e-002 -2.6014120e-002 +v 7.6270400e-003 6.2098330e-002 -3.1135840e-002 +v 3.3101700e-003 6.0456840e-002 -3.2481070e-002 +v -1.6811880e-002 6.1275230e-002 -3.5929330e-002 +v -3.2491910e-002 5.7196350e-002 -1.2104730e-002 +v -3.4108240e-002 6.1466560e-002 -1.3053130e-002 +v -3.3896980e-002 5.7025330e-002 -1.1047570e-002 +v -3.8623580e-002 5.8303290e-002 -1.1505750e-002 +v -4.5008400e-002 6.2723940e-002 -1.3390450e-002 +v -5.6896010e-002 1.3398739e-001 -5.6270700e-003 +v -4.4853890e-002 1.5746031e-001 -8.6731600e-003 +v -7.8609550e-002 6.9656870e-002 1.1810740e-002 +v -2.3730020e-002 1.0186156e-001 -2.3836400e-002 +v -2.8122930e-002 9.9322390e-002 -2.3580130e-002 +v -5.0076720e-002 1.4997652e-001 -3.6419700e-003 +v -3.3048420e-002 9.5958590e-002 -2.3426460e-002 +v 1.9520390e-002 6.2064770e-002 -2.7292470e-002 +v -3.8864710e-002 1.0333987e-001 -2.0641400e-002 +v -4.8952940e-002 5.6281090e-002 -1.0220880e-002 +v -5.3993040e-002 1.4498656e-001 -1.1093400e-003 +v -4.5530560e-002 9.8510850e-002 -2.1729510e-002 +v -5.0910960e-002 1.0074570e-001 -2.1619430e-002 +v 2.3245830e-002 6.2792530e-002 -2.5047990e-002 +v 9.7412800e-003 6.3181400e-002 -3.1141370e-002 +v -8.6614000e-004 6.4559630e-002 -3.4490930e-002 +v -8.5264000e-003 6.4001730e-002 -3.5850480e-002 +v -4.8451500e-002 6.4794120e-002 -1.3029910e-002 +v -5.2325160e-002 1.0614813e-001 -1.9271240e-002 +v -5.5265350e-002 1.0216682e-001 -1.9897100e-002 +v -5.9042010e-002 9.9032210e-002 -1.9222950e-002 +v -5.7846760e-002 1.0433496e-001 -1.8525740e-002 +v -2.7113460e-002 1.7332156e-001 -1.8538890e-002 +v 2.2832000e-002 6.7082570e-002 -2.6297510e-002 +v 1.4519060e-002 6.4595540e-002 -2.9855690e-002 +v 1.1471330e-002 6.7581440e-002 -3.0901170e-002 +v -1.7739360e-002 6.6260830e-002 -3.7657310e-002 +v -6.5059750e-002 1.3452104e-001 -8.0899900e-003 +v -7.5829320e-002 1.4244605e-001 -5.8090000e-003 +v -4.1362350e-002 6.1637330e-002 -1.2813770e-002 +v -5.6147890e-002 6.1921550e-002 -5.7541100e-003 +v -6.2126110e-002 6.2845360e-002 -4.5202600e-003 +v -3.7292480e-002 1.6449057e-001 -1.3627050e-002 +v -1.9818920e-002 1.6509494e-001 -1.7608980e-002 +v 6.2881100e-003 6.5416350e-002 -3.2563040e-002 +v -5.9250500e-003 6.9515630e-002 -3.5933480e-002 +v -1.0538630e-002 6.7999180e-002 -3.6517060e-002 +v -3.5385700e-002 6.6817430e-002 -1.5434860e-002 +v -5.3994500e-002 6.4638700e-002 -9.3254900e-003 +v -6.3852310e-002 6.5572310e-002 -6.9393300e-003 +v -6.3920880e-002 1.2774242e-001 -8.5494600e-003 +v -2.6940700e-002 3.6184050e-002 5.3351850e-002 +v 1.9618650e-002 6.7007390e-002 -2.8356120e-002 +v 1.2275180e-002 6.9933940e-002 -3.1553160e-002 +v 5.4265100e-003 6.8247960e-002 -3.2730520e-002 +v -4.4084200e-003 6.6619200e-002 -3.4870250e-002 +v -2.1911350e-002 6.7144790e-002 -3.6535750e-002 +v -4.5643150e-002 1.5466949e-001 -7.2969400e-003 +v -5.1673460e-002 6.6850660e-002 -1.2120350e-002 +v -5.8105180e-002 6.6465950e-002 -1.0044340e-002 +v -5.6992260e-002 1.4311862e-001 -2.2403000e-003 +v -8.0651110e-002 1.3119854e-001 -4.4397800e-003 +v -5.6544310e-002 1.2850938e-001 -6.2014700e-003 +v 1.7758080e-002 7.0138540e-002 -2.9404680e-002 +v 6.4980500e-003 7.0791870e-002 -3.3525310e-002 +v 7.5831000e-004 7.0434460e-002 -3.4462560e-002 +v -1.3235950e-002 6.9292820e-002 -3.7917490e-002 +v -6.7390780e-002 1.1889688e-001 -8.7301400e-003 +v -3.8119520e-002 6.4162310e-002 -1.3829140e-002 +v 1.8527400e-003 1.1303356e-001 -1.9794270e-002 +v -7.5950810e-002 6.8170610e-002 1.8117970e-002 +v -1.0001990e-002 7.2671480e-002 -3.7661370e-002 +v -1.7976070e-002 7.0613770e-002 -3.8443880e-002 +v -2.3035990e-002 7.2778460e-002 -3.8072640e-002 +v -2.6120100e-002 7.1177480e-002 -3.5451530e-002 +v -6.8535420e-002 1.3929375e-001 -7.8046600e-003 +v -3.5263040e-002 7.1067650e-002 -1.8011860e-002 +v -4.1558180e-002 6.9774010e-002 -1.6774100e-002 +v -5.2831730e-002 7.0298920e-002 -1.4864960e-002 +v -6.6978850e-002 6.7638980e-002 -6.8094400e-003 +v -1.0244470e-002 1.7895826e-001 -2.9538870e-002 +v -7.5272650e-002 1.2680098e-001 -8.0241700e-003 +v -8.7359900e-002 1.1248315e-001 4.2049490e-002 +v 8.7503000e-003 7.4301560e-002 -3.3398210e-002 +v -6.4249520e-002 1.6045024e-001 -5.7041470e-002 +v -4.4354010e-002 7.3372220e-002 -1.7874430e-002 +v -4.5762580e-002 6.9445320e-002 -1.5928780e-002 +v -4.7957440e-002 7.2542990e-002 -1.6106990e-002 +v -5.7822630e-002 6.9538010e-002 -1.4416470e-002 +v -7.2071600e-002 7.1538150e-002 -7.4714400e-003 +v 2.5472930e-002 7.4094500e-002 -2.4938540e-002 +v 1.5719730e-002 7.3756350e-002 -2.9747770e-002 +v 4.8214000e-003 7.3763980e-002 -3.4552450e-002 +v -2.2528600e-003 7.3921320e-002 -3.5887190e-002 +v -7.3834900e-003 7.4799620e-002 -3.7223830e-002 +v -2.0225340e-002 7.7095190e-002 -3.9044290e-002 +v -3.4016180e-002 7.2101270e-002 -2.0823150e-002 +v -3.8493370e-002 7.2839870e-002 -1.7502230e-002 +v -6.4392550e-002 7.3116330e-002 -1.5335340e-002 +v -6.4480660e-002 7.0187350e-002 -1.2261750e-002 +v -2.3854330e-002 1.6164528e-001 -1.4504190e-002 +v 2.2104450e-002 7.2692600e-002 -2.6900140e-002 +v 1.5532370e-002 7.6586960e-002 -2.9606940e-002 +v 1.1574050e-002 7.4860570e-002 -3.1383860e-002 +v -1.4731560e-002 7.7640750e-002 -3.8490670e-002 +v -1.6018820e-002 7.4288800e-002 -3.8864420e-002 +v -5.1103620e-002 7.3071950e-002 -1.6243060e-002 +v -5.7989540e-002 7.4017880e-002 -1.7522320e-002 +v -6.9608380e-002 7.2322890e-002 -1.0934430e-002 +v -7.5996110e-002 1.1714132e-001 -6.5577200e-003 +v -3.7987660e-002 1.0751453e-001 -1.9975760e-002 +v 1.0696210e-002 7.9889200e-002 -3.2009580e-002 +v -5.3433400e-003 7.8264580e-002 -3.7476940e-002 +v -2.6081990e-002 7.6191290e-002 -3.6780200e-002 +v -3.9161040e-002 1.5718885e-001 -1.0580510e-002 +v -6.5609880e-002 7.5860010e-002 -1.6750060e-002 +v -7.0177600e-002 7.5663330e-002 -1.3839210e-002 +v -7.4291360e-002 7.4808360e-002 -9.3537900e-003 +v -6.3428890e-002 1.7185387e-001 -6.1412170e-002 +v 3.0684890e-002 7.5726870e-002 -2.0778090e-002 +v 1.9305010e-002 7.9017870e-002 -2.7743990e-002 +v -8.5992100e-003 7.9338730e-002 -3.7905180e-002 +v -2.3200110e-002 7.6568500e-002 -3.8386500e-002 +v -3.8117820e-002 7.6390120e-002 -1.8644360e-002 +v -4.4231130e-002 7.7664130e-002 -1.9026580e-002 +v -5.1025500e-002 7.5705070e-002 -1.8186900e-002 +v -7.0595130e-002 1.2994832e-001 -8.7629200e-003 +v 2.8147660e-002 7.8785370e-002 -2.2432450e-002 +v 7.6016000e-003 7.9435920e-002 -3.3714560e-002 +v 4.9502400e-003 7.8027250e-002 -3.4409750e-002 +v -1.5858350e-002 8.1165550e-002 -3.9185590e-002 +v -1.8502080e-002 8.3343870e-002 -3.9010720e-002 +v -7.9739350e-002 1.3606854e-001 -4.1482100e-003 +v -3.0980180e-002 1.6634656e-001 -1.6241160e-002 +v -3.5749800e-002 7.7248350e-002 -1.9374020e-002 +v -4.8944740e-002 7.9086360e-002 -1.9575700e-002 +v -5.5065860e-002 7.8089190e-002 -1.9755480e-002 +v 2.3706000e-002 8.0240410e-002 -2.5450120e-002 +v 1.2254110e-002 8.3456700e-002 -3.0771580e-002 +v 1.8549900e-003 8.4692790e-002 -3.4838500e-002 +v -2.0857000e-004 7.8941410e-002 -3.5782080e-002 +v -4.2710000e-004 8.2947370e-002 -3.6380660e-002 +v -4.4101600e-003 8.2794510e-002 -3.7467250e-002 +v -3.3202320e-002 1.0578320e-001 -2.0647590e-002 +v -3.9206970e-002 8.1536380e-002 -2.0571000e-002 +v -6.0355410e-002 7.9766610e-002 -1.9375540e-002 +v -4.1771830e-002 1.0396706e-001 -2.0832940e-002 +v -1.1204010e-002 8.2713320e-002 -3.8489610e-002 +v -2.3181500e-002 8.1686990e-002 -3.8329160e-002 +v -2.7233190e-002 8.0570950e-002 -3.6620670e-002 +v -3.5470180e-002 8.0196070e-002 -2.2325910e-002 +v -4.4864210e-002 8.1997900e-002 -2.0473520e-002 +v -5.0647890e-002 8.2309430e-002 -2.1365890e-002 +v -5.5522610e-002 8.1927600e-002 -2.1353790e-002 +v -8.8089610e-002 1.1135484e-001 1.8516150e-002 +v -7.2036080e-002 1.1107918e-001 4.5361400e-002 +v -3.3359780e-002 1.6986395e-001 -1.5448990e-002 +v -6.6839030e-002 6.2170510e-002 2.1576840e-002 +v 3.0730560e-002 8.1968990e-002 -2.0040460e-002 +v 1.6224320e-002 8.6480380e-002 -2.8952010e-002 +v -6.9855630e-002 1.0027892e-001 -1.4847830e-002 +v -6.3836170e-002 8.1704600e-002 -1.8908860e-002 +v -6.7914820e-002 8.0136290e-002 -1.7128200e-002 +v -4.5752080e-002 1.6340754e-001 -8.1780500e-003 +v 1.1727540e-002 8.8010780e-002 -3.0860110e-002 +v 7.3334800e-003 8.5270000e-002 -3.2829380e-002 +v -3.4356500e-003 8.7017890e-002 -3.6461000e-002 +v -2.6964110e-002 8.4512810e-002 -3.6361740e-002 +v -3.6553370e-002 8.5316190e-002 -2.2576200e-002 +v -3.8791090e-002 8.5232710e-002 -2.1917600e-002 +v -5.7676940e-002 8.6258340e-002 -2.1098320e-002 +v -6.2581810e-002 8.6394530e-002 -1.9169290e-002 +v -7.1395340e-002 1.2468846e-001 -8.5944200e-003 +v 1.4801570e-002 9.9040900e-002 -2.2842920e-002 +v -2.1162860e-002 1.7491852e-001 -2.1977110e-002 +v -1.4824250e-002 8.7288840e-002 -3.8317070e-002 +v -2.3285750e-002 8.9468030e-002 -3.6027250e-002 +v -5.1595650e-002 8.4422070e-002 -2.1600960e-002 +v -6.9481040e-002 8.5656460e-002 -1.7198420e-002 +v -7.0917210e-002 1.0754846e-001 -1.1496630e-002 +v 3.0145320e-002 8.6284000e-002 -2.0408140e-002 +v -5.5578110e-002 1.1567692e-001 -1.4645990e-002 +v -8.0981100e-003 8.9070080e-002 -3.6552200e-002 +v -8.1206310e-002 1.1205088e-001 -8.8299000e-004 +v -1.8772170e-002 8.9838040e-002 -3.6991710e-002 +v -2.1100420e-002 8.6587670e-002 -3.7849050e-002 +v -2.5809910e-002 8.8889590e-002 -3.5082250e-002 +v -4.8984800e-002 9.0731760e-002 -2.1817170e-002 +v -3.5874870e-002 3.4776000e-002 -3.0845200e-002 +v -3.3164390e-002 3.3606540e-002 -2.9721880e-002 +v -2.5964020e-002 3.3487000e-002 -2.6321120e-002 +v -1.6717530e-002 3.3611640e-002 -2.4625420e-002 +v -5.3486300e-003 3.3829010e-002 -2.2600430e-002 +v 6.4843500e-003 3.4293000e-002 -2.0854930e-002 +v 1.3950350e-002 3.4880000e-002 -1.8612870e-002 +v -4.2465980e-002 3.4189100e-002 -2.7260650e-002 +v -3.3241100e-002 3.3578760e-002 -2.6719450e-002 +v 6.2813500e-003 3.4165800e-002 -1.8764230e-002 +v -4.4265790e-002 3.3663660e-002 -2.1914420e-002 +v -2.3671460e-002 3.3630970e-002 -2.3217760e-002 +v -1.1558580e-002 3.3895430e-002 -2.1054260e-002 +v -2.0406400e-003 3.4053940e-002 -1.9331070e-002 +v 1.7323900e-003 3.4459660e-002 -1.6607870e-002 +v -2.7316070e-002 3.3910070e-002 -2.1353750e-002 +v -1.3371080e-002 3.4361580e-002 -1.9023720e-002 +v 9.5887300e-003 3.4207220e-002 -1.5424050e-002 +v -1.4981540e-002 3.5878180e-002 -1.7992380e-002 +v -2.3474300e-003 3.5903130e-002 -1.5929740e-002 +v 2.2544300e-003 3.6411540e-002 -1.4783970e-002 +v -3.5199130e-002 3.3835210e-002 -2.0508290e-002 +v -2.6075450e-002 3.5918600e-002 -1.9405170e-002 +v 8.2740600e-003 3.5645200e-002 -1.2648700e-002 +v 1.0473640e-002 3.4742600e-002 -1.1262870e-002 +v 1.4055380e-002 3.4483430e-002 -1.4495730e-002 +v -3.6970520e-002 3.5680360e-002 -1.5007790e-002 +v -2.4719500e-003 3.8408770e-002 -1.4159030e-002 +v -3.9481890e-002 3.3618220e-002 -2.3612470e-002 +v -4.1091510e-002 3.4006000e-002 -1.1997540e-002 +v -3.1589810e-002 3.5592330e-002 -1.9204150e-002 +v -2.0086310e-002 3.8064450e-002 -1.7220790e-002 +v -1.1113250e-002 3.8290290e-002 -1.5646360e-002 +v 4.4522600e-003 3.7705190e-002 -1.2957650e-002 +v 1.5870480e-002 3.4416230e-002 -2.9666500e-003 +v -4.7872000e-002 3.4136300e-002 -1.5418250e-002 +v -4.7521640e-002 3.3622720e-002 -1.2804590e-002 +v -3.3407340e-002 3.7577040e-002 -1.6158190e-002 +v -2.7851470e-002 3.8404330e-002 -1.7210420e-002 +v -8.5065300e-003 3.9028950e-002 -1.3000800e-002 +v 6.4552500e-003 3.8165190e-002 -1.0164860e-002 +v 7.4147100e-003 3.4659190e-002 -3.0116800e-003 +v 1.1966200e-002 3.4335400e-002 -5.9571300e-003 +v 2.0414820e-002 3.5567580e-002 -3.7806900e-003 +v -1.9288780e-002 3.8762570e-002 -1.4202620e-002 +v -1.1390100e-003 3.9176760e-002 -1.0381370e-002 +v 3.8149200e-003 3.9024470e-002 -8.0827300e-003 +v 7.5208200e-003 3.6733400e-002 -6.7614300e-003 +v 1.9968120e-002 3.4843990e-002 -1.8984900e-003 +v -4.5058400e-002 3.3600490e-002 -1.2527510e-002 +v -3.0754850e-002 3.8639810e-002 -1.4050770e-002 +v -5.1499810e-002 3.3729110e-002 -1.2082510e-002 +v -2.3756860e-002 3.8585750e-002 -1.1093270e-002 +v 3.9734700e-003 3.8208550e-002 -3.7963500e-003 +v 9.5485400e-003 3.4232620e-002 1.7162000e-003 +v 2.9086550e-002 3.5799990e-002 3.5630900e-003 +v -5.5965200e-002 3.3529910e-002 -9.1246200e-003 +v -1.9523510e-002 3.8505210e-002 -4.5434500e-003 +v 1.6363470e-002 3.4394790e-002 2.2948600e-003 +v 2.1324740e-002 3.4624040e-002 5.6444000e-003 +v -3.9670300e-002 3.6174000e-002 -7.3397700e-003 +v -1.4251730e-002 3.8648030e-002 -4.3030400e-003 +v 2.3262300e-003 3.5348200e-002 2.3246000e-003 +v 1.4014300e-002 3.5703800e-002 3.8878900e-003 +v 1.5322800e-002 3.6239700e-002 3.6628500e-003 +v 2.3753130e-002 3.4670710e-002 3.9885300e-003 +v 3.2369180e-002 3.5816010e-002 7.0246300e-003 +v -6.3715900e-002 3.3776930e-002 -8.0065600e-003 +v -6.4266880e-002 3.3562500e-002 -5.1253200e-003 +v -3.8066600e-002 3.8518600e-002 -7.3079600e-003 +v -9.4308800e-003 3.8887690e-002 -7.4848700e-003 +v 3.9677800e-003 3.4200210e-002 4.9754500e-003 +v 9.4292600e-003 3.6030400e-002 4.5275100e-003 +v 2.9859020e-002 3.4980130e-002 9.8349300e-003 +v -5.2730060e-002 3.3497900e-002 -1.8117500e-003 +v -4.1271000e-002 3.3855400e-002 -1.8800800e-003 +v -3.1105000e-003 3.8946190e-002 -2.7793900e-003 +v 6.2194100e-003 3.5134100e-002 6.5492800e-003 +v 2.0897900e-002 3.5937100e-002 8.7849000e-003 +v 3.5606010e-002 3.6526640e-002 9.8155300e-003 +v -6.7078340e-002 3.3840100e-002 -6.1688300e-003 +v -8.1140000e-004 3.7424170e-002 4.7721500e-003 +v 3.1492300e-003 3.4125310e-002 1.1762220e-002 +v 4.9172000e-003 3.3997100e-002 9.1666100e-003 +v 2.5130800e-002 3.4546910e-002 1.1012580e-002 +v 2.8248620e-002 3.5046370e-002 1.6016700e-002 +v -6.7032970e-002 6.5145960e-002 2.7292860e-002 +v -4.6380170e-002 3.3605230e-002 -8.9435000e-004 +v -3.3163400e-002 3.8195400e-002 -5.2520000e-004 +v -3.2074200e-002 3.8323400e-002 -4.2109000e-004 +v -2.1692690e-002 3.8266010e-002 4.5100800e-003 +v 2.3930750e-002 3.4816710e-002 1.7739160e-002 +v 4.2719120e-002 3.9977070e-002 8.9321600e-003 +v -5.8604080e-002 3.3462230e-002 -2.1667000e-004 +v -3.7314400e-002 3.3633000e-002 4.5724700e-003 +v -1.0423990e-002 3.8488570e-002 6.2292700e-003 +v -1.3896900e-003 3.8651360e-002 2.3966500e-003 +v -3.0845000e-004 3.5462480e-002 8.2607200e-003 +v -1.4089000e-003 3.6193080e-002 1.2944550e-002 +v 2.2252900e-002 3.6583300e-002 1.3979700e-002 +v -7.0961830e-002 3.4345730e-002 -7.8374000e-004 +v -6.9066180e-002 3.3717630e-002 -1.9761000e-004 +v -6.4825640e-002 3.3505860e-002 2.8222500e-003 +v -4.7059660e-002 3.3501860e-002 3.5646400e-003 +v -3.6953800e-003 3.8172780e-002 1.3046800e-002 +v 3.3475850e-002 3.6447340e-002 1.6266960e-002 +v 3.7249610e-002 3.7509920e-002 1.4815820e-002 +v -4.5675940e-002 3.3703640e-002 6.4300300e-003 +v -3.8639270e-002 3.3937310e-002 8.5506500e-003 +v -9.5064100e-003 3.8352640e-002 1.5570660e-002 +v 2.1499800e-002 3.5807100e-002 1.8169400e-002 +v 4.4876460e-002 4.1230990e-002 1.6008250e-002 +v -7.2474010e-002 3.6255930e-002 1.5532600e-003 +v -7.1498130e-002 3.4452970e-002 4.2026500e-003 +v -2.7790900e-002 3.8062900e-002 7.9376100e-003 +v -1.6556410e-002 3.8286470e-002 1.0215790e-002 +v 8.1043500e-003 3.4842900e-002 1.8134600e-002 +v 2.3589460e-002 3.5890600e-002 2.5337690e-002 +v 4.1261350e-002 4.0585070e-002 2.0751930e-002 +v -5.1350870e-002 3.3645700e-002 8.0329400e-003 +v -4.7104300e-002 3.5549500e-002 8.0803900e-003 +v -1.4103500e-003 3.6999940e-002 1.6982030e-002 +v 9.1714000e-004 3.4803380e-002 1.5634690e-002 +v 2.8887900e-003 3.4636250e-002 1.8849770e-002 +v 1.3279200e-002 3.4379500e-002 2.1423700e-002 +v 1.4322700e-002 3.4425500e-002 2.1593200e-002 +v 1.7490100e-002 3.4646300e-002 2.2040900e-002 +v 2.9868460e-002 3.6248820e-002 1.9872200e-002 +v -3.9222000e-002 3.6326200e-002 1.0789900e-002 +v -3.0307100e-002 3.3995400e-002 1.4706400e-002 +v 2.0081230e-002 3.5172700e-002 2.8018770e-002 +v 2.4989010e-002 3.8104580e-002 2.9429570e-002 +v 3.3584130e-002 3.8303930e-002 2.2928670e-002 +v 4.9015720e-002 4.4573630e-002 2.0659450e-002 +v -5.8225970e-002 6.6607310e-002 3.5050280e-002 +v -6.7330830e-002 3.3846440e-002 8.7266300e-003 +v -3.4692330e-002 3.3828710e-002 1.2438580e-002 +v -2.9803200e-002 3.4287000e-002 1.6353100e-002 +v 1.7023800e-003 3.6310890e-002 2.1179600e-002 +v 4.5137020e-002 4.4625440e-002 2.5516510e-002 +v -6.8876490e-002 1.1022176e-001 3.9004630e-002 +v -5.7680560e-002 3.3622690e-002 1.4040310e-002 +v -5.3210500e-002 3.3585300e-002 1.3987000e-002 +v -3.5711600e-002 3.5891600e-002 1.5502900e-002 +v -2.8861500e-002 3.5396700e-002 1.7350000e-002 +v -2.6580500e-002 3.7742600e-002 1.5705300e-002 +v -1.0974400e-003 3.8147840e-002 2.0427010e-002 +v 3.5047710e-002 4.0973940e-002 2.6970390e-002 +v -6.9685460e-002 3.4478780e-002 9.7984300e-003 +v -5.4019000e-002 3.3309900e-002 1.5848000e-002 +v 4.4816800e-003 3.7117830e-002 2.4755300e-002 +v 6.6605500e-003 3.5204730e-002 2.4315930e-002 +v 8.3833000e-003 3.4748700e-002 2.4057310e-002 +v 3.8883100e-002 4.1032980e-002 2.4976570e-002 +v -2.6441900e-003 3.8727070e-002 2.5131260e-002 +v 3.2222300e-003 3.8708440e-002 2.5898750e-002 +v 9.0016500e-003 3.6890930e-002 2.8482190e-002 +v 1.3196980e-002 3.4835790e-002 3.1630980e-002 +v 2.2291600e-002 3.7053310e-002 3.3101020e-002 +v 2.8948390e-002 3.9160020e-002 2.7234810e-002 +v -8.7773470e-002 1.1181412e-001 3.7144310e-002 +v -1.7870490e-002 3.8203890e-002 2.0243220e-002 +v 1.0087420e-002 3.7047690e-002 3.0822500e-002 +v 4.2296550e-002 4.5435770e-002 2.9040920e-002 +v -8.4341340e-002 1.1388013e-001 4.6513480e-002 +v -7.3795710e-002 1.0895629e-001 3.9217250e-002 +v -5.1243340e-002 6.4239200e-002 3.4258040e-002 +v -6.1777390e-002 3.4017860e-002 1.6900580e-002 +v -3.6665100e-002 3.5304200e-002 2.3032000e-002 +v -1.4930180e-002 3.8643510e-002 2.9378330e-002 +v -8.0894520e-002 1.0967225e-001 3.7910230e-002 +v -8.9822620e-002 1.1387199e-001 3.2845310e-002 +v -6.9655510e-002 6.8728370e-002 3.1127880e-002 +v -7.8449800e-002 1.0988832e-001 4.2517920e-002 +v -7.5824140e-002 1.0794900e-001 3.7128750e-002 +v -5.5740630e-002 3.4128050e-002 2.6674360e-002 +v -3.8279600e-002 3.5429000e-002 2.4380600e-002 +v -3.5283340e-002 3.4179780e-002 2.2744860e-002 +v -2.5798070e-002 3.7865000e-002 1.9981460e-002 +v 6.9064300e-003 3.9004270e-002 2.9548510e-002 +v 1.5448990e-002 3.4852440e-002 3.6984890e-002 +v 1.9128230e-002 3.5640640e-002 3.6642280e-002 +v -6.3664970e-002 6.6047840e-002 3.1828080e-002 +v 3.9604800e-002 4.4939530e-002 2.9992360e-002 +v -8.0294310e-002 7.1702430e-002 1.5995300e-002 +v -5.4185430e-002 6.7322700e-002 3.6935610e-002 +v -7.3110210e-002 1.4847168e-001 -2.8748470e-002 +v -5.8999980e-002 7.3751550e-002 4.1197080e-002 +v -5.9520730e-002 6.1040260e-002 -2.3753800e-003 +v -6.2791800e-002 3.4596760e-002 2.3505640e-002 +v -4.1895500e-002 3.3668300e-002 2.6940000e-002 +v 8.9808200e-003 3.7639400e-002 3.3900800e-002 +v 8.5287800e-003 3.4888000e-002 3.6265100e-002 +v -8.9803890e-002 1.1498106e-001 4.2771650e-002 +v -6.5545420e-002 7.4430370e-002 3.9168070e-002 +v -6.4644190e-002 6.1723230e-002 2.2552000e-004 +v 5.2496900e-003 3.9507100e-002 3.3271200e-002 +v 2.0250320e-002 3.7033170e-002 3.9327190e-002 +v -6.7006400e-002 6.3292870e-002 -1.7493900e-003 +v -6.4479770e-002 6.0651470e-002 4.2343200e-003 +v -5.7219630e-002 5.7000470e-002 4.9175800e-003 +v -7.4362810e-002 7.2437050e-002 3.1430040e-002 +v -6.2019000e-002 3.4343180e-002 3.1883280e-002 +v -4.6870820e-002 3.4444130e-002 3.0513130e-002 +v -2.0814280e-002 3.8400960e-002 2.7868430e-002 +v 1.6439350e-002 3.5635110e-002 4.1281040e-002 +v -6.9087160e-002 1.1205014e-001 4.5320060e-002 +v -7.1811570e-002 1.4861318e-001 -3.4639490e-002 +v -6.9538770e-002 6.3074750e-002 3.5758200e-003 +v -8.4863890e-002 7.8392100e-002 1.6462010e-002 +v -9.1188780e-002 1.1588893e-001 2.4705540e-002 +v -8.8827760e-002 1.1359169e-001 2.3873640e-002 +v -7.1302830e-002 1.1325363e-001 4.9444530e-002 +v -5.4876950e-002 7.0282330e-002 3.8828200e-002 +v -7.7208880e-002 1.0715887e-001 3.4738290e-002 +v -6.1241780e-002 5.9007440e-002 8.0916600e-003 +v -6.5885650e-002 3.5025080e-002 2.9416520e-002 +v -5.7889430e-002 3.4419570e-002 3.6265760e-002 +v -5.1847710e-002 3.4470270e-002 3.4635180e-002 +v -3.4834600e-002 3.4721400e-002 3.4578200e-002 +v -3.0984700e-002 3.8191900e-002 3.2390100e-002 +v -4.9613100e-003 3.9364900e-002 3.6702200e-002 +v 1.2224170e-002 3.5177480e-002 4.2620580e-002 +v -7.4898220e-002 1.1458863e-001 5.0776480e-002 +v -8.0469100e-002 1.1357963e-001 4.6643440e-002 +v -7.4107560e-002 6.9586030e-002 2.7264400e-002 +v -7.9002620e-002 7.6339320e-002 2.9248090e-002 +v -6.5297080e-002 3.4778970e-002 3.3744340e-002 +v -3.3656400e-002 3.4344100e-002 3.6914100e-002 +v 4.9318500e-003 3.4814800e-002 4.3462110e-002 +v 1.1347440e-002 3.6213020e-002 4.4652280e-002 +v -6.0569260e-002 7.1154540e-002 3.8653760e-002 +v -8.8979470e-002 1.1450869e-001 2.8446030e-002 +v -6.8543520e-002 6.1090480e-002 1.0557760e-002 +v -8.2710960e-002 1.1648975e-001 4.8518530e-002 +v -4.1913210e-002 3.4467720e-002 3.3200040e-002 +v -1.1289800e-002 3.9529200e-002 3.8844100e-002 +v -2.8261900e-003 3.4885340e-002 4.5611410e-002 +v -6.4561210e-002 5.9484140e-002 1.3061680e-002 +v -5.8581440e-002 5.7801460e-002 1.3429540e-002 +v -2.3320000e-002 3.9169500e-002 3.8473300e-002 +v -1.8159900e-002 3.9322300e-002 3.9402900e-002 +v -1.6471400e-002 3.4812800e-002 4.3684700e-002 +v 3.2906600e-003 3.5833470e-002 4.6024610e-002 +v -8.5229630e-002 1.1200712e-001 3.0416940e-002 +v -8.5644730e-002 1.1131719e-001 3.4234780e-002 +v -7.4530360e-002 6.6680690e-002 4.6953300e-003 +v -7.1112970e-002 6.2751470e-002 8.7995500e-003 +v -6.1149380e-002 5.8834410e-002 1.6539440e-002 +v -4.6912270e-002 3.4627180e-002 3.9739710e-002 +v -4.0760350e-002 3.4668230e-002 4.0492530e-002 +v -2.6323100e-002 3.4658000e-002 4.3473500e-002 +v -3.1836600e-003 3.6229910e-002 4.7873100e-002 +v -7.9940490e-002 1.0916678e-001 3.4119800e-002 +v -5.9712170e-002 6.3165280e-002 2.8789180e-002 +v -5.1176600e-002 6.8061880e-002 3.7398330e-002 +v -5.0126580e-002 7.0933150e-002 3.9481010e-002 +v -7.2790130e-002 6.4399880e-002 1.5205950e-002 +v -6.8511230e-002 6.1214650e-002 1.5354080e-002 +v -3.9343210e-002 3.5440180e-002 4.2492560e-002 +v -8.1305900e-003 3.5008350e-002 4.7502400e-002 +v -6.6080670e-002 7.0202740e-002 3.5552860e-002 +v -6.8602600e-002 1.4992277e-001 -4.0051350e-002 +v -7.1722100e-002 6.7023040e-002 2.4959750e-002 +v -7.5115010e-002 6.6557040e-002 1.0244090e-002 +v -6.5146650e-002 3.5945650e-002 3.9775080e-002 +v -3.6898600e-002 3.5924640e-002 4.4794170e-002 +v -9.4780400e-003 3.5977600e-002 4.9434210e-002 +v -8.5175960e-002 1.1706809e-001 4.8139420e-002 +v -6.3366400e-002 6.2790260e-002 2.5647610e-002 +v -6.6633330e-002 6.1001700e-002 1.8101240e-002 +v -5.8167590e-002 5.9985190e-002 2.2606060e-002 +v -6.4212210e-002 3.4992560e-002 3.9401920e-002 +v -5.3425790e-002 3.4560020e-002 4.2782420e-002 +v -1.8031490e-002 3.4859970e-002 4.9264760e-002 +v -1.1440410e-002 3.7640770e-002 5.0275730e-002 +v -7.5165320e-002 1.1154286e-001 4.6707180e-002 +v -7.7168390e-002 6.9826450e-002 5.0605600e-003 +v -7.2801360e-002 6.4382590e-002 1.2089080e-002 +v -7.8022000e-002 7.0995160e-002 2.1322150e-002 +v -6.1263370e-002 3.4690410e-002 4.1994900e-002 +v -5.4403750e-002 3.5007310e-002 4.4874590e-002 +v -4.5754280e-002 3.5206980e-002 4.3518120e-002 +v -3.3832440e-002 3.5168820e-002 4.6957890e-002 +v -2.8657630e-002 3.5083380e-002 5.0549440e-002 +v -1.5306440e-002 3.5246410e-002 5.0133810e-002 +v -6.5283650e-002 1.5592447e-001 -4.9865930e-002 +v -6.6467860e-002 1.4871539e-001 -3.1579300e-002 +v -6.2095980e-002 1.6388324e-001 -5.8385930e-002 +v -6.3274890e-002 1.5245731e-001 -3.2221730e-002 +v -4.3755720e-002 1.4773408e-001 -2.1433200e-003 +v -6.5696940e-002 1.4561631e-001 -1.8974710e-002 +v -6.6713650e-002 1.5358824e-001 -4.9097100e-002 +v -1.0482810e-002 1.6668287e-001 -2.1746090e-002 +v -6.2744510e-002 1.6397531e-001 -5.9398280e-002 +v -7.0413230e-002 1.4129200e-001 -8.4590800e-003 +v -6.1530380e-002 1.4037628e-001 -6.2734700e-003 +v -1.1452460e-002 1.7220633e-001 -2.6844980e-002 +v -6.3731140e-002 1.6577037e-001 -6.0103610e-002 +v -2.8218820e-002 1.5758144e-001 -1.0999490e-002 +v -1.8471270e-002 1.5967716e-001 -1.1169510e-002 +v -6.6700710e-002 1.5236775e-001 -4.5266390e-002 +v -4.9896410e-002 1.4670859e-001 -1.8614200e-003 +v -3.1449640e-002 1.5460463e-001 -7.6802300e-003 +v -6.7447660e-002 1.5507675e-001 -5.1594250e-002 +v -1.0906650e-002 1.7649301e-001 -2.9246300e-002 +v -7.2083600e-002 1.4965550e-001 -3.9265860e-002 +v -6.4230830e-002 1.4877806e-001 -2.5899710e-002 +v -6.3056640e-002 1.4341650e-001 -7.4907700e-003 +v -5.3043350e-002 1.4092550e-001 -4.7408000e-004 +v -3.9269410e-002 1.5205232e-001 -6.6203800e-003 +v -6.4796930e-002 1.5210615e-001 -3.6185520e-002 +v -6.4400320e-002 1.5834400e-001 -5.4256370e-002 +v -6.6178120e-002 1.4218350e-001 -9.3766300e-003 +v -6.7751430e-002 1.4605207e-001 -2.3333300e-002 +v -6.4731580e-002 1.5410067e-001 -4.0464820e-002 +v -2.4265590e-002 1.5687690e-001 -7.8509300e-003 +v -1.5723180e-002 1.6312344e-001 -1.6396570e-002 +v -7.0887660e-002 1.4404618e-001 -1.4908480e-002 +v -4.4341830e-002 1.5113809e-001 -5.6859800e-003 +v -6.2896810e-002 1.4694778e-001 -1.3098620e-002 +v -6.3755400e-002 1.4428875e-001 -1.1395730e-002 +v -6.8214560e-002 1.4390932e-001 -1.4984170e-002 +v -5.0271440e-002 1.4336563e-001 1.5153000e-003 +v -2.8535590e-002 1.6208479e-001 -1.4786030e-002 +v -6.5810700e-002 1.4359119e-001 -1.2585380e-002 +v -5.6179200e-002 1.3774406e-001 -4.0674300e-003 +v -6.8866880e-002 1.4723338e-001 -2.8739870e-002 +v -6.0965420e-002 1.7002113e-001 -6.0839390e-002 +v -1.3895490e-002 1.6787168e-001 -2.1897230e-002 +v -6.9413000e-002 1.5121847e-001 -4.4538540e-002 +v -5.5039800e-002 5.7309700e-002 1.6990900e-002 +f 1069 1647 1578 +f 1058 909 939 +f 421 1176 238 +f 1055 1101 1042 +f 238 1059 1126 +f 1254 30 1261 +f 1065 1071 1 +f 1037 1130 1120 +f 1570 2381 1585 +f 2434 2502 2473 +f 1632 1654 1646 +f 1144 1166 669 +f 1202 1440 305 +f 1071 1090 1 +f 1555 1570 1584 +f 1184 1174 404 +f 65 432 12 +f 1032 1085 574 +f 1789 2207 2223 +f 1154 1118 1184 +f 1141 1086 1154 +f 99 1117 342 +f 404 1174 419 +f 489 2000 1998 +f 1118 1174 1184 +f 1196 403 136 +f 1495 717 1490 +f 1804 402 1207 +f 2272 1398 891 +f 1100 1002 804 +f 1596 1595 2381 +f 208 420 1207 +f 402 208 1207 +f 1455 1935 1925 +f 1176 1059 238 +f 1150 1040 348 +f 1957 1537 2051 +f 1124 1189 939 +f 1804 1207 1823 +f 1381 1300 1109 +f 383 384 1182 +f 1085 1086 1141 +f 1040 1046 132 +f 220 1495 1188 +f 420 261 1207 +f 261 420 1065 +f 1055 1133 1101 +f 1054 421 403 +f 182 1109 2 +f 1181 1207 320 +f 545 1570 1561 +f 35 342 432 +f 1024 574 1141 +f 432 342 12 +f 1489 1081 1547 +f 1181 320 1805 +f 1516 1683 1507 +f 357 1117 1047 +f 1561 1570 1555 +f 1090 1196 1206 +f 1047 1203 1051 +f 1165 202 1121 +f 1099 341 301 +f 1174 240 419 +f 922 921 833 +f 1121 1080 385 +f 815 21 1183 +f 35 99 342 +f 1083 398 262 +f 106 94 1317 +f 94 292 1317 +f 292 95 1317 +f 940 1039 1033 +f 1300 1306 433 +f 21 212 471 +f 1120 1131 1037 +f 833 921 688 +f 1117 357 342 +f 106 271 94 +f 386 227 1375 +f 1130 1044 1053 +f 419 240 219 +f 1255 1244 32 +f 1557 1081 1489 +f 2062 2120 2109 +f 2034 2110 430 +f 23 315 1111 +f 291 94 271 +f 291 292 94 +f 50 386 95 +f 964 734 665 +f 1616 1585 1611 +f 445 1084 402 +f 574 1085 1141 +f 1654 341 1653 +f 220 1188 1640 +f 342 69 12 +f 417 261 328 +f 292 50 95 +f 204 227 386 +f 50 204 386 +f 1276 1471 1311 +f 1206 1196 136 +f 1033 1055 1042 +f 1037 1044 1130 +f 1180 320 417 +f 1121 202 1080 +f 325 203 271 +f 291 76 292 +f 292 237 50 +f 2159 1696 1767 +f 583 929 850 +f 1584 1585 1616 +f 1495 1490 1188 +f 1557 1489 1660 +f 1078 1069 1494 +f 1972 1992 1971 +f 183 1226 2000 +f 325 429 203 +f 292 76 237 +f 1152 227 1143 +f 1488 1412 1489 +f 1638 1646 1653 +f 1947 1869 2468 +f 203 306 291 +f 306 76 291 +f 237 248 50 +f 204 1143 227 +f 2395 14 429 +f 1502 881 2500 +f 1 1090 202 +f 1652 1653 1099 +f 2117 1863 2496 +f 50 248 204 +f 160 792 994 +f 884 888 857 +f 544 2117 2496 +f 1090 1206 202 +f 2463 879 2492 +f 429 306 203 +f 498 188 418 +f 865 884 857 +f 994 998 1014 +f 884 897 888 +f 1795 948 1802 +f 208 1035 1071 +f 1065 1 1066 +f 377 435 1377 +f 304 429 14 +f 304 306 429 +f 73 60 74 +f 248 592 204 +f 846 2264 829 +f 897 912 906 +f 1004 991 992 +f 1422 1421 1233 +f 980 10 303 +f 1058 922 909 +f 2436 2449 2418 +f 394 435 377 +f 435 475 446 +f 475 474 446 +f 336 337 361 +f 338 235 372 +f 624 148 129 +f 812 306 596 +f 1726 992 1019 +f 945 1514 1511 +f 1069 1627 1628 +f 1812 1823 1181 +f 1165 1121 169 +f 447 475 435 +f 2487 2458 901 +f 42 59 46 +f 401 7 187 +f 1010 970 797 +f 1513 220 1640 +f 2474 2491 2462 +f 594 307 1014 +f 398 1513 1640 +f 307 594 1026 +f 545 2381 1570 +f 403 421 238 +f 445 402 127 +f 1611 1631 1616 +f 1805 1180 1148 +f 394 447 435 +f 2341 2413 2376 +f 75 74 60 +f 541 47 42 +f 47 59 42 +f 541 42 28 +f 917 931 1103 +f 897 906 883 +f 2484 2068 779 +f 888 883 857 +f 261 1065 328 +f 363 1307 349 +f 377 363 394 +f 444 747 464 +f 323 338 362 +f 92 116 74 +f 592 634 97 +f 982 1027 1004 +f 1020 982 1004 +f 1084 1054 1035 +f 208 402 1084 +f 421 1119 1176 +f 1207 1181 1823 +f 1179 1187 1160 +f 263 296 1343 +f 1298 296 1307 +f 1307 296 349 +f 405 363 349 +f 405 394 363 +f 405 447 394 +f 362 372 384 +f 338 372 362 +f 983 1004 987 +f 122 134 139 +f 415 440 414 +f 75 92 74 +f 226 186 246 +f 796 787 700 +f 1119 1059 1176 +f 122 114 91 +f 624 129 116 +f 641 558 631 +f 1311 1318 1487 +f 100 1162 1170 +f 1653 341 1099 +f 1316 1983 273 +f 263 277 296 +f 296 358 349 +f 436 447 405 +f 109 554 570 +f 504 1385 2501 +f 115 122 91 +f 2068 2460 779 +f 43 777 163 +f 378 405 349 +f 358 378 349 +f 448 447 436 +f 448 476 447 +f 78 77 108 +f 75 60 47 +f 1764 2481 1795 +f 717 714 1512 +f 1490 717 1501 +f 238 1126 168 +f 1878 1866 826 +f 2025 2360 2367 +f 251 278 263 +f 278 277 263 +f 277 318 296 +f 296 318 358 +f 318 350 358 +f 378 436 405 +f 384 372 1182 +f 454 440 415 +f 987 1004 992 +f 493 476 448 +f 323 788 338 +f 403 238 136 +f 1565 1503 1474 +f 297 277 278 +f 297 318 277 +f 358 350 378 +f 378 388 436 +f 476 493 500 +f 73 105 60 +f 323 337 312 +f 953 1573 2358 +f 142 161 119 +f 454 443 440 +f 1862 1871 1405 +f 297 319 318 +f 560 47 541 +f 170 1323 111 +f 357 1047 1050 +f 1119 98 1059 +f 1838 1877 1900 +f 2359 230 251 +f 350 364 378 +f 449 448 436 +f 449 493 448 +f 185 186 226 +f 443 469 479 +f 874 165 2480 +f 463 444 464 +f 64 105 91 +f 1182 440 1129 +f 1958 1651 2502 +f 1238 2034 191 +f 251 279 278 +f 278 279 297 +f 364 388 378 +f 483 493 449 +f 134 148 139 +f 244 268 259 +f 910 942 930 +f 105 115 91 +f 24 30 18 +f 1132 487 1059 +f 1869 1947 2021 +f 2497 2494 2463 +f 2359 2385 230 +f 230 280 251 +f 251 280 279 +f 279 308 297 +f 297 308 319 +f 319 364 318 +f 364 350 318 +f 388 395 436 +f 436 395 449 +f 493 472 500 +f 122 129 134 +f 125 142 124 +f 373 400 393 +f 24 557 30 +f 2264 2278 2251 +f 1261 30 1269 +f 1730 1862 1877 +f 252 280 230 +f 343 364 319 +f 364 343 388 +f 63 64 91 +f 399 393 416 +f 416 444 463 +f 162 189 142 +f 768 373 326 +f 189 661 177 +f 189 199 661 +f 847 887 864 +f 533 747 444 +f 1744 1022 1418 +f 1170 524 729 +f 121 1342 128 +f 1236 1244 26 +f 280 281 279 +f 281 308 279 +f 343 319 308 +f 343 365 388 +f 388 365 395 +f 365 406 395 +f 406 449 395 +f 483 477 493 +f 477 491 472 +f 493 477 472 +f 78 109 77 +f 166 174 196 +f 481 150 814 +f 63 59 64 +f 326 373 393 +f 643 260 43 +f 230 253 252 +f 449 441 483 +f 441 477 483 +f 415 416 463 +f 226 246 245 +f 464 470 454 +f 323 362 337 +f 52 37 1283 +f 253 281 252 +f 281 280 252 +f 309 308 281 +f 330 343 308 +f 366 365 343 +f 441 449 406 +f 464 814 15 +f 883 906 887 +f 337 362 371 +f 479 498 290 +f 247 746 1003 +f 25 37 557 +f 640 930 669 +f 2486 2499 2459 +f 309 330 308 +f 343 330 366 +f 441 437 477 +f 290 498 418 +f 124 119 108 +f 77 124 108 +f 589 125 109 +f 570 589 109 +f 125 162 142 +f 1045 433 1034 +f 1207 261 320 +f 2004 2474 2495 +f 1215 1228 2285 +f 365 396 406 +f 396 422 406 +f 422 437 441 +f 406 422 441 +f 59 47 60 +f 51 78 66 +f 361 371 383 +f 196 215 214 +f 463 454 415 +f 27 41 535 +f 53 1283 37 +f 84 1299 1283 +f 1805 320 1180 +f 254 253 222 +f 254 281 253 +f 309 366 330 +f 396 365 366 +f 456 477 437 +f 484 491 477 +f 2480 2485 2493 +f 418 188 187 +f 53 85 1283 +f 85 84 1283 +f 420 1071 1065 +f 264 281 254 +f 298 309 281 +f 368 366 367 +f 368 396 366 +f 1639 1564 1139 +f 560 48 47 +f 82 471 212 +f 25 38 37 +f 202 1206 1080 +f 264 298 281 +f 298 331 309 +f 309 331 366 +f 331 367 366 +f 396 368 422 +f 422 456 437 +f 491 1192 313 +f 1699 2064 1710 +f 462 443 479 +f 371 362 384 +f 2502 2476 2464 +f 371 384 383 +f 21 732 212 +f 1571 1629 1627 +f 38 39 53 +f 37 38 53 +f 39 85 53 +f 1173 1184 404 +f 1006 2142 1674 +f 201 255 254 +f 255 264 254 +f 368 407 422 +f 450 456 422 +f 450 484 456 +f 456 484 477 +f 314 1192 491 +f 2027 2501 2489 +f 2475 2471 2488 +f 551 492 732 +f 464 481 814 +f 1081 1494 1547 +f 201 231 255 +f 407 450 422 +f 484 494 491 +f 494 327 491 +f 327 314 491 +f 876 797 995 +f 847 856 829 +f 125 143 162 +f 134 129 148 +f 1564 1571 1627 +f 417 320 261 +f 328 1065 1066 +f 170 156 201 +f 156 231 201 +f 231 282 255 +f 282 264 255 +f 450 485 484 +f 484 485 494 +f 2463 2486 2479 +f 159 185 167 +f 492 68 212 +f 732 492 212 +f 68 82 212 +f 1311 1471 1296 +f 101 156 111 +f 332 264 282 +f 332 298 264 +f 332 331 298 +f 331 332 367 +f 407 423 450 +f 450 423 485 +f 804 1002 1443 +f 2484 779 946 +f 689 443 462 +f 440 689 1129 +f 166 167 174 +f 38 31 39 +f 112 145 101 +f 101 145 156 +f 156 256 231 +f 332 423 368 +f 367 332 368 +f 368 423 407 +f 946 779 920 +f 1432 1261 1449 +f 461 478 453 +f 464 15 470 +f 31 54 39 +f 39 54 85 +f 86 101 85 +f 145 210 156 +f 282 283 332 +f 283 369 332 +f 369 423 332 +f 423 408 485 +f 854 876 965 +f 78 108 66 +f 440 443 689 +f 374 2465 961 +f 929 519 979 +f 54 86 85 +f 156 241 256 +f 256 282 231 +f 256 283 282 +f 389 423 369 +f 389 408 423 +f 408 457 485 +f 457 49 485 +f 485 49 494 +f 494 135 327 +f 175 83 314 +f 1167 1140 1483 +f 196 174 215 +f 697 16 68 +f 1038 82 16 +f 140 117 141 +f 1654 1653 1646 +f 1234 54 31 +f 86 112 101 +f 210 241 156 +f 923 917 911 +f 697 34 16 +f 145 193 210 +f 256 265 283 +f 265 310 283 +f 283 310 369 +f 310 344 369 +f 344 370 369 +f 370 389 369 +f 409 408 389 +f 409 466 408 +f 466 457 408 +f 466 49 457 +f 49 135 494 +f 174 225 215 +f 1014 766 602 +f 826 2220 2215 +f 1078 1494 1081 +f 1273 70 86 +f 120 112 86 +f 146 145 112 +f 146 193 145 +f 265 256 241 +f 223 265 241 +f 486 49 466 +f 175 327 135 +f 105 122 115 +f 480 15 681 +f 225 234 215 +f 731 34 697 +f 86 54 1273 +f 70 120 86 +f 193 241 210 +f 299 310 265 +f 310 333 344 +f 344 351 370 +f 424 466 409 +f 135 49 175 +f 214 215 234 +f 48 75 47 +f 34 9 1038 +f 16 34 1038 +f 203 291 271 +f 9 558 754 +f 1195 397 1120 +f 120 146 112 +f 146 194 193 +f 266 265 223 +f 266 299 265 +f 299 333 310 +f 333 351 344 +f 382 383 392 +f 399 416 415 +f 266 333 299 +f 351 352 370 +f 424 486 466 +f 487 175 49 +f 7 117 187 +f 1182 414 440 +f 41 42 46 +f 290 289 497 +f 2502 2464 2473 +f 372 399 414 +f 1570 1585 1584 +f 1066 1 1165 +f 1 202 1165 +f 120 70 102 +f 157 146 120 +f 194 223 193 +f 223 241 193 +f 352 379 370 +f 370 379 389 +f 410 409 389 +f 2478 1409 1958 +f 806 945 1002 +f 157 194 146 +f 267 266 223 +f 267 333 266 +f 379 410 389 +f 410 438 409 +f 438 424 409 +f 190 205 143 +f 337 371 361 +f 2215 830 826 +f 1631 1646 1638 +f 102 157 120 +f 157 195 194 +f 195 223 194 +f 195 211 223 +f 223 211 267 +f 267 300 333 +f 300 334 351 +f 333 300 351 +f 351 334 352 +f 410 411 438 +f 438 486 424 +f 487 49 486 +f 875 594 989 +f 108 581 66 +f 225 245 244 +f 312 336 335 +f 151 754 107 +f 274 1386 300 +f 352 334 379 +f 923 1729 1096 +f 244 245 268 +f 463 464 454 +f 414 399 415 +f 15 480 470 +f 1647 1069 1078 +f 909 922 833 +f 387 417 328 +f 133 157 102 +f 1314 133 102 +f 133 195 157 +f 1148 1179 1160 +f 1046 1167 182 +f 379 411 410 +f 792 339 229 +f 391 7 668 +f 185 226 174 +f 461 290 497 +f 2027 504 2501 +f 1196 1054 403 +f 728 1019 752 +f 2459 2483 2461 +f 1291 1264 55 +f 133 1356 195 +f 195 1356 211 +f 412 438 411 +f 4 486 438 +f 458 4 438 +f 4 487 486 +f 1720 1572 1771 +f 245 275 268 +f 1869 2021 2059 +f 235 399 372 +f 64 60 105 +f 836 2492 879 +f 1315 133 1314 +f 1331 1382 1356 +f 1310 926 1128 +f 7 1121 117 +f 119 161 611 +f 380 379 334 +f 379 380 411 +f 467 4 458 +f 495 487 4 +f 495 1126 487 +f 416 400 533 +f 479 469 498 +f 74 116 73 +f 478 461 497 +f 393 400 416 +f 61 1291 55 +f 505 1999 2474 +f 1999 2491 2474 +f 199 189 36 +f 1164 1165 169 +f 1179 387 249 +f 390 411 380 +f 411 390 412 +f 458 438 412 +f 495 168 1126 +f 480 469 470 +f 116 122 105 +f 418 187 140 +f 185 174 167 +f 166 148 167 +f 470 469 443 +f 40 55 32 +f 61 71 1291 +f 71 103 1291 +f 1184 1173 1154 +f 634 514 97 +f 425 458 412 +f 917 923 931 +f 2472 2489 853 +f 754 641 567 +f 44 567 1163 +f 454 470 443 +f 40 32 1249 +f 33 40 1249 +f 56 55 40 +f 56 61 55 +f 451 1265 439 +f 1180 417 1179 +f 1099 301 1077 +f 1189 1058 939 +f 1059 221 1132 +f 598 1074 1075 +f 412 426 425 +f 650 186 185 +f 234 244 259 +f 226 245 225 +f 1033 1042 1030 +f 2492 836 247 +f 7 169 1121 +f 1462 1322 1482 +f 425 467 458 +f 496 4 467 +f 1751 2468 2480 +f 290 418 140 +f 326 789 762 +f 142 177 161 +f 165 1751 2480 +f 87 103 71 +f 103 87 104 +f 1180 1179 1148 +f 417 387 1179 +f 2081 2060 2031 +f 1154 1173 1141 +f 181 131 197 +f 442 425 426 +f 614 144 143 +f 876 1010 797 +f 40 45 56 +f 56 45 61 +f 87 71 61 +f 1563 1437 1590 +f 1121 385 117 +f 1148 1160 1137 +f 1449 1459 1439 +f 1028 2462 929 +f 442 459 425 +f 459 467 425 +f 168 495 4 +f 496 168 4 +f 1763 1403 1444 +f 140 187 117 +f 244 234 225 +f 246 740 269 +f 372 414 1182 +f 40 547 45 +f 45 62 61 +f 62 87 61 +f 87 88 104 +f 1084 517 1054 +f 387 328 1064 +f 2467 2497 2485 +f 286 1363 302 +f 205 189 162 +f 290 140 289 +f 214 234 224 +f 393 399 809 +f 315 1131 397 +f 302 321 353 +f 1164 169 391 +f 427 459 442 +f 217 496 467 +f 217 168 496 +f 978 969 2074 +f 361 383 382 +f 269 276 245 +f 1440 11 305 +f 62 88 87 +f 328 1066 1064 +f 1066 1165 1164 +f 242 287 302 +f 1363 242 302 +f 287 321 302 +f 1179 249 1187 +f 983 1020 1004 +f 464 747 481 +f 788 323 276 +f 269 245 246 +f 88 89 1325 +f 171 172 242 +f 360 353 321 +f 360 1354 353 +f 1057 1064 1164 +f 2184 2188 2183 +f 460 459 451 +f 460 467 459 +f 149 168 217 +f 149 136 168 +f 116 129 122 +f 109 124 77 +f 159 167 148 +f 28 42 41 +f 57 88 62 +f 45 57 62 +f 1336 1325 89 +f 89 72 1336 +f 147 172 171 +f 172 258 242 +f 258 257 242 +f 257 287 242 +f 257 321 287 +f 345 360 321 +f 360 381 1354 +f 1069 938 1655 +f 387 473 249 +f 270 217 467 +f 130 136 149 +f 851 847 829 +f 983 987 975 +f 189 177 142 +f 88 72 89 +f 184 258 172 +f 257 288 321 +f 1265 451 459 +f 270 149 217 +f 226 225 174 +f 27 28 41 +f 109 125 124 +f 547 57 45 +f 57 58 88 +f 88 58 72 +f 2476 2484 2458 +f 147 184 172 +f 184 213 258 +f 258 243 257 +f 243 288 257 +f 345 321 288 +f 391 169 7 +f 468 460 451 +f 468 488 460 +f 270 467 460 +f 488 270 460 +f 1206 136 130 +f 481 793 150 +f 143 205 162 +f 142 119 124 +f 58 90 72 +f 90 128 72 +f 147 173 184 +f 173 213 184 +f 213 233 258 +f 258 233 243 +f 354 360 345 +f 354 381 360 +f 1026 991 307 +f 268 312 259 +f 1206 130 1080 +f 116 105 73 +f 139 148 166 +f 275 312 268 +f 188 401 187 +f 2479 2459 2461 +f 58 63 90 +f 1064 1066 1164 +f 1064 473 387 +f 288 311 345 +f 311 354 345 +f 996 994 307 +f 452 468 439 +f 452 478 468 +f 478 488 468 +f 141 130 149 +f 1564 1639 1563 +f 547 41 57 +f 2081 2107 2060 +f 382 381 354 +f 497 270 488 +f 289 149 270 +f 289 141 149 +f 114 122 139 +f 59 60 64 +f 275 323 312 +f 401 668 7 +f 41 46 57 +f 57 46 58 +f 1459 1345 1269 +f 1342 121 158 +f 166 173 158 +f 213 224 233 +f 233 259 243 +f 243 322 288 +f 322 311 288 +f 453 478 452 +f 497 289 270 +f 912 911 906 +f 276 323 275 +f 276 275 245 +f 46 63 58 +f 90 121 128 +f 173 214 213 +f 213 214 224 +f 259 322 243 +f 336 311 322 +f 336 354 311 +f 361 382 354 +f 1043 439 1290 +f 497 488 478 +f 385 130 141 +f 385 1080 130 +f 144 190 143 +f 535 41 547 +f 121 166 158 +f 335 336 322 +f 354 336 361 +f 2004 2481 1764 +f 698 439 1043 +f 289 140 141 +f 923 1096 931 +f 650 185 159 +f 46 59 63 +f 63 91 90 +f 90 114 121 +f 121 139 166 +f 173 196 214 +f 259 335 322 +f 2478 2502 2434 +f 312 337 336 +f 90 91 114 +f 114 139 121 +f 166 196 173 +f 224 234 233 +f 234 259 233 +f 259 312 335 +f 1124 916 1189 +f 542 541 530 +f 462 479 290 +f 269 783 276 +f 813 567 641 +f 276 783 788 +f 82 1038 1333 +f 816 701 703 +f 672 137 603 +f 625 635 624 +f 2457 2439 1973 +f 767 533 529 +f 2468 1869 2480 +f 662 190 639 +f 711 720 719 +f 630 639 614 +f 161 654 638 +f 781 991 982 +f 1227 31 516 +f 648 639 630 +f 630 614 590 +f 2098 544 1899 +f 578 579 586 +f 697 492 551 +f 529 533 400 +f 869 859 870 +f 1732 924 914 +f 1004 1027 991 +f 801 591 603 +f 636 676 651 +f 876 949 965 +f 2207 1789 1859 +f 76 739 237 +f 188 681 15 +f 578 604 599 +f 797 616 995 +f 510 2035 1365 +f 76 812 617 +f 617 739 76 +f 1468 93 1765 +f 596 546 812 +f 1457 1305 1477 +f 760 197 150 +f 671 773 765 +f 586 609 604 +f 591 700 632 +f 476 2312 474 +f 2084 2027 2489 +f 582 590 571 +f 1555 2449 1996 +f 674 546 596 +f 812 655 617 +f 161 177 661 +f 599 604 636 +f 700 787 576 +f 776 675 572 +f 776 674 675 +f 617 634 739 +f 591 632 649 +f 612 546 674 +f 617 655 634 +f 728 752 706 +f 571 2311 2305 +f 775 674 776 +f 775 612 674 +f 612 628 546 +f 546 628 812 +f 812 628 655 +f 620 630 615 +f 620 648 630 +f 667 653 646 +f 810 782 785 +f 150 197 814 +f 534 1517 2000 +f 702 572 2378 +f 748 776 572 +f 655 613 634 +f 911 917 905 +f 648 679 662 +f 727 771 713 +f 750 807 799 +f 639 190 144 +f 662 679 200 +f 702 748 572 +f 775 776 748 +f 628 718 655 +f 626 658 645 +f 791 778 790 +f 612 811 628 +f 613 514 634 +f 1380 1756 1673 +f 570 590 614 +f 720 741 719 +f 1074 795 835 +f 614 639 144 +f 612 775 811 +f 718 735 655 +f 655 735 613 +f 798 338 788 +f 636 652 676 +f 571 590 555 +f 528 730 687 +f 690 702 2312 +f 476 690 2312 +f 811 718 628 +f 721 778 727 +f 748 702 690 +f 735 686 613 +f 1517 2002 2127 +f 654 685 667 +f 569 588 606 +f 513 531 538 +f 538 549 548 +f 549 553 548 +f 550 588 549 +f 1903 869 870 +f 691 775 748 +f 691 600 775 +f 600 811 775 +f 811 563 718 +f 563 736 718 +f 718 736 735 +f 736 647 735 +f 735 647 686 +f 686 745 613 +f 745 514 613 +f 569 606 605 +f 654 667 638 +f 851 857 847 +f 588 569 549 +f 690 691 748 +f 680 514 745 +f 2127 2002 2094 +f 747 701 481 +f 400 373 529 +f 600 536 811 +f 536 563 811 +f 1306 227 1152 +f 522 24 18 +f 523 24 522 +f 865 857 851 +f 2031 2060 1540 +f 767 701 747 +f 618 652 609 +f 652 636 609 +f 573 22 710 +f 642 699 730 +f 1522 1518 2476 +f 500 629 691 +f 690 500 691 +f 691 629 600 +f 780 644 641 +f 579 578 561 +f 131 668 197 +f 197 668 814 +f 789 809 798 +f 622 760 150 +f 621 563 536 +f 673 745 686 +f 673 818 745 +f 818 680 745 +f 680 96 514 +f 2495 2462 1028 +f 1028 583 575 +f 663 794 664 +f 629 761 600 +f 761 757 600 +f 600 757 536 +f 621 696 563 +f 755 736 563 +f 696 755 563 +f 633 736 755 +f 633 647 736 +f 623 686 647 +f 633 623 647 +f 686 623 673 +f 819 680 818 +f 680 819 96 +f 1729 1677 1096 +f 2482 1899 2471 +f 537 536 757 +f 536 537 621 +f 673 819 818 +f 2428 222 230 +f 25 24 523 +f 25 557 24 +f 38 25 19 +f 710 22 272 +f 663 759 794 +f 1120 878 1195 +f 537 696 621 +f 696 633 755 +f 822 2215 2220 +f 97 96 1053 +f 750 784 743 +f 887 905 864 +f 768 784 373 +f 512 513 548 +f 573 664 22 +f 696 715 633 +f 673 521 819 +f 2454 2453 2445 +f 883 887 847 +f 306 812 76 +f 642 528 759 +f 798 809 235 +f 994 792 998 +f 587 626 586 +f 1900 1918 1937 +f 645 652 618 +f 537 786 696 +f 521 593 819 +f 515 19 523 +f 741 749 719 +f 789 326 809 +f 539 581 550 +f 657 777 723 +f 684 713 660 +f 692 712 720 +f 652 666 692 +f 507 761 629 +f 472 507 629 +f 507 757 761 +f 623 633 673 +f 724 521 673 +f 515 516 19 +f 304 675 674 +f 178 778 721 +f 947 1447 2358 +f 626 645 618 +f 586 626 618 +f 784 768 742 +f 753 537 757 +f 537 753 786 +f 724 981 521 +f 521 981 593 +f 979 559 850 +f 637 660 677 +f 787 631 576 +f 141 117 385 +f 809 399 235 +f 641 754 558 +f 542 553 561 +f 742 768 762 +f 444 416 533 +f 528 687 796 +f 813 598 566 +f 1490 1501 1557 +f 753 757 507 +f 786 715 696 +f 633 724 673 +f 2090 2062 2109 +f 646 653 660 +f 660 694 683 +f 677 660 683 +f 1872 839 838 +f 1224 18 30 +f 326 393 809 +f 799 529 373 +f 313 507 472 +f 715 774 633 +f 974 699 841 +f 703 820 816 +f 692 711 676 +f 1014 355 766 +f 875 752 1019 +f 627 646 660 +f 711 692 720 +f 652 692 676 +f 799 373 784 +f 813 566 567 +f 2462 2482 2475 +f 764 644 780 +f 1479 1924 1916 +f 753 738 786 +f 738 607 786 +f 786 607 715 +f 715 524 774 +f 633 774 724 +f 559 979 672 +f 758 798 783 +f 683 694 705 +f 820 703 562 +f 764 687 644 +f 744 743 725 +f 313 753 507 +f 607 524 715 +f 664 801 22 +f 646 627 610 +f 800 820 562 +f 750 769 807 +f 767 747 533 +f 578 586 604 +f 862 593 981 +f 688 2382 1083 +f 306 304 674 +f 738 584 607 +f 168 136 238 +f 773 552 765 +f 2473 2464 2458 +f 773 793 552 +f 626 619 658 +f 1007 1139 1013 +f 562 529 799 +f 744 750 743 +f 659 683 693 +f 677 683 659 +f 313 737 753 +f 753 737 738 +f 607 729 524 +f 27 518 28 +f 553 569 580 +f 657 163 777 +f 580 569 605 +f 789 798 758 +f 769 562 807 +f 820 671 816 +f 638 646 611 +f 1074 598 644 +f 750 799 784 +f 1931 907 898 +f 2483 2487 2461 +f 737 584 738 +f 1439 1438 1431 +f 2098 1213 544 +f 48 578 75 +f 796 631 787 +f 815 732 21 +f 581 588 550 +f 625 636 651 +f 778 1011 810 +f 693 705 725 +f 693 683 705 +f 236 1921 1966 +f 584 729 607 +f 2237 1866 2227 +f 530 541 28 +f 237 739 248 +f 512 530 28 +f 727 778 771 +f 684 727 713 +f 2237 2220 826 +f 542 561 560 +f 528 796 700 +f 808 785 671 +f 739 592 248 +f 895 905 896 +f 740 246 186 +f 272 137 979 +f 770 769 744 +f 712 742 720 +f 1213 2026 544 +f 1888 1235 2438 +f 555 554 2311 +f 737 313 1192 +f 1585 1612 1611 +f 695 721 685 +f 518 17 28 +f 769 770 562 +f 719 749 740 +f 648 669 679 +f 773 657 723 +f 606 637 619 +f 2072 2062 2042 +f 606 619 626 +f 549 569 553 +f 161 638 611 +f 910 917 942 +f 917 1103 942 +f 991 1026 992 +f 979 137 672 +f 785 163 657 +f 710 2488 2472 +f 611 581 119 +f 808 671 820 +f 1820 1900 1870 +f 759 700 591 +f 637 677 619 +f 2494 2490 2463 +f 671 765 816 +f 687 764 780 +f 1019 992 1026 +f 1726 1719 987 +f 713 771 694 +f 51 2355 78 +f 510 526 525 +f 525 526 1249 +f 526 33 1249 +f 2311 554 2335 +f 827 848 840 +f 603 591 649 +f 758 269 740 +f 1595 1612 1586 +f 1694 1048 1699 +f 682 740 186 +f 22 801 603 +f 555 570 554 +f 1053 110 97 +f 615 582 601 +f 814 668 188 +f 725 705 744 +f 528 700 759 +f 640 648 620 +f 703 701 562 +f 886 892 582 +f 631 731 576 +f 1087 1835 1747 +f 882 864 895 +f 956 950 1103 +f 1502 2500 2470 +f 205 190 200 +f 815 878 616 +f 616 878 995 +f 1183 878 815 +f 1601 1827 881 +f 527 535 526 +f 2184 2183 2175 +f 1142 1125 1133 +f 235 338 798 +f 160 339 792 +f 599 92 75 +f 598 1116 566 +f 631 558 731 +f 771 770 744 +f 730 528 642 +f 841 699 642 +f 668 401 188 +f 510 527 526 +f 749 758 740 +f 706 721 695 +f 694 726 705 +f 694 744 726 +f 906 911 905 +f 661 695 161 +f 708 815 616 +f 535 547 33 +f 794 759 591 +f 778 808 790 +f 269 758 783 +f 771 744 694 +f 800 808 820 +f 571 886 582 +f 854 948 1010 +f 906 905 887 +f 625 651 635 +f 2000 1226 534 +f 2140 1504 2016 +f 601 620 615 +f 620 601 640 +f 648 640 669 +f 698 452 439 +f 671 785 657 +f 1561 2356 545 +f 685 653 667 +f 685 727 684 +f 568 616 797 +f 708 732 815 +f 93 229 339 +f 865 851 839 +f 942 1103 950 +f 589 614 125 +f 606 610 627 +f 951 834 873 +f 92 599 625 +f 1878 830 1902 +f 2482 2098 1899 +f 568 708 616 +f 708 551 732 +f 2434 2487 2483 +f 160 964 665 +f 2316 2391 2309 +f 762 758 749 +f 570 614 589 +f 888 897 883 +f 2000 1517 1388 +f 685 721 727 +f 588 610 606 +f 653 685 684 +f 651 650 635 +f 760 1151 6 +f 793 622 150 +f 651 676 650 +f 744 769 750 +f 541 542 560 +f 476 500 690 +f 473 1064 1057 +f 561 578 560 +f 636 625 599 +f 876 995 949 +f 829 856 846 +f 682 704 740 +f 791 790 770 +f 2466 2500 2460 +f 579 587 586 +f 1352 1208 1095 +f 1684 1479 1916 +f 604 609 636 +f 751 721 706 +f 810 608 782 +f 672 603 649 +f 475 447 476 +f 794 591 801 +f 682 186 650 +f 808 800 790 +f 644 598 813 +f 704 719 740 +f 1011 608 810 +f 1192 584 737 +f 687 780 796 +f 2337 474 2312 +f 638 667 646 +f 706 1186 728 +f 733 575 568 +f 595 551 708 +f 595 540 551 +f 1308 501 1852 +f 665 339 160 +f 527 2447 535 +f 558 9 731 +f 723 793 773 +f 660 713 694 +f 693 725 666 +f 562 767 529 +f 550 538 531 +f 2267 2287 2233 +f 996 964 160 +f 2068 2470 2466 +f 704 711 719 +f 741 762 749 +f 605 606 626 +f 548 542 530 +f 995 878 709 +f 1898 1684 1916 +f 778 791 771 +f 782 163 785 +f 789 758 762 +f 857 883 847 +f 733 970 1028 +f 838 829 825 +f 2447 511 535 +f 22 603 137 +f 705 726 744 +f 605 587 580 +f 512 548 530 +f 743 784 742 +f 790 800 770 +f 778 810 808 +f 1014 998 355 +f 708 568 595 +f 656 697 551 +f 540 656 551 +f 143 125 614 +f 1000 1020 983 +f 778 178 1011 +f 676 704 682 +f 637 627 660 +f 606 627 637 +f 701 552 481 +f 808 810 785 +f 590 570 555 +f 716 595 568 +f 2355 2335 554 +f 912 1729 911 +f 1076 1456 1546 +f 697 68 492 +f 676 711 704 +f 839 851 838 +f 1028 575 733 +f 1020 844 982 +f 716 568 575 +f 844 781 982 +f 1238 2156 2034 +f 553 580 561 +f 580 579 561 +f 452 461 453 +f 560 578 48 +f 564 540 595 +f 632 656 540 +f 564 632 540 +f 75 578 599 +f 518 27 535 +f 511 518 535 +f 783 798 788 +f 642 759 663 +f 720 742 741 +f 605 626 587 +f 580 587 579 +f 725 712 666 +f 562 701 767 +f 1729 923 911 +f 712 743 742 +f 619 677 658 +f 161 695 654 +f 770 800 562 +f 2084 2489 2472 +f 575 559 716 +f 716 564 595 +f 654 695 685 +f 843 855 2064 +f 34 731 9 +f 527 510 1973 +f 723 622 793 +f 992 1726 987 +f 693 666 652 +f 2472 853 573 +f 624 159 148 +f 671 657 773 +f 681 188 498 +f 797 970 733 +f 565 656 632 +f 565 697 656 +f 565 731 697 +f 1949 951 920 +f 85 111 84 +f 662 200 190 +f 44 324 754 +f 33 547 40 +f 658 693 652 +f 658 652 645 +f 664 794 801 +f 666 712 692 +f 639 648 662 +f 611 646 610 +f 850 559 575 +f 1447 2490 1106 +f 1972 1955 1935 +f 582 615 590 +f 66 581 539 +f 780 641 631 +f 796 780 631 +f 1049 1192 83 +f 1348 13 1519 +f 799 807 562 +f 581 611 588 +f 687 795 644 +f 663 8 642 +f 1936 1972 1935 +f 650 676 682 +f 615 630 590 +f 730 795 687 +f 742 762 741 +f 548 553 542 +f 1048 1692 1074 +f 658 659 693 +f 37 52 30 +f 611 610 588 +f 649 632 564 +f 565 576 731 +f 2138 922 1058 +f 1204 854 965 +f 725 743 712 +f 644 813 641 +f 660 653 684 +f 771 791 770 +f 644 795 1074 +f 469 480 681 +f 559 672 564 +f 716 559 564 +f 672 649 564 +f 2161 1378 2171 +f 474 475 476 +f 816 765 701 +f 765 552 701 +f 513 538 548 +f 754 324 107 +f 609 586 618 +f 25 523 19 +f 677 659 658 +f 689 452 698 +f 1334 1115 1353 +f 700 565 632 +f 700 576 565 +f 481 552 793 +f 763 901 2458 +f 550 549 538 +f 781 964 996 +f 1596 1634 1595 +f 198 916 1124 +f 198 1124 341 +f 842 973 1025 +f 842 1025 836 +f 1009 1024 934 +f 573 710 2472 +f 1100 971 1002 +f 1501 1081 1557 +f 1225 1219 955 +f 413 2138 284 +f 955 1630 522 +f 341 1124 301 +f 2333 2376 2350 +f 1107 218 284 +f 398 925 1513 +f 1513 1442 1495 +f 1935 1455 1744 +f 1723 1935 1744 +f 825 1872 838 +f 1495 1442 1496 +f 963 1024 1009 +f 1511 1514 966 +f 1775 1729 912 +f 688 262 1067 +f 714 1007 1512 +f 919 1732 914 +f 2319 2331 2304 +f 2400 2407 2391 +f 1674 2164 1780 +f 843 927 899 +f 1660 988 1188 +f 1067 262 1640 +f 1381 1109 1483 +f 1437 1381 1483 +f 2495 1010 948 +f 1514 1289 1313 +f 899 374 961 +f 1438 1430 1422 +f 1634 1095 1632 +f 2487 973 2461 +f 1003 499 874 +f 849 848 827 +f 1430 1462 1453 +f 2496 2084 2471 +f 909 10 980 +f 730 927 835 +f 2031 1540 1536 +f 831 849 2178 +f 881 834 951 +f 1841 1722 1803 +f 1005 670 1020 +f 1021 670 1005 +f 1869 2059 2467 +f 903 902 1939 +f 2476 2502 1651 +f 853 8 573 +f 1850 831 2178 +f 934 746 247 +f 934 65 746 +f 301 285 1077 +f 968 944 977 +f 970 2495 1028 +f 974 2465 374 +f 899 927 374 +f 1882 1898 1916 +f 1613 1634 1596 +f 909 833 1396 +f 2492 247 1003 +f 919 914 1931 +f 1459 1299 1458 +f 1634 1632 1633 +f 844 670 228 +f 2494 2497 2467 +f 901 973 2487 +f 228 1772 734 +f 1701 1709 1666 +f 963 574 1024 +f 847 864 856 +f 1730 1736 2239 +f 870 859 848 +f 2074 2111 2103 +f 1140 1590 1483 +f 927 730 974 +f 2103 978 2074 +f 756 1745 1718 +f 848 859 840 +f 1296 1482 1320 +f 2331 51 66 +f 1067 988 962 +f 1396 833 1445 +f 1001 1005 1000 +f 901 1009 973 +f 1099 1077 817 +f 933 944 936 +f 952 958 1828 +f 988 1660 986 +f 833 1067 1445 +f 1067 1640 988 +f 218 413 284 +f 1843 180 347 +f 1846 1708 1798 +f 2469 2477 855 +f 1006 1021 1005 +f 381 382 250 +f 2369 828 531 +f 968 977 1001 +f 2460 1949 779 +f 1194 1441 1115 +f 1001 1000 968 +f 756 678 1745 +f 963 1009 901 +f 2471 2084 2472 +f 841 642 8 +f 982 991 1027 +f 670 844 1020 +f 1289 1514 945 +f 869 904 890 +f 1161 1115 1639 +f 823 2178 849 +f 746 12 499 +f 263 428 2366 +f 1685 1075 1692 +f 1002 926 806 +f 1799 1755 216 +f 944 968 993 +f 943 944 993 +f 31 38 19 +f 531 828 550 +f 1501 1078 1081 +f 1921 1149 431 +f 936 943 932 +f 1660 1489 1412 +f 301 980 285 +f 903 918 902 +f 869 890 868 +f 890 903 867 +f 1003 746 499 +f 951 1949 2500 +f 990 841 853 +f 1595 1634 1611 +f 374 927 974 +f 836 1025 247 +f 1653 1652 1638 +f 1303 1545 1142 +f 1616 1631 1638 +f 1629 1546 1628 +f 936 932 913 +f 513 506 531 +f 868 890 867 +f 2330 2369 2353 +f 924 918 914 +f 907 914 904 +f 1258 1421 1267 +f 301 939 980 +f 1472 1482 1296 +f 868 867 859 +f 472 491 313 +f 272 519 2488 +f 1471 1472 1296 +f 1025 934 247 +f 1634 1633 1611 +f 2176 1847 2177 +f 1310 1289 806 +f 924 933 918 +f 1969 1968 902 +f 2107 2128 2118 +f 1428 1436 1287 +f 1139 1564 1617 +f 2378 572 2384 +f 853 841 8 +f 2501 961 2465 +f 1221 1240 1408 +f 1069 1578 1627 +f 1006 1005 1001 +f 1617 1564 1578 +f 828 539 550 +f 1791 2168 2160 +f 1829 1718 1739 +f 1968 1939 902 +f 756 1718 665 +f 1998 2000 1388 +f 2451 545 2356 +f 178 997 1011 +f 1275 325 1270 +f 1709 872 1666 +f 2176 1959 1847 +f 944 943 936 +f 2424 518 511 +f 1445 1067 962 +f 2007 952 1828 +f 2052 2061 2081 +f 828 2303 539 +f 835 1699 1048 +f 1709 1706 872 +f 885 574 963 +f 1318 1296 1320 +f 859 867 1902 +f 1452 1448 1421 +f 943 993 976 +f 993 1000 983 +f 854 1010 876 +f 988 986 962 +f 2031 2052 2081 +f 924 1732 1828 +f 965 949 1060 +f 781 228 734 +f 1718 1765 665 +f 943 976 932 +f 1680 1794 1783 +f 1448 1471 1276 +f 1276 1267 1421 +f 1931 914 907 +f 991 781 996 +f 1276 1421 1448 +f 10 909 1396 +f 831 860 849 +f 1523 1762 1774 +f 924 1828 937 +f 307 994 1014 +f 946 963 901 +f 978 2103 977 +f 977 1006 1001 +f 1007 1161 1639 +f 1639 1294 1437 +f 885 1032 574 +f 1294 1381 1437 +f 733 568 797 +f 792 229 1112 +f 119 581 108 +f 843 835 927 +f 1889 860 831 +f 2211 2216 2204 +f 2400 2431 2422 +f 2103 1006 977 +f 840 1902 830 +f 827 840 830 +f 827 830 822 +f 1003 874 2492 +f 1432 1439 1431 +f 781 734 964 +f 1937 1936 1723 +f 918 913 902 +f 958 977 944 +f 1850 2178 2177 +f 1005 1020 1000 +f 991 996 307 +f 1396 1445 340 +f 2179 1763 889 +f 939 909 980 +f 1828 958 937 +f 978 977 958 +f 1590 1571 1563 +f 779 1949 920 +f 1551 1362 1573 +f 2103 2142 1006 +f 920 885 963 +f 946 920 963 +f 1584 1616 1583 +f 1453 1472 1452 +f 1647 1617 1578 +f 1578 1564 1627 +f 1628 938 1069 +f 869 868 859 +f 993 983 976 +f 912 1762 1775 +f 752 751 706 +f 1628 1546 938 +f 844 228 781 +f 840 859 1902 +f 898 907 904 +f 1025 973 1009 +f 663 664 573 +f 763 946 901 +f 898 904 869 +f 2172 889 1763 +f 1128 926 971 +f 860 848 849 +f 904 903 890 +f 2486 2459 2479 +f 577 782 608 +f 933 936 918 +f 2177 1847 1851 +f 665 1765 339 +f 937 958 944 +f 894 981 724 +f 968 1000 993 +f 2192 2195 2205 +f 1652 1099 817 +f 997 608 1011 +f 997 577 608 +f 577 163 782 +f 1112 998 792 +f 2177 1851 1850 +f 1257 1421 1258 +f 951 873 920 +f 822 830 2215 +f 1899 2496 2471 +f 1773 1668 1558 +f 904 914 903 +f 932 1671 913 +f 873 885 920 +f 1013 1617 1647 +f 873 1032 885 +f 894 862 981 +f 2469 855 961 +f 913 1671 1969 +f 2477 2064 855 +f 918 936 913 +f 860 870 848 +f 937 944 933 +f 1501 1013 1647 +f 824 178 751 +f 824 997 178 +f 824 577 997 +f 643 163 577 +f 863 856 882 +f 2128 2153 2134 +f 722 774 880 +f 722 894 774 +f 864 905 895 +f 850 575 583 +f 914 918 903 +f 924 937 933 +f 1501 717 1013 +f 1587 1324 928 +f 717 1512 1013 +f 602 577 824 +f 766 643 577 +f 894 709 862 +f 709 878 862 +f 976 975 932 +f 1324 1596 928 +f 880 524 1060 +f 2434 2459 2499 +f 1324 1613 1596 +f 752 824 751 +f 602 766 577 +f 1014 602 594 +f 1387 1226 2152 +f 2153 1387 2152 +f 669 930 950 +f 1710 1694 1699 +f 768 326 762 +f 582 892 601 +f 974 990 2465 +f 624 116 625 +f 835 795 730 +f 2458 2484 763 +f 989 602 824 +f 2064 2477 1710 +f 976 983 975 +f 949 722 880 +f 996 160 994 +f 2305 863 556 +f 556 863 886 +f 601 910 640 +f 2264 825 829 +f 989 824 752 +f 856 864 882 +f 1595 1586 2381 +f 1627 1629 1628 +f 2174 2180 2173 +f 2128 2134 2118 +f 137 272 22 +f 949 880 1060 +f 995 894 722 +f 894 995 709 +f 894 724 774 +f 886 895 892 +f 640 910 930 +f 871 870 860 +f 846 856 863 +f 1026 875 1019 +f 838 851 829 +f 1024 1171 934 +f 36 189 205 +f 863 882 886 +f 886 882 895 +f 875 1026 594 +f 52 1459 1269 +f 896 917 910 +f 1025 1009 934 +f 949 995 722 +f 2152 1226 1636 +f 895 896 892 +f 892 910 601 +f 942 950 930 +f 875 989 752 +f 594 602 989 +f 766 355 643 +f 355 260 643 +f 905 917 896 +f 965 1060 1162 +f 892 896 910 +f 1101 1052 1042 +f 1029 1031 834 +f 1101 1133 1118 +f 342 357 376 +f 516 515 2454 +f 1656 2494 2467 +f 1056 1303 1133 +f 1120 1130 862 +f 69 342 376 +f 1055 1056 1133 +f 499 69 165 +f 85 101 111 +f 1031 1032 834 +f 200 679 1166 +f 1031 1042 1032 +f 1171 65 934 +f 1822 1204 1177 +f 1096 956 1103 +f 514 96 97 +f 956 1145 1144 +f 1185 1166 1144 +f 1145 1185 1144 +f 1185 200 1166 +f 375 132 1041 +f 1153 1202 305 +f 32 1244 1249 +f 1096 1087 956 +f 554 78 2355 +f 1191 138 110 +f 65 35 432 +f 1087 1110 956 +f 1110 1146 956 +f 956 1146 1145 +f 1146 1156 1145 +f 1145 1156 1185 +f 950 956 1144 +f 2481 2495 948 +f 1156 1193 1185 +f 1050 1047 1051 +f 239 151 107 +f 1185 1193 36 +f 1747 1110 1087 +f 1134 1146 1110 +f 1146 1157 1156 +f 1156 1157 1193 +f 1041 1045 1034 +f 1397 1134 1110 +f 1157 1146 1134 +f 1157 1175 1193 +f 1193 199 36 +f 1090 1035 1196 +f 1456 1150 1051 +f 1175 199 1193 +f 1186 695 199 +f 1186 199 1175 +f 1175 1157 1134 +f 728 1186 1175 +f 197 760 6 +f 1130 593 862 +f 1167 1109 182 +f 1194 1115 1161 +f 2140 1928 1504 +f 921 922 2138 +f 1147 1134 1397 +f 1719 1147 1397 +f 1147 1175 1134 +f 1175 1147 728 +f 341 1654 1208 +f 754 151 9 +f 284 2138 1058 +f 1188 1557 1660 +f 1191 110 1053 +f 916 284 1189 +f 284 1058 1189 +f 2094 1465 2127 +f 1726 1019 1147 +f 1147 1019 728 +f 593 1130 96 +f 239 305 1038 +f 1036 1131 315 +f 397 1131 1120 +f 1053 96 1130 +f 2467 2485 1869 +f 517 1089 421 +f 834 1827 1029 +f 419 1047 1117 +f 1034 433 1306 +f 2239 1862 1730 +f 1453 1462 1472 +f 1408 1422 1399 +f 471 23 1111 +f 1205 1150 1456 +f 1205 1040 1150 +f 1131 1036 293 +f 293 1068 1044 +f 375 1041 138 +f 1205 1140 1046 +f 1040 1205 1046 +f 1140 1167 1046 +f 1104 1049 83 +f 1052 1085 1032 +f 1044 1068 1191 +f 1167 1483 1109 +f 208 1084 1035 +f 1040 132 375 +f 1834 20 3 +f 1050 1051 1070 +f 1133 1125 1174 +f 11 1440 1401 +f 420 208 1071 +f 1135 1079 1094 +f 1086 1101 1118 +f 1029 1030 1031 +f 1200 1061 294 +f 1191 1068 138 +f 1171 1141 65 +f 1141 1172 65 +f 1172 35 65 +f 1172 404 35 +f 404 99 35 +f 221 1104 1063 +f 802 398 1083 +f 20 1089 3 +f 2064 1699 835 +f 1042 1052 1032 +f 1433 1261 1432 +f 1323 2338 155 +f 1076 1205 1456 +f 1088 1402 1056 +f 1150 348 1070 +f 1200 1089 20 +f 1097 1162 100 +f 1032 873 834 +f 21 471 1111 +f 294 1097 1104 +f 1072 100 584 +f 1151 760 622 +f 132 1045 1041 +f 1050 1070 1135 +f 1088 1039 940 +f 650 159 635 +f 100 1170 729 +f 729 584 100 +f 1103 931 1096 +f 925 1443 1513 +f 138 1102 110 +f 1034 1306 1152 +f 1071 1035 1090 +f 100 1072 1097 +f 23 1158 315 +f 1068 375 138 +f 1586 1612 1585 +f 1819 1030 1029 +f 1041 1034 1102 +f 232 375 1068 +f 348 1079 1070 +f 1061 1097 294 +f 1513 1443 1442 +f 1200 294 1119 +f 376 1050 1062 +f 1094 1036 315 +f 1200 1119 1089 +f 1111 1183 21 +f 1044 1191 1053 +f 698 295 689 +f 1079 232 1036 +f 404 1117 99 +f 1495 1496 717 +f 1119 294 98 +f 3 1089 517 +f 1132 1063 83 +f 1132 83 175 +f 132 1046 182 +f 1111 1195 1183 +f 1131 1044 1037 +f 127 402 1804 +f 219 1272 1047 +f 1697 1135 1094 +f 2140 1854 2117 +f 1111 397 1195 +f 1177 1162 1097 +f 1061 1177 1097 +f 717 1509 714 +f 2 1300 433 +f 462 290 461 +f 98 294 221 +f 294 1104 221 +f 714 1161 1007 +f 1073 1152 1143 +f 1697 1094 1360 +f 1223 1423 1218 +f 836 2479 842 +f 1097 1072 1049 +f 348 1040 375 +f 3 517 316 +f 180 1061 1201 +f 348 375 232 +f 1432 1431 1415 +f 220 1513 1495 +f 1104 1097 1049 +f 306 674 596 +f 777 455 723 +f 2170 2151 1641 +f 1047 419 219 +f 1102 1034 1073 +f 1073 1034 1152 +f 1035 1054 1196 +f 1177 1204 1162 +f 746 65 12 +f 751 178 721 +f 1054 517 421 +f 1051 1150 1070 +f 1102 1073 110 +f 998 1136 355 +f 567 566 1163 +f 1111 315 397 +f 1048 1074 835 +f 1158 1094 315 +f 1374 1107 1252 +f 1112 1136 998 +f 472 629 500 +f 355 1136 260 +f 260 118 43 +f 1104 83 1063 +f 376 357 1050 +f 1463 1142 1545 +f 1036 232 293 +f 1030 1042 1031 +f 1079 348 232 +f 221 1063 1132 +f 1094 1079 1036 +f 1076 1629 1205 +f 1136 1197 260 +f 260 1197 118 +f 1204 965 1162 +f 293 232 1068 +f 1590 1205 1629 +f 1205 1590 1140 +f 250 382 392 +f 1296 1318 1311 +f 347 1201 20 +f 1201 1200 20 +f 132 182 1045 +f 1101 1086 1052 +f 1033 1039 1055 +f 138 1041 1102 +f 970 1010 2495 +f 455 777 43 +f 1992 1948 2023 +f 20 1834 347 +f 1072 584 1049 +f 584 1192 1049 +f 182 2 1045 +f 1163 324 44 +f 1360 1094 1158 +f 1450 1360 1158 +f 1091 1112 229 +f 509 723 455 +f 207 509 455 +f 1251 1257 1266 +f 1488 1489 1547 +f 2157 1541 1875 +f 305 107 324 +f 1045 2 433 +f 1070 1079 1135 +f 1136 1168 1197 +f 1197 359 118 +f 118 359 43 +f 359 356 43 +f 356 455 43 +f 356 207 455 +f 1240 1422 1408 +f 1163 1153 324 +f 1201 1061 1200 +f 1052 1086 1085 +f 1024 1141 1171 +f 1112 1105 1136 +f 1050 1135 1062 +f 1105 1168 1136 +f 1168 1178 1197 +f 1197 1178 359 +f 1173 404 1172 +f 465 356 359 +f 1174 1125 240 +f 1240 1431 1422 +f 1098 1113 1105 +f 1112 1098 1105 +f 1105 1178 1168 +f 1178 465 359 +f 1091 1098 1112 +f 1133 1174 1118 +f 98 221 1059 +f 487 1132 175 +f 980 1017 285 +f 465 207 356 +f 180 1201 347 +f 1060 524 1170 +f 445 127 316 +f 1431 1438 1422 +f 498 469 681 +f 940 1807 1759 +f 381 250 1290 +f 1113 1122 1105 +f 1105 1122 1178 +f 1151 509 207 +f 1236 2035 525 +f 1131 293 1044 +f 346 207 465 +f 346 1151 207 +f 1822 1796 1204 +f 1143 204 97 +f 123 1128 971 +f 2153 2152 2134 +f 126 1151 346 +f 517 445 316 +f 1450 1158 23 +f 1458 1462 1430 +f 1129 152 1182 +f 1122 1159 1178 +f 1178 1198 465 +f 79 346 465 +f 126 1155 1151 +f 1151 1155 6 +f 295 1129 689 +f 1073 1143 97 +f 1098 1123 1113 +f 1113 1123 1122 +f 1123 1169 1122 +f 1178 1159 1198 +f 1198 79 465 +f 392 383 152 +f 1822 1061 180 +f 116 92 625 +f 421 1089 1119 +f 1129 295 152 +f 110 1073 97 +f 1173 1172 1141 +f 1122 1169 1159 +f 79 126 346 +f 1155 181 6 +f 971 926 1002 +f 295 1043 152 +f 1039 1088 1056 +f 1428 1266 1436 +f 404 419 1117 +f 836 879 2479 +f 2464 2476 2458 +f 1198 317 79 +f 1124 939 301 +f 44 754 567 +f 1039 1056 1055 +f 1439 1459 1458 +f 1660 1412 986 +f 1169 1160 1159 +f 179 1155 126 +f 1155 131 181 +f 1061 1822 1177 +f 1153 305 324 +f 175 314 327 +f 1160 1187 1159 +f 1159 1187 1198 +f 1198 1187 317 +f 79 179 126 +f 1043 250 392 +f 152 1043 392 +f 96 819 593 +f 1123 1127 1169 +f 317 179 79 +f 1057 1155 179 +f 1155 391 131 +f 131 391 668 +f 2381 1586 1585 +f 12 69 499 +f 262 398 1640 +f 2107 2118 2060 +f 2130 2094 2002 +f 1187 249 317 +f 1155 1057 391 +f 1290 439 1265 +f 305 239 107 +f 1127 1160 1169 +f 317 473 179 +f 473 1057 179 +f 83 1192 314 +f 1043 1290 250 +f 1807 940 1030 +f 517 1084 445 +f 1057 1164 391 +f 2492 2480 2493 +f 163 643 43 +f 1056 1545 1303 +f 1069 1655 1023 +f 249 473 317 +f 1162 1060 1170 +f 1086 1118 1154 +f 82 68 16 +f 1989 1990 1536 +f 1633 1632 1611 +f 1487 2372 1305 +f 1494 1069 1023 +f 1137 1160 1127 +f 669 1166 679 +f 390 1285 426 +f 1955 1972 1971 +f 1219 1223 2437 +f 1254 1261 1223 +f 1319 1545 1056 +f 1320 1328 2443 +f 1261 1433 1223 +f 1219 1254 1223 +f 254 222 2428 +f 1237 1290 1265 +f 1284 1273 1263 +f 1277 1291 1301 +f 1314 102 1301 +f 1280 363 377 +f 1313 1353 1514 +f 468 451 439 +f 1918 1964 1956 +f 2026 29 2140 +f 1354 381 1279 +f 1224 30 1254 +f 147 158 173 +f 1247 1253 274 +f 1271 380 334 +f 2043 2072 2042 +f 274 300 267 +f 1356 1392 211 +f 13 240 1142 +f 1382 1330 1392 +f 1312 1323 155 +f 240 1125 1142 +f 2358 1573 1362 +f 1236 1249 1244 +f 1272 219 1348 +f 1271 1274 380 +f 191 2034 1982 +f 1992 2052 1990 +f 462 452 689 +f 2262 2286 2261 +f 183 489 1642 +f 2485 2480 1869 +f 84 111 1323 +f 1190 353 1354 +f 446 434 435 +f 1336 171 1341 +f 2021 430 2059 +f 862 878 1120 +f 1263 1273 1248 +f 1966 1921 2144 +f 1312 84 1323 +f 240 13 1348 +f 1359 1274 1271 +f 1392 1330 1247 +f 1520 1333 11 +f 1368 1253 1247 +f 1279 1285 1190 +f 2465 990 2489 +f 1272 1519 805 +f 1369 1272 805 +f 1317 95 1344 +f 1242 1248 1234 +f 1368 242 1363 +f 274 1262 1386 +f 532 597 1886 +f 2117 2026 2140 +f 1392 1247 274 +f 2162 508 985 +f 1964 1469 1965 +f 1315 104 1331 +f 1392 1356 1382 +f 128 1342 1336 +f 1285 427 426 +f 1219 1224 1254 +f 1320 1322 1321 +f 1320 1321 1328 +f 153 2443 1328 +f 1321 153 1328 +f 1235 1244 1243 +f 1225 1224 1219 +f 1359 353 1190 +f 1312 1473 1458 +f 1336 1342 147 +f 305 1333 1038 +f 1336 147 171 +f 516 31 19 +f 2479 2461 842 +f 1237 1265 427 +f 1263 1278 1284 +f 881 1827 834 +f 1237 427 1285 +f 1299 1312 1458 +f 1190 1285 1274 +f 1363 286 1253 +f 2330 2303 828 +f 427 442 426 +f 2493 2463 2492 +f 1285 380 1274 +f 522 18 1225 +f 2471 2472 2488 +f 2338 154 1321 +f 1423 1415 1218 +f 1225 18 1224 +f 1253 286 1262 +f 286 353 1359 +f 171 1368 1383 +f 1273 54 1234 +f 1973 2447 527 +f 1322 155 1321 +f 1203 1369 1413 +f 1307 363 1298 +f 1364 1375 1329 +f 1329 227 1306 +f 296 1298 1343 +f 947 2499 1447 +f 1203 1047 1272 +f 1098 1748 1123 +f 1519 1272 1348 +f 1277 70 1273 +f 1282 1337 1361 +f 286 302 353 +f 103 104 1315 +f 1377 435 434 +f 1449 1261 1345 +f 926 1310 806 +f 1263 1248 1242 +f 985 508 597 +f 1415 1222 1218 +f 88 1325 104 +f 170 111 156 +f 1384 1282 1361 +f 274 1253 1262 +f 1371 1317 1344 +f 1371 1366 1337 +f 1345 1459 1449 +f 171 1383 1341 +f 2438 1235 1227 +f 2134 1582 2118 +f 428 1260 1379 +f 1336 1341 1325 +f 1235 1242 1227 +f 1228 1687 2284 +f 1854 2140 2016 +f 1866 1887 1873 +f 1343 1298 1370 +f 1384 1361 2440 +f 171 242 1368 +f 1344 1309 1366 +f 1371 1344 1366 +f 1280 1377 1293 +f 200 1185 205 +f 1330 1383 1368 +f 1255 1264 1263 +f 543 1367 1876 +f 1343 1370 1260 +f 1293 1326 1370 +f 2440 1361 1302 +f 1282 1384 2406 +f 271 1337 1282 +f 170 2338 1323 +f 1528 1503 2470 +f 515 1347 2453 +f 1997 1705 1998 +f 2285 1228 2284 +f 1229 1250 1228 +f 1330 1368 1247 +f 1919 1619 2045 +f 1344 1364 1335 +f 1222 1240 1221 +f 1212 858 1741 +f 2388 1222 1221 +f 1528 2470 2068 +f 501 1308 2171 +f 1295 1311 1487 +f 2116 1619 1655 +f 1220 1229 1228 +f 8 663 573 +f 1343 1260 428 +f 1337 1366 1361 +f 1298 1280 1293 +f 1269 1345 1261 +f 1279 381 1290 +f 1230 1229 1220 +f 1230 1245 1229 +f 1245 1250 1229 +f 1227 1234 31 +f 1302 1361 1350 +f 1245 1266 1428 +f 1992 2023 2052 +f 2482 2471 2475 +f 452 462 461 +f 271 1282 1275 +f 1991 1989 1934 +f 1366 1309 1350 +f 1344 1335 1309 +f 730 699 974 +f 1374 1252 1208 +f 597 508 1912 +f 1363 1253 1368 +f 1386 1271 300 +f 1211 1218 1222 +f 1376 1377 434 +f 2399 2437 1211 +f 1284 1291 1277 +f 1230 1251 1245 +f 1251 1266 1245 +f 1317 1371 1337 +f 1288 1286 1095 +f 1095 1286 1352 +f 1241 1208 1352 +f 1241 1374 1208 +f 1284 1278 1291 +f 211 1392 267 +f 1344 1375 1364 +f 929 583 1028 +f 1361 1366 1350 +f 1115 1294 1639 +f 1291 103 1301 +f 1220 1231 1230 +f 1231 1251 1230 +f 1234 1248 1273 +f 1255 55 1264 +f 1360 1450 1702 +f 363 1280 1298 +f 1369 1203 1272 +f 1415 1240 1222 +f 1216 1231 1220 +f 1243 1263 1235 +f 1375 227 1329 +f 1264 1278 1263 +f 855 899 961 +f 1286 1241 1352 +f 2081 2128 2107 +f 1223 1433 1423 +f 1473 1312 155 +f 154 153 1321 +f 1377 1376 1293 +f 1392 274 267 +f 334 300 1271 +f 1955 1991 1934 +f 1613 1327 1288 +f 1327 1286 1288 +f 1349 1374 1241 +f 2370 2025 2367 +f 1315 1331 133 +f 434 446 1256 +f 1232 1251 1231 +f 1243 1244 1255 +f 1286 1304 1241 +f 1349 1107 1374 +f 1359 1271 1386 +f 1227 516 2431 +f 219 240 1348 +f 1270 271 1275 +f 1255 1263 1243 +f 2026 1926 29 +f 1683 2157 1212 +f 1326 1293 1376 +f 1255 32 55 +f 104 1325 1341 +f 519 2462 2475 +f 2154 2161 2137 +f 1376 434 1246 +f 1246 434 1256 +f 1257 1251 1232 +f 1262 1359 1386 +f 2195 2192 2186 +f 1308 534 1226 +f 2026 2117 544 +f 1327 1613 1324 +f 1327 1326 1286 +f 1286 1326 1304 +f 104 1341 1331 +f 774 524 880 +f 837 1517 534 +f 1127 1123 1567 +f 1279 1237 1285 +f 1297 1381 1294 +f 1217 1232 1216 +f 1142 1519 13 +f 1436 1267 1287 +f 1324 1372 1327 +f 1304 1246 1241 +f 1246 1349 1241 +f 1246 1373 1349 +f 286 1359 1262 +f 1382 1383 1330 +f 1284 1277 1273 +f 489 1998 1799 +f 1675 1116 1075 +f 106 1317 1337 +f 1311 1295 1281 +f 1292 1364 1329 +f 1335 1364 1292 +f 1334 1294 1115 +f 1334 1297 1294 +f 1300 1381 1297 +f 973 842 2461 +f 1217 1239 1232 +f 1232 1239 1257 +f 1258 1267 1436 +f 1359 1190 1274 +f 1862 1405 1877 +f 1372 1339 1327 +f 1339 1326 1327 +f 1373 1351 1349 +f 1276 1311 1281 +f 1256 2386 1351 +f 2 1109 1300 +f 482 1731 520 +f 803 1604 2022 +f 1223 1218 1211 +f 1341 1383 1382 +f 1298 1293 1370 +f 1190 1354 1279 +f 1324 2398 1372 +f 1714 1700 2173 +f 183 2000 489 +f 1701 1666 192 +f 1227 1242 1234 +f 1332 1289 1310 +f 1517 2005 2130 +f 1331 1341 1382 +f 525 1249 1236 +f 23 1268 1450 +f 1264 1291 1278 +f 1281 1287 1267 +f 1295 1305 1287 +f 1281 1295 1287 +f 1487 1305 1295 +f 1605 2097 2058 +f 1326 1376 1304 +f 1304 1376 1246 +f 1316 1919 1984 +f 2500 1949 2460 +f 1332 1313 1289 +f 2189 2181 2177 +f 1335 1334 1353 +f 1292 1297 1334 +f 1428 1250 1245 +f 969 958 952 +f 1217 1233 1239 +f 1233 1257 1239 +f 1876 1367 1338 +f 1379 1260 1372 +f 1372 1260 1339 +f 1128 1302 1310 +f 1310 1302 1332 +f 1335 1353 1313 +f 1292 1334 1335 +f 1297 1329 1300 +f 1279 1290 1237 +f 1301 103 1314 +f 70 1301 102 +f 23 1333 1268 +f 380 1285 390 +f 772 325 1275 +f 1314 103 1315 +f 2473 2458 2487 +f 1276 1281 1267 +f 1344 95 1375 +f 2053 1771 1572 +f 1246 1256 1373 +f 1373 1256 1351 +f 1340 1302 1128 +f 1350 1313 1332 +f 1329 1297 1292 +f 2434 2473 2487 +f 106 1337 271 +f 23 471 1333 +f 622 723 509 +f 1388 1517 2127 +f 1991 1990 1989 +f 183 1636 1226 +f 2133 1605 2151 +f 1260 1370 1339 +f 1339 1370 1326 +f 867 1894 1902 +f 390 426 412 +f 1235 1263 1242 +f 1399 1422 1233 +f 305 11 1333 +f 1300 1329 1306 +f 1302 1350 1332 +f 1350 1309 1313 +f 1309 1335 1313 +f 2470 2102 1502 +f 1787 1531 1599 +f 1724 1725 1691 +f 1827 1601 1927 +f 1678 1358 1476 +f 1823 1812 1846 +f 1805 1824 1708 +f 1746 1676 1797 +f 325 2395 429 +f 1835 1677 1826 +f 1507 1790 1722 +f 1526 1672 858 +f 158 147 1342 +f 1462 1473 1322 +f 1474 1414 1565 +f 1761 1900 1877 +f 940 1759 1008 +f 1565 1015 1008 +f 1924 1533 1933 +f 1878 826 830 +f 1565 1414 1015 +f 1402 1088 1008 +f 1538 1532 1651 +f 1015 1552 1008 +f 1538 1591 1474 +f 1532 1538 1474 +f 1474 1591 1414 +f 1484 1402 1008 +f 1552 1484 1008 +f 1414 1460 1015 +f 1015 1460 1552 +f 806 1289 945 +f 1597 1538 1659 +f 1484 1319 1402 +f 1056 1402 1319 +f 1538 1597 1591 +f 1591 960 1414 +f 1414 960 1460 +f 1925 1466 1455 +f 1552 1400 1484 +f 1484 1400 1319 +f 1400 113 1319 +f 1597 1580 1591 +f 1460 1400 1552 +f 1514 1441 966 +f 1597 1659 1409 +f 1657 113 1400 +f 1460 1657 1400 +f 1288 1095 1634 +f 1551 1597 1409 +f 1580 1598 1591 +f 1591 1598 960 +f 1536 1990 2031 +f 960 1657 1460 +f 1809 1746 1797 +f 1423 1433 1432 +f 2478 1362 1409 +f 1463 1545 113 +f 1657 1463 113 +f 1457 1287 1305 +f 1682 1716 1746 +f 1434 1761 1885 +f 1013 1139 1617 +f 2379 1362 2478 +f 1420 1597 1551 +f 1420 1580 1597 +f 1664 1808 1712 +f 2256 2250 2231 +f 1362 1551 1409 +f 2196 2214 2213 +f 1691 1725 1777 +f 1626 192 1666 +f 1534 1574 2058 +f 1574 1600 1605 +f 1600 1606 1605 +f 1606 1641 1605 +f 1573 1420 1551 +f 1657 1485 1463 +f 678 1806 1742 +f 1534 1553 1574 +f 1574 1575 1600 +f 1810 2170 585 +f 1623 1641 1606 +f 1407 1657 960 +f 1598 1407 960 +f 1485 1142 1463 +f 1716 1581 1676 +f 1738 1743 1733 +f 843 2064 835 +f 1539 1575 1574 +f 1553 1539 1574 +f 1575 1592 1600 +f 1592 1624 1606 +f 1600 1592 1606 +f 1642 585 1641 +f 1623 1642 1641 +f 1485 164 1142 +f 1738 1516 1743 +f 1809 1720 1798 +f 1533 1535 1534 +f 1592 1607 1624 +f 1624 1623 1606 +f 1163 566 1116 +f 1407 1485 1657 +f 1432 1449 1439 +f 1100 802 2382 +f 1743 1516 1722 +f 1746 1716 1676 +f 1535 1539 1534 +f 1534 1539 1553 +f 1642 1623 1624 +f 1095 1208 1654 +f 967 1407 1598 +f 1580 967 1598 +f 1809 1797 1720 +f 1924 1524 1535 +f 1533 1924 1535 +f 1539 1576 1575 +f 1642 216 585 +f 1407 1529 1485 +f 1485 1529 164 +f 1472 1462 1482 +f 1415 1431 1240 +f 966 1194 714 +f 383 1182 152 +f 474 2337 446 +f 1743 1841 1757 +f 1486 1524 1924 +f 1535 1525 1539 +f 1575 1576 1592 +f 1420 967 1580 +f 1288 1634 1613 +f 459 427 1265 +f 1404 2179 1393 +f 1404 1403 1800 +f 1404 1410 1403 +f 1410 1749 1403 +f 1349 1351 218 +f 1486 1498 1524 +f 1535 1524 1525 +f 1607 1636 1624 +f 183 1642 1624 +f 1636 183 1624 +f 1107 1349 218 +f 1351 845 218 +f 164 1519 1142 +f 845 413 218 +f 1525 1576 1539 +f 1576 1582 1592 +f 1592 2134 1607 +f 2134 1636 1607 +f 2147 1491 1401 +f 1407 1589 1529 +f 1529 1519 164 +f 1693 1763 1444 +f 1924 1479 1486 +f 1592 1582 2134 +f 499 165 874 +f 2176 1857 1959 +f 2327 2368 2326 +f 2358 821 953 +f 953 821 1573 +f 1824 1704 1464 +f 1731 1358 1678 +f 1394 1410 1404 +f 1394 1418 1410 +f 1466 1479 1839 +f 1486 1479 1498 +f 1498 1525 1524 +f 1576 2080 1582 +f 1785 1684 1898 +f 804 398 802 +f 804 925 398 +f 1447 1562 2358 +f 2358 1562 821 +f 821 1620 1573 +f 1620 1420 1573 +f 1420 1556 967 +f 1393 1394 1404 +f 1525 2080 1576 +f 1621 1420 1620 +f 1621 1556 1420 +f 967 1589 1407 +f 1505 5 1357 +f 1266 1258 1436 +f 1393 1395 1394 +f 2176 2175 1848 +f 1455 1466 1839 +f 1525 1540 2080 +f 1582 2080 2118 +f 1100 804 802 +f 1556 1589 967 +f 1589 1082 1529 +f 1093 1685 1357 +f 1504 1093 1357 +f 1425 1418 1394 +f 1475 1479 1466 +f 1479 1506 1498 +f 1789 1784 1730 +f 2501 2465 2489 +f 1438 1458 1430 +f 1462 1458 1473 +f 1454 805 1529 +f 1082 1454 1529 +f 1529 805 1519 +f 1425 1394 1395 +f 1425 1744 1418 +f 1479 1475 1506 +f 1540 2060 2080 +f 1556 1082 1589 +f 1443 945 1511 +f 1506 1536 1498 +f 1498 1536 1525 +f 1525 1536 1540 +f 1670 852 1672 +f 1998 1388 1389 +f 1511 966 1509 +f 1509 966 714 +f 1442 1443 1496 +f 1562 1635 821 +f 155 1322 1473 +f 1439 1458 1438 +f 1426 1425 1395 +f 1475 1499 1506 +f 1735 1588 1776 +f 2422 2454 2421 +f 1423 1432 1415 +f 1559 2101 2073 +f 845 866 413 +f 1429 1620 821 +f 1620 1429 1621 +f 1228 1250 1687 +f 1002 945 1443 +f 2382 802 1083 +f 1859 1411 1395 +f 1411 1426 1395 +f 1426 1744 1425 +f 1590 1437 1483 +f 1480 1475 1466 +f 1480 1499 1475 +f 1510 1733 1743 +f 1663 1696 1658 +f 1430 1453 1452 +f 1452 1472 1471 +f 1452 1471 1448 +f 1430 1452 1421 +f 1430 1421 1422 +f 1429 1082 1556 +f 1621 1429 1556 +f 1351 2386 845 +f 1126 1059 487 +f 1639 1437 1563 +f 1504 1928 1093 +f 1499 1536 1506 +f 1588 1770 1727 +f 1110 1747 1397 +f 1776 1588 1531 +f 1322 1320 1482 +f 1590 1629 1571 +f 1730 1877 1838 +f 1429 935 1082 +f 1082 935 1454 +f 804 1443 925 +f 1139 1007 1639 +f 1925 1480 1466 +f 1934 1989 1480 +f 1499 1989 1536 +f 1727 1526 1531 +f 1593 1614 502 +f 2455 2431 2400 +f 1755 1680 908 +f 1563 1571 1564 +f 1647 1078 1501 +f 2490 1635 1106 +f 1496 1511 717 +f 2454 2431 516 +f 1478 1153 1093 +f 1870 1426 1411 +f 1426 1723 1744 +f 962 986 1412 +f 717 1511 1509 +f 1825 1704 1824 +f 2225 2234 2253 +f 1490 1557 1188 +f 1635 80 821 +f 805 1454 935 +f 1186 706 695 +f 1194 1161 714 +f 1512 1007 1013 +f 592 97 204 +f 1258 1266 1257 +f 82 1333 471 +f 1694 1710 1505 +f 1643 490 1661 +f 1661 490 1114 +f 1518 2068 2484 +f 1750 1808 1664 +f 1656 1635 2490 +f 935 1521 805 +f 1546 1629 1076 +f 1301 70 1277 +f 966 1441 1194 +f 1148 1825 1824 +f 1614 1609 1643 +f 1114 1092 1921 +f 1770 1739 1670 +f 1631 1632 1646 +f 821 1016 1429 +f 1429 1016 935 +f 1632 1095 1654 +f 1083 262 688 +f 1724 1686 1725 +f 1644 490 1643 +f 1092 1149 1921 +f 3 893 1832 +f 988 1640 1188 +f 916 1107 284 +f 1656 80 1635 +f 1016 821 80 +f 1016 1521 935 +f 1478 1202 1153 +f 1401 1928 29 +f 1440 1478 1928 +f 1849 1700 1865 +f 1595 1611 1612 +f 1208 198 341 +f 1464 1704 1746 +f 2143 984 1721 +f 1848 1849 1868 +f 1662 1114 490 +f 1669 1787 1682 +f 1656 1618 80 +f 198 1208 916 +f 1440 1928 1401 +f 1521 1369 805 +f 1252 1107 916 +f 1745 678 1672 +f 1703 1779 1721 +f 1750 1465 1808 +f 1609 1644 1643 +f 1092 1114 1662 +f 1826 1523 1793 +f 2262 2261 2224 +f 1696 2166 1767 +f 1016 1648 1521 +f 1208 1252 916 +f 833 688 1067 +f 1794 1803 1558 +f 28 17 512 +f 1750 861 1566 +f 1594 1644 1609 +f 1644 1645 490 +f 490 1645 1662 +f 2229 2262 2224 +f 1602 861 1760 +f 1530 1777 1760 +f 872 1706 1673 +f 1696 1668 2166 +f 1708 1809 1798 +f 1581 1716 1814 +f 1709 1794 1680 +f 1233 1421 1257 +f 1724 1476 1686 +f 1469 1481 1965 +f 1965 1481 1492 +f 2073 1549 1559 +f 1594 1615 1644 +f 1799 1706 1755 +f 1725 1686 1837 +f 1720 1797 1572 +f 1618 2467 2022 +f 1618 1579 80 +f 1648 1016 80 +f 2134 2152 1636 +f 1611 1632 1631 +f 1761 1434 1470 +f 1559 1577 1594 +f 1603 1615 1594 +f 1615 1645 1644 +f 1637 1662 1645 +f 1662 1199 1092 +f 1199 1149 1092 +f 1451 1108 1149 +f 665 734 756 +f 1865 1700 1714 +f 1709 1841 1794 +f 1618 2022 1579 +f 1648 1413 1369 +f 1521 1648 1369 +f 1520 11 1401 +f 1446 1470 1434 +f 1798 1691 1754 +f 2063 1544 2073 +f 2073 1544 1549 +f 1594 1577 1603 +f 1615 1637 1645 +f 1637 1199 1662 +f 1427 1149 1199 +f 2167 1108 1451 +f 1997 1673 1705 +f 1706 1799 1705 +f 1841 1709 1757 +f 1604 1579 2022 +f 1579 707 80 +f 80 707 1648 +f 1520 1401 1491 +f 1649 1520 1491 +f 1435 1434 1885 +f 1470 1469 1461 +f 1481 1508 2024 +f 2370 1544 2063 +f 1549 1568 1559 +f 1559 1568 1577 +f 1603 1610 1615 +f 1615 1610 1637 +f 999 1199 1637 +f 1451 1149 1427 +f 1137 1825 1148 +f 1706 1705 1673 +f 1138 1604 2116 +f 1138 1579 1604 +f 1413 1648 707 +f 2360 2024 1508 +f 598 1075 1116 +f 229 93 1468 +f 1839 1479 1684 +f 2216 2229 2224 +f 1610 1625 1637 +f 329 999 1637 +f 1199 1017 1427 +f 1017 303 1427 +f 303 1451 1427 +f 1792 1754 1777 +f 2309 2391 2301 +f 1655 1138 2116 +f 1138 707 1579 +f 1649 1491 206 +f 1406 1885 1398 +f 1406 1419 1885 +f 1419 1435 1885 +f 1434 1435 1446 +f 1470 1481 1469 +f 1577 1583 1603 +f 999 1017 1199 +f 81 67 941 +f 67 1650 941 +f 1259 1815 2164 +f 1619 2116 2045 +f 1424 707 1138 +f 1702 1649 206 +f 1687 1406 1398 +f 1477 1481 1470 +f 1568 1569 1577 +f 1577 1569 1583 +f 1603 1583 1610 +f 1625 329 1637 +f 2167 340 273 +f 81 273 340 +f 81 962 67 +f 1547 1619 1488 +f 1830 1739 1770 +f 938 1424 1138 +f 1424 1413 707 +f 1527 1649 1702 +f 1527 1520 1649 +f 1527 1268 1520 +f 1250 1406 1687 +f 1441 1353 1115 +f 1203 1413 1051 +f 1250 1419 1406 +f 1477 2372 1481 +f 1481 2372 1508 +f 2449 1560 1568 +f 1549 2449 1568 +f 1568 1560 1569 +f 1569 1584 1583 +f 1652 329 1625 +f 329 817 999 +f 285 1017 999 +f 303 10 1451 +f 10 2167 1451 +f 1412 1650 67 +f 1412 1488 1650 +f 1547 1023 1619 +f 1023 1655 1619 +f 1655 938 1138 +f 1456 1413 1424 +f 1457 1470 1446 +f 1457 1477 1470 +f 329 1652 817 +f 10 340 2167 +f 938 1546 1424 +f 1546 1456 1424 +f 1259 1548 1779 +f 2052 2031 1990 +f 1440 1202 1478 +f 1428 1419 1250 +f 1428 1435 1419 +f 1428 1446 1435 +f 1934 1935 1955 +f 1560 1584 1569 +f 1610 1638 1625 +f 1638 1652 1625 +f 817 1077 999 +f 1077 285 999 +f 980 303 1017 +f 962 1412 67 +f 1494 1023 1547 +f 325 271 1270 +f 1443 1511 1496 +f 1450 1268 1527 +f 1514 1353 1441 +f 1287 1446 1428 +f 1446 1287 1457 +f 1305 2372 1477 +f 1992 1990 1991 +f 1992 1991 1971 +f 1971 1991 1955 +f 2449 1549 2418 +f 1583 1616 1610 +f 1610 1616 1638 +f 10 1396 340 +f 340 1445 81 +f 1445 962 81 +f 1790 984 1753 +f 984 2148 1753 +f 1588 1713 1770 +f 969 978 958 +f 1741 1779 1703 +f 1758 1846 1754 +f 1827 1819 1029 +f 1818 1530 1712 +f 1750 1566 2127 +f 2459 2434 2483 +f 1798 1720 1771 +f 1794 1841 1803 +f 216 1755 1810 +f 1098 1735 1748 +f 1735 1497 1748 +f 1502 2102 1601 +f 881 1502 1601 +f 1455 1839 1744 +f 1706 1709 1680 +f 1212 1741 1703 +f 1788 1969 1671 +f 1075 1074 1692 +f 951 2500 881 +f 2490 2486 2463 +f 1748 1497 1781 +f 1721 984 1840 +f 1815 1259 1741 +f 1626 1756 1837 +f 975 987 1542 +f 2230 2236 2235 +f 1772 678 734 +f 1542 1671 975 +f 1806 1772 1780 +f 678 1772 1806 +f 2218 2225 2268 +f 1828 1732 2007 +f 1526 1688 1531 +f 1752 1526 1554 +f 1844 1818 1712 +f 1823 1846 1804 +f 1781 1669 1704 +f 1721 1779 2143 +f 1770 1670 1526 +f 1497 1669 1781 +f 1098 1713 1735 +f 1742 1815 1741 +f 1526 858 1875 +f 1599 1531 1688 +f 1803 1790 1558 +f 1703 1721 1683 +f 1832 1766 957 +f 1542 1679 1671 +f 1679 1788 1671 +f 1927 1819 1827 +f 1718 1745 1739 +f 1684 1022 1839 +f 1459 1283 1299 +f 1022 1410 1418 +f 2368 2393 2326 +f 1669 1497 1776 +f 1875 858 1212 +f 1739 1745 852 +f 1964 1918 1461 +f 1356 133 1331 +f 1765 1829 1468 +f 858 1742 1741 +f 1006 1674 1021 +f 1723 1936 1935 +f 1468 1713 1098 +f 1724 1678 1476 +f 1680 1783 908 +f 1731 1543 520 +f 1683 1721 1840 +f 1467 1679 1542 +f 1812 1708 1846 +f 1679 1975 1788 +f 1713 1830 1770 +f 1803 1722 1790 +f 2301 2391 2349 +f 1713 1588 1735 +f 1836 1530 1818 +f 1837 1756 861 +f 886 571 556 +f 1181 1805 1812 +f 1706 1680 1755 +f 1677 1729 1775 +f 1776 1787 1669 +f 1526 1670 1672 +f 1727 1770 1526 +f 987 1467 1542 +f 1567 1704 1137 +f 1693 1865 1714 +f 897 1762 912 +f 1135 1697 1062 +f 1697 376 1062 +f 1543 1731 1678 +f 1793 1679 1467 +f 1777 1602 1760 +f 1846 1798 1754 +f 1835 1096 1677 +f 1033 1030 940 +f 1450 1527 1702 +f 1717 376 1697 +f 1711 1717 1697 +f 1717 165 376 +f 1840 984 1790 +f 1669 1746 1704 +f 1669 1682 1746 +f 2301 2349 2308 +f 1882 1444 1898 +f 1820 1789 1730 +f 861 1380 1566 +f 2301 2308 2266 +f 1771 1543 1691 +f 1958 1659 1651 +f 1697 1360 1711 +f 1711 1737 1717 +f 1717 1737 165 +f 1790 1753 1558 +f 1668 1696 1663 +f 1360 1702 1711 +f 1702 1707 1711 +f 1707 1737 1711 +f 1737 1751 165 +f 1444 1782 1693 +f 1716 1787 1599 +f 1744 1839 1022 +f 1898 1444 1785 +f 206 1707 1702 +f 1764 2468 1751 +f 316 1844 893 +f 893 1844 915 +f 1845 1804 1758 +f 1380 861 1756 +f 1780 670 1021 +f 1714 2172 1763 +f 1783 1558 1663 +f 1750 2127 1465 +f 1798 1771 1691 +f 1691 1543 1724 +f 1872 1910 839 +f 1737 2044 1751 +f 1751 2044 1764 +f 1757 1701 482 +f 1725 1602 1777 +f 1836 1845 1530 +f 2102 2470 1503 +f 2496 1899 544 +f 763 2484 946 +f 987 1719 1467 +f 1845 1758 1792 +f 1725 1837 1602 +f 1872 1866 1873 +f 1712 1530 1760 +f 489 1799 216 +f 1760 861 1750 +f 2068 2466 2460 +f 1696 2159 2168 +f 377 1377 1280 +f 1797 1676 1572 +f 1581 2053 1572 +f 1676 1581 1572 +f 1764 2498 2468 +f 2468 2498 1994 +f 1861 1695 1860 +f 2481 2004 2495 +f 1826 1677 1523 +f 1670 1739 852 +f 2234 2269 2253 +f 1724 1543 1678 +f 1658 2168 1791 +f 1397 1747 1719 +f 1696 2168 1658 +f 979 519 272 +f 1774 1975 1679 +f 975 1671 932 +f 1787 1716 1682 +f 1835 1826 1747 +f 2501 2469 961 +f 1810 908 1791 +f 1982 1768 191 +f 1137 1704 1825 +f 1804 1846 1758 +f 2004 2044 1737 +f 913 1969 902 +f 2498 1795 1801 +f 915 1844 1712 +f 1689 915 1712 +f 1740 1752 1541 +f 695 661 199 +f 1865 1693 1782 +f 1824 1464 1809 +f 1829 1765 1718 +f 1816 1768 1982 +f 1816 1622 1768 +f 1622 2165 1681 +f 1768 1622 1681 +f 670 1772 228 +f 1283 1459 52 +f 1785 1444 1749 +f 1675 1075 1685 +f 1567 1781 1704 +f 1858 1857 1848 +f 1526 1752 1688 +f 1791 2160 1810 +f 908 1658 1791 +f 1813 1773 1558 +f 1845 1792 1530 +f 69 376 165 +f 3 1832 1834 +f 1722 1516 1507 +f 1801 1821 1994 +f 1833 1982 2046 +f 1821 1833 2046 +f 1833 1816 1982 +f 1022 1785 1749 +f 2160 2170 1810 +f 1147 1719 1726 +f 1683 1840 1507 +f 1467 1719 1793 +f 1795 1802 1801 +f 1802 1811 1801 +f 1801 1811 1821 +f 1690 2165 1622 +f 1934 1480 1925 +f 229 1468 1091 +f 1780 2164 1742 +f 1672 1742 858 +f 1833 1417 1816 +f 1417 1622 1816 +f 1831 2165 1690 +f 1668 1663 1558 +f 1719 1747 1826 +f 1760 1750 1664 +f 1817 1690 1622 +f 1530 1792 1777 +f 948 1796 1802 +f 1796 1811 1802 +f 1515 1817 1622 +f 1695 1861 1831 +f 1783 1663 1658 +f 1749 1410 1022 +f 854 1796 948 +f 1811 1842 1833 +f 1821 1811 1833 +f 1833 1842 1417 +f 1622 1417 1515 +f 127 1804 1845 +f 1686 1626 1837 +f 1608 1690 1817 +f 1523 1775 1762 +f 127 1845 1836 +f 1812 1805 1708 +f 1523 1677 1775 +f 1780 1772 670 +f 1758 1754 1792 +f 1204 1796 854 +f 1822 1842 1811 +f 1608 1831 1690 +f 1822 1811 1796 +f 1842 1416 1417 +f 1417 1416 1515 +f 1515 1608 1817 +f 1728 1831 1608 +f 908 1783 1658 +f 127 1836 316 +f 1805 1148 1824 +f 852 1745 1672 +f 1478 1093 1928 +f 1822 1843 1842 +f 1843 959 1842 +f 1842 959 1416 +f 1728 1695 1831 +f 1728 1860 1695 +f 2346 446 2337 +f 1602 1837 861 +f 1087 1096 1835 +f 1708 1824 1809 +f 2004 1737 505 +f 1567 1748 1781 +f 520 1543 1883 +f 1760 1664 1712 +f 128 1336 72 +f 2053 1883 1543 +f 1822 180 1843 +f 1786 1608 1515 +f 929 2462 519 +f 512 2402 506 +f 1212 1703 1683 +f 1830 1829 1739 +f 2053 1543 1771 +f 1416 1769 1515 +f 1769 1786 1515 +f 1786 1728 1608 +f 1712 1808 1689 +f 1794 1558 1783 +f 1497 1735 1776 +f 1127 1567 1137 +f 1123 1748 1567 +f 36 205 1185 +f 959 1734 1416 +f 1738 1733 1541 +f 1774 1762 1974 +f 1752 1554 1541 +f 1752 1740 1688 +f 1526 1875 1554 +f 1468 1829 1830 +f 1755 908 1810 +f 1716 1599 1814 +f 1806 1780 1742 +f 2308 2349 2340 +f 1832 915 1689 +f 1713 1468 1830 +f 1814 1599 1346 +f 1832 1689 1766 +f 1022 1684 1785 +f 1093 1153 1116 +f 1672 678 1742 +f 1675 1685 1093 +f 1841 1743 1722 +f 1814 2053 1581 +f 1464 1746 1809 +f 2485 2497 2493 +f 1416 1734 1769 +f 1665 1728 1786 +f 1665 1951 1728 +f 1951 1860 1728 +f 1951 2094 1860 +f 1844 1836 1818 +f 316 1836 1844 +f 1776 1531 1787 +f 1719 1826 1793 +f 2147 1401 29 +f 2111 2121 1548 +f 1741 1259 1779 +f 1843 347 1834 +f 1843 1734 959 +f 1766 1769 1734 +f 957 1766 1734 +f 1766 1786 1769 +f 1766 1689 1786 +f 1689 1665 1786 +f 1754 1691 1777 +f 1507 1840 1790 +f 1761 1470 1461 +f 1523 1679 1793 +f 1091 1468 1098 +f 1820 1730 1838 +f 1843 1834 1734 +f 1808 1951 1665 +f 1588 1727 1531 +f 893 915 1832 +f 1523 1774 1679 +f 272 2488 710 +f 1093 1116 1675 +f 2340 2349 2348 +f 1832 1734 1834 +f 1832 957 1734 +f 1951 1808 2094 +f 1685 1692 1505 +f 1043 295 698 +f 2143 1779 2121 +f 1689 1808 1665 +f 1693 1714 1763 +f 1738 2157 1516 +f 1114 1921 236 +f 1268 1333 1520 +f 1149 1108 431 +f 508 2144 1912 +f 1957 1108 1537 +f 431 1108 1957 +f 1018 1108 2167 +f 1338 1957 1681 +f 2163 1957 1338 +f 1983 1390 2093 +f 30 557 37 +f 1714 2173 2172 +f 1983 1984 1390 +f 1984 2065 1390 +f 884 1762 897 +f 2065 1984 1214 +f 1950 1974 1762 +f 884 1950 1762 +f 2012 1698 1861 +f 1214 2116 803 +f 1950 1938 1974 +f 1938 1967 1974 +f 1900 1761 1461 +f 865 1929 884 +f 884 1929 1950 +f 2062 2071 2042 +f 919 1985 1732 +f 1593 502 2146 +f 1995 1213 2098 +f 1522 2476 1651 +f 2174 1849 2175 +f 1480 1989 1499 +f 1929 1938 1950 +f 1605 2058 1574 +f 2097 1605 2133 +f 1912 2014 1886 +f 2092 2082 2083 +f 206 1930 505 +f 2101 2100 2092 +f 2073 2101 2092 +f 839 1910 865 +f 1910 1901 1929 +f 865 1910 1929 +f 1967 1788 1975 +f 2073 2092 2063 +f 2101 1593 2100 +f 2015 1876 1698 +f 1853 1884 2014 +f 1831 1698 2165 +f 1316 273 81 +f 1901 1920 1929 +f 1929 1920 1938 +f 1920 1968 1967 +f 1938 1920 1967 +f 1849 2174 1700 +f 2173 1700 2174 +f 2062 2072 2091 +f 803 2467 2059 +f 2239 1736 2240 +f 1505 1357 1685 +f 1358 1686 1476 +f 1967 1968 1788 +f 1968 1969 1788 +f 2065 2110 2156 +f 2065 1214 2110 +f 2110 1214 503 +f 273 2093 1018 +f 273 1983 2093 +f 532 1886 2155 +f 2034 2021 1947 +f 216 1810 585 +f 1912 543 2014 +f 1390 2051 1537 +f 1872 1873 1910 +f 1984 2045 1214 +f 597 1912 1886 +f 1593 2146 2100 +f 2071 2062 2090 +f 2034 2046 1982 +f 2034 1947 2046 +f 1214 2045 2116 +f 1873 1887 1910 +f 1887 1901 1910 +f 1562 1447 1106 +f 2163 431 1957 +f 1948 1972 1936 +f 1972 1948 1992 +f 2014 2015 2013 +f 1853 2014 2013 +f 1550 1884 1853 +f 1947 2468 1994 +f 1355 1550 2154 +f 1355 1884 1550 +f 2081 2108 2128 +f 2024 1965 1492 +f 2024 2032 1965 +f 2116 1604 803 +f 1901 1911 1920 +f 1939 1968 1920 +f 1911 1939 1920 +f 872 1626 1666 +f 2062 2091 2120 +f 1819 1927 1759 +f 1021 1674 1780 +f 872 1673 1756 +f 1550 501 2171 +f 1378 1550 2171 +f 2146 2162 2145 +f 1358 482 192 +f 2109 2120 2119 +f 1866 1872 2227 +f 1391 2012 1860 +f 2136 2137 2161 +f 2162 1661 236 +f 1887 1894 1901 +f 1901 1894 1911 +f 505 1707 206 +f 2120 2137 2136 +f 2142 2164 1674 +f 1860 2012 1861 +f 1894 1939 1911 +f 2080 2060 2118 +f 2162 236 508 +f 2164 1815 1742 +f 1018 2093 1537 +f 2154 1378 2161 +f 2041 2098 2491 +f 2043 2042 2032 +f 1108 1018 1537 +f 1465 2094 1808 +f 502 1643 1661 +f 2467 1618 1656 +f 2119 2136 2135 +f 2119 2108 2071 +f 878 1183 1195 +f 2101 1594 1593 +f 2033 2370 2063 +f 2482 2491 2098 +f 1282 2406 1275 +f 2003 1948 1956 +f 2043 2032 2024 +f 2025 2043 2024 +f 2154 1550 1378 +f 1795 2498 1764 +f 2142 1548 2164 +f 2431 2454 2422 +f 1981 2011 1993 +f 2349 2391 2362 +f 502 2162 2146 +f 2025 2024 2360 +f 2129 2120 2091 +f 1732 1985 2007 +f 2171 1308 209 +f 1930 1995 2041 +f 1390 1238 2051 +f 1866 1878 1887 +f 1878 1894 1887 +f 1965 2032 2011 +f 874 2480 2492 +f 2071 2108 2069 +f 1358 1731 482 +f 430 2021 2034 +f 1965 2003 1964 +f 1855 1889 831 +f 1668 1773 2150 +f 1390 2156 1238 +f 898 869 1903 +f 2391 2407 2362 +f 2121 2111 2074 +f 1548 1259 2164 +f 2099 2129 2091 +f 1550 1853 501 +f 1853 1852 501 +f 952 2017 969 +f 2085 2121 2074 +f 2130 2006 1391 +f 2144 1367 543 +f 2100 2146 2099 +f 1545 1319 113 +f 1903 1922 898 +f 1922 1931 898 +f 585 2170 1641 +f 2007 2017 952 +f 2017 2074 969 +f 1558 1753 1813 +f 837 2005 1517 +f 2005 2006 2130 +f 1532 1474 1528 +f 2003 1981 1948 +f 2070 2071 2069 +f 1922 919 1931 +f 2017 2085 2074 +f 2085 2104 2121 +f 2100 2099 2082 +f 2156 2110 2034 +f 505 2474 2004 +f 1903 871 1922 +f 1922 1952 919 +f 919 1952 1985 +f 1985 2001 2007 +f 2001 2036 2017 +f 2007 2001 2017 +f 2017 2036 2085 +f 2036 2047 2085 +f 2047 2075 2085 +f 2075 2104 2085 +f 1948 1993 2023 +f 2400 2422 2407 +f 2011 2070 1993 +f 2033 2043 2025 +f 2012 2015 1698 +f 1876 1338 2165 +f 871 1940 1922 +f 1985 1976 2001 +f 2121 2104 2143 +f 1051 1413 1456 +f 2358 1362 2379 +f 1859 1789 1870 +f 2090 2109 2071 +f 1405 1398 1885 +f 1886 1884 1355 +f 1922 1960 1952 +f 1952 1960 1985 +f 1960 1976 1985 +f 1956 1948 1936 +f 2135 209 2128 +f 2157 1875 1212 +f 2160 2168 2169 +f 1900 1461 1918 +f 2001 2018 2036 +f 2075 2086 2104 +f 2111 2142 2103 +f 1937 1956 1936 +f 2023 2070 2061 +f 2135 2128 2108 +f 2042 2071 2011 +f 2138 413 2383 +f 2033 2072 2043 +f 1922 1940 1960 +f 2070 2069 2061 +f 2069 2108 2061 +f 2108 2119 2135 +f 1855 1904 1889 +f 1889 1904 871 +f 871 1904 1940 +f 1976 2018 2001 +f 2036 2018 2047 +f 2122 2143 2104 +f 216 1642 489 +f 2148 984 2143 +f 1975 1974 1967 +f 2157 1683 1516 +f 1614 1593 1594 +f 2269 2270 2276 +f 1926 2147 29 +f 2082 2091 2072 +f 430 503 2059 +f 1904 1905 1940 +f 1940 1961 1960 +f 1961 1976 1960 +f 2087 2086 2075 +f 2065 2156 1390 +f 1820 1838 1900 +f 534 1308 837 +f 2167 273 1018 +f 831 1850 1855 +f 2019 2037 2018 +f 2018 2037 2047 +f 2037 2075 2047 +f 2086 2095 2104 +f 2095 2122 2104 +f 2122 2148 2143 +f 1926 1213 1995 +f 1405 1885 1761 +f 2006 2013 2012 +f 2211 2233 2216 +f 1855 1890 1904 +f 1904 1895 1905 +f 1905 1932 1940 +f 1961 1977 1976 +f 1976 1986 2018 +f 2484 2476 1518 +f 1870 1411 1859 +f 1548 2142 2111 +f 1904 1890 1895 +f 1895 1932 1905 +f 1940 1932 1961 +f 1976 1977 1986 +f 1986 2008 2018 +f 2018 2008 2019 +f 2087 2075 2037 +f 2087 2095 2086 +f 2094 1391 1860 +f 1852 1853 2006 +f 1853 2013 2006 +f 929 979 850 +f 1855 1874 1890 +f 2008 2028 2019 +f 1993 2070 2023 +f 1705 1799 1998 +f 1491 2147 206 +f 1851 1856 1855 +f 1895 1890 1874 +f 2038 2019 2028 +f 2038 2048 2037 +f 2019 2038 2037 +f 2048 2067 2087 +f 2037 2048 2087 +f 2087 2067 2095 +f 2095 2149 2122 +f 2149 2148 2122 +f 1308 2005 837 +f 209 1308 1387 +f 1601 2102 1927 +f 254 170 201 +f 1800 1403 1763 +f 1510 1346 1740 +f 870 871 1903 +f 1919 1650 1619 +f 2148 1667 1753 +f 1932 1923 1961 +f 1977 1953 1986 +f 2067 2112 2095 +f 2112 2149 2095 +f 2148 2149 1667 +f 2422 2421 2407 +f 1926 2026 1213 +f 1912 2144 543 +f 2128 1387 2153 +f 1733 1510 1740 +f 990 853 2489 +f 503 1214 803 +f 1921 431 2163 +f 2146 2145 2129 +f 2144 1921 2163 +f 1855 1856 1874 +f 1895 1923 1932 +f 1923 1941 1961 +f 1961 1941 1977 +f 2048 2076 2067 +f 2076 2113 2067 +f 2067 2113 2112 +f 1723 1900 1937 +f 1870 1900 1723 +f 1367 2163 1338 +f 520 1346 1510 +f 1698 1831 1861 +f 1984 1919 2045 +f 1895 1891 1923 +f 2008 1986 2028 +f 1948 1981 1993 +f 1883 1346 520 +f 1883 1814 1346 +f 1930 206 2147 +f 2499 2486 1447 +f 1891 1906 1923 +f 1923 1953 1941 +f 1953 1977 1941 +f 1953 1987 1986 +f 2113 2123 2112 +f 2123 2149 2112 +f 1387 1308 1226 +f 1599 1688 1346 +f 2093 1390 1537 +f 2003 2011 1981 +f 1987 2028 1986 +f 2038 2049 2048 +f 2048 2049 2076 +f 1813 1667 2149 +f 2123 1813 2149 +f 1461 1469 1964 +f 1757 1510 1743 +f 505 1930 1999 +f 2223 1784 1789 +f 1532 1522 1651 +f 1906 1913 1923 +f 1913 1943 1923 +f 1943 1942 1923 +f 1923 1942 1953 +f 1942 1987 1953 +f 1308 1852 2005 +f 2053 1814 1883 +f 1733 1740 1541 +f 2154 1886 1355 +f 1503 1528 1474 +f 1874 1879 1895 +f 1895 1879 1891 +f 2076 2124 2113 +f 2113 2124 2123 +f 1896 1891 1879 +f 1891 1896 1906 +f 1942 1962 1987 +f 1962 2009 2028 +f 1987 1962 2028 +f 2009 2038 2028 +f 2109 2119 2071 +f 1918 1956 1937 +f 1851 1864 1856 +f 1896 1897 1906 +f 1906 1897 1913 +f 1943 1962 1942 +f 2049 2077 2076 +f 2124 2125 2123 +f 1930 2147 1926 +f 1902 1894 1878 +f 482 1510 1757 +f 2129 2137 2120 +f 503 803 2059 +f 1847 1857 1851 +f 1851 1857 1864 +f 2039 2038 2009 +f 2038 2039 2049 +f 2076 2077 2124 +f 2150 1813 2123 +f 482 520 1510 +f 1994 1821 2046 +f 2044 2004 1764 +f 1864 1867 1856 +f 1867 1874 1856 +f 1897 1944 1913 +f 1943 1944 1962 +f 2124 2126 2125 +f 2150 2123 2125 +f 2099 2146 2129 +f 2041 1995 2098 +f 1605 1641 2151 +f 1847 1959 1857 +f 1874 1867 1879 +f 1913 1944 1943 +f 1944 1963 1962 +f 2077 2096 2124 +f 2096 2126 2124 +f 2126 2150 2125 +f 941 1650 1919 +f 2135 2136 209 +f 1884 1886 2014 +f 2049 2029 2077 +f 1388 2127 1389 +f 1389 2127 1566 +f 1930 1926 1995 +f 941 1919 1316 +f 2110 503 430 +f 1867 1880 1879 +f 1879 1880 1896 +f 1897 1907 1944 +f 1963 1978 1962 +f 1962 1978 2009 +f 2039 2029 2049 +f 2077 2078 2096 +f 822 823 827 +f 2166 1668 2150 +f 81 941 1316 +f 2204 2216 2203 +f 2011 2071 2070 +f 1880 1892 1896 +f 1892 1907 1897 +f 1896 1892 1897 +f 1907 1914 1944 +f 1978 2010 2009 +f 2010 2039 2009 +f 1688 1740 1346 +f 1789 1820 1870 +f 2130 1391 2094 +f 1944 1945 1963 +f 2029 2078 2077 +f 1767 2150 2126 +f 1767 2166 2150 +f 803 2022 2467 +f 1503 1927 2102 +f 1914 1954 1944 +f 1944 1954 1945 +f 1963 1970 1978 +f 2078 2105 2096 +f 2105 2126 2096 +f 1965 2011 2003 +f 192 1626 1358 +f 2101 1559 1594 +f 1930 2041 1999 +f 1698 1876 2165 +f 1398 1871 891 +f 2165 1338 1681 +f 1970 2010 1978 +f 2010 2030 2029 +f 2039 2010 2029 +f 2030 2055 2078 +f 2029 2030 2078 +f 1849 1848 2175 +f 1871 1862 891 +f 543 2015 2014 +f 1857 1858 1864 +f 1864 1858 1867 +f 1963 1945 1970 +f 2055 2088 2078 +f 2078 2088 2105 +f 2105 2131 2126 +f 2126 2131 1767 +f 2063 2083 2033 +f 2161 2171 209 +f 2032 2042 2011 +f 1813 2150 1773 +f 1914 1908 1954 +f 1970 1979 2010 +f 2088 2131 2105 +f 2015 543 1876 +f 1694 1692 1048 +f 1395 2207 1859 +f 1395 1393 2207 +f 1730 1784 1736 +f 2500 2466 2470 +f 1709 1701 1757 +f 1945 1979 1970 +f 2030 2050 2055 +f 2350 2317 2286 +f 2154 2155 1886 +f 871 860 1889 +f 2161 209 2136 +f 2497 2463 2493 +f 2190 2204 2203 +f 1800 2179 1404 +f 2477 2469 1385 +f 1385 1715 2477 +f 2128 209 1387 +f 1858 1868 1867 +f 1867 1881 1880 +f 1893 1892 1880 +f 1881 1893 1880 +f 1893 1907 1892 +f 1907 1908 1914 +f 1954 1979 1945 +f 1979 1980 2010 +f 2131 2159 1767 +f 1765 93 339 +f 1761 1877 1405 +f 523 1347 515 +f 1541 2157 1738 +f 2144 2163 1367 +f 1380 1389 1566 +f 2317 2392 2316 +f 1994 2498 1801 +f 1867 1868 1881 +f 1980 2050 2030 +f 2010 1980 2030 +f 2050 2089 2055 +f 2055 2089 2088 +f 2088 2114 2131 +f 1538 1651 1659 +f 2145 2155 2129 +f 2140 29 1928 +f 2370 2033 2025 +f 2252 2239 2240 +f 2239 2252 1862 +f 2392 2391 2316 +f 2469 2501 1385 +f 2477 1715 1710 +f 502 1614 1643 +f 2438 1227 2431 +f 1915 1907 1893 +f 1915 1908 1907 +f 1954 1908 1979 +f 1908 1988 1979 +f 1979 1988 1980 +f 2114 2159 2131 +f 2155 2154 2129 +f 508 1966 2144 +f 872 1756 1626 +f 1710 1715 1505 +f 236 1966 508 +f 2272 2284 1398 +f 2325 2355 2319 +f 1548 2121 1779 +f 1532 1528 1522 +f 1980 2056 2050 +f 2050 2056 2089 +f 2013 2015 2012 +f 1964 2003 1956 +f 2006 2012 1391 +f 1565 1927 1503 +f 2244 2243 2226 +f 5 1715 1385 +f 1858 1848 1868 +f 1915 1946 1908 +f 1946 1988 1908 +f 1980 2020 2056 +f 2115 2159 2114 +f 2092 2083 2063 +f 1398 2284 1687 +f 2162 2155 2145 +f 519 2475 2488 +f 2158 5 1385 +f 5 1505 1715 +f 1692 1694 1505 +f 1988 2020 1980 +f 2115 2169 2159 +f 2169 2168 2159 +f 2083 2082 2072 +f 1316 1984 1983 +f 1488 1619 1650 +f 2083 2072 2033 +f 2361 1210 1233 +f 1933 1946 1915 +f 2056 2079 2089 +f 2088 2115 2114 +f 2099 2091 2082 +f 2162 532 2155 +f 1852 2006 2005 +f 2023 2061 2052 +f 2176 2184 2175 +f 2162 985 532 +f 1909 1893 1881 +f 1909 1915 1893 +f 1988 2040 2020 +f 2040 2056 2020 +f 2089 2079 2088 +f 2088 2079 2115 +f 1782 1444 1882 +f 1216 1215 2320 +f 867 1939 1894 +f 867 903 1939 +f 1372 2398 1379 +f 1863 504 2027 +f 2158 1385 504 +f 1868 1782 1881 +f 1909 1933 1915 +f 2040 1988 1946 +f 1481 2024 1492 +f 2120 2136 2119 +f 1522 1528 1518 +f 1871 1398 1405 +f 1221 1408 1399 +f 1357 5 2158 +f 2179 1800 1763 +f 1868 1865 1782 +f 1882 1881 1782 +f 1882 1909 1881 +f 2040 2057 2056 +f 2106 2079 2056 +f 2057 2106 2056 +f 2106 2132 2079 +f 2132 2115 2079 +f 2115 2132 2169 +f 532 985 597 +f 2092 2100 2082 +f 1210 1221 1399 +f 1399 1233 1210 +f 2130 2002 1517 +f 1849 1865 1868 +f 1933 2040 1946 +f 52 1269 30 +f 1667 1813 1753 +f 1997 1380 1673 +f 940 1008 1088 +f 1947 1994 2046 +f 1882 1916 1909 +f 1924 1933 1909 +f 1533 2040 1933 +f 1533 1534 2040 +f 2058 2040 1534 +f 2058 2057 2040 +f 1238 191 1768 +f 1997 1389 1380 +f 1875 1541 1554 +f 1854 504 1863 +f 1854 2158 504 +f 2396 1275 2406 +f 2426 2443 153 +f 1916 1924 1909 +f 1925 1935 1934 +f 1870 1723 1426 +f 2058 2097 2057 +f 2097 2106 2057 +f 2132 2151 2169 +f 2151 2160 2169 +f 1106 1635 1562 +f 1957 1768 1681 +f 1957 2051 1768 +f 526 535 33 +f 1614 1594 1609 +f 2233 2229 2216 +f 2496 2027 2084 +f 2496 1863 2027 +f 2117 1854 1863 +f 2016 2158 1854 +f 2016 1504 1357 +f 2158 2016 1357 +f 1114 236 1661 +f 2129 2154 2137 +f 2133 2106 2097 +f 2491 1999 2041 +f 2051 1238 1768 +f 2061 2108 2081 +f 2189 2195 2186 +f 2348 2349 2362 +f 1701 192 482 +f 505 1737 1707 +f 2133 2132 2106 +f 2132 2133 2151 +f 2151 2170 2160 +f 502 1661 2162 +f 1998 1389 1997 +f 2297 2352 2329 +f 2352 2364 2329 +f 2394 2414 2364 +f 2352 2394 2364 +f 2402 512 2415 +f 2255 2254 2243 +f 2446 1365 2456 +f 2271 2282 2298 +f 846 2283 2264 +f 2293 2310 2318 +f 2254 2295 2294 +f 2283 2290 2278 +f 2270 2294 2293 +f 2423 2455 2400 +f 2281 2287 2267 +f 2190 2191 2204 +f 2271 2263 2282 +f 2334 2329 2364 +f 2424 2432 2409 +f 2282 2263 2298 +f 1409 1659 1958 +f 2263 2302 2298 +f 2297 2329 2296 +f 1256 446 2346 +f 1958 2502 2478 +f 2437 2399 2444 +f 263 2366 2359 +f 849 827 823 +f 2311 2325 2290 +f 2499 2379 2434 +f 2446 2456 2423 +f 947 2358 2379 +f 2499 947 2379 +f 2205 2195 2212 +f 2245 2237 2227 +f 2245 2256 2237 +f 2256 2263 2271 +f 556 571 2305 +f 1528 2068 1518 +f 2424 2439 2432 +f 2302 2352 2297 +f 1866 2237 826 +f 2248 2242 2211 +f 2334 2364 2363 +f 2235 2244 2226 +f 2255 2295 2254 +f 2329 2324 2296 +f 2439 2447 1973 +f 2329 2334 2324 +f 2409 2432 2414 +f 2293 2318 2276 +f 866 2425 2416 +f 1487 1493 2372 +f 2237 2231 2230 +f 2415 512 17 +f 2035 1236 26 +f 921 2138 688 +f 2491 2482 2462 +f 6 181 197 +f 2481 948 1795 +f 2138 2383 2382 +f 2377 2394 2352 +f 2377 506 2394 +f 2394 506 2402 +f 2401 2402 2415 +f 2394 2402 2401 +f 2318 2326 2276 +f 2439 2457 2432 +f 2298 2302 2297 +f 2244 2249 2243 +f 2404 1100 2382 +f 2238 2245 2227 +f 2245 2257 2256 +f 2257 2263 2256 +f 2324 2334 2328 +f 2257 2289 2263 +f 2289 2302 2263 +f 2236 2231 2250 +f 2138 2382 688 +f 2383 2404 2382 +f 1100 2404 2343 +f 2353 2352 2302 +f 2353 2377 2352 +f 2237 2230 2220 +f 2335 2355 2325 +f 2308 2340 2315 +f 2253 2269 2276 +f 2311 2335 2325 +f 2439 2424 511 +f 2268 2267 2248 +f 2383 413 2404 +f 123 971 832 +f 2234 2243 2269 +f 2225 2213 2234 +f 2219 2213 2225 +f 2195 2196 2212 +f 1544 2418 1549 +f 413 866 2404 +f 2404 866 2416 +f 2416 2417 2404 +f 2404 2417 2343 +f 2415 2409 2401 +f 2196 2219 2212 +f 2268 2248 2218 +f 2206 2214 2197 +f 2417 2332 2343 +f 2343 2332 832 +f 2330 2302 2289 +f 2330 2353 2302 +f 2453 2454 515 +f 2218 2248 2217 +f 2218 2217 2205 +f 2276 2281 2268 +f 2178 2197 2177 +f 2197 2189 2177 +f 2332 2066 832 +f 832 2066 123 +f 2231 2236 2230 +f 669 950 1144 +f 2217 2211 2199 +f 1216 1209 1217 +f 2066 2365 123 +f 2230 2226 2214 +f 2290 2325 2304 +f 2325 2319 2304 +f 2217 2248 2211 +f 2191 2192 2199 +f 510 525 2035 +f 2417 1917 2332 +f 2332 1917 2066 +f 2408 2413 2341 +f 2248 2267 2242 +f 2326 2333 2281 +f 1340 2365 2066 +f 2440 1302 1340 +f 2226 2230 2235 +f 1153 1163 1116 +f 2431 2455 2438 +f 2416 2425 2417 +f 2495 2474 2462 +f 2290 2304 2277 +f 825 2227 1872 +f 151 239 1038 +f 9 151 1038 +f 545 928 2381 +f 2440 2406 1384 +f 928 1596 2381 +f 2186 2188 2185 +f 2456 26 1888 +f 2287 2333 2262 +f 2425 2342 2417 +f 2342 1917 2417 +f 1917 877 2066 +f 2336 1340 2066 +f 2336 2440 1340 +f 2328 2351 2327 +f 825 2238 2227 +f 2351 2368 2327 +f 1222 2388 1211 +f 678 756 734 +f 428 263 1343 +f 2188 2191 2190 +f 2341 2376 2333 +f 2066 877 2336 +f 2290 2277 2278 +f 739 634 592 +f 675 304 14 +f 2384 675 14 +f 2199 2211 2204 +f 2191 2199 2204 +f 2322 2318 2310 +f 2287 2262 2233 +f 2185 2188 2184 +f 2386 2425 845 +f 2384 572 675 +f 1128 123 2365 +f 832 971 2343 +f 2188 2186 2191 +f 2185 2184 2176 +f 2345 1917 2342 +f 2345 877 1917 +f 2336 2406 2440 +f 971 1100 2343 +f 2299 2289 2257 +f 2299 2303 2289 +f 2249 2255 2243 +f 506 513 512 +f 2437 955 1219 +f 1587 2398 1324 +f 877 2396 2336 +f 2336 2396 2406 +f 2463 2479 879 +f 2376 2412 2350 +f 2281 2267 2268 +f 2303 2330 2289 +f 624 635 159 +f 1996 2356 1561 +f 2449 2436 1996 +f 2356 2054 2451 +f 928 2398 1587 +f 2333 2350 2262 +f 2035 26 2456 +f 2346 2342 2425 +f 2346 2345 2342 +f 1544 2380 2418 +f 2412 2392 2350 +f 622 509 1151 +f 2436 2054 1996 +f 545 2451 928 +f 2326 2341 2333 +f 2346 2425 2386 +f 1365 2035 2456 +f 2369 2377 2353 +f 2369 506 2377 +f 2451 900 928 +f 900 2398 928 +f 1235 1888 1244 +f 2337 2345 2346 +f 877 772 2396 +f 772 1275 2396 +f 2432 2446 2414 +f 2294 2295 2310 +f 2369 2330 828 +f 2418 2419 2436 +f 2450 2429 2436 +f 2436 2429 2054 +f 2490 2494 1656 +f 1321 155 2338 +f 1256 2346 2386 +f 2448 877 2345 +f 877 2448 772 +f 2446 2423 2414 +f 2351 2334 2363 +f 2243 2254 2269 +f 2380 2419 2418 +f 2419 2450 2436 +f 2283 2278 2264 +f 822 2197 823 +f 1008 1759 1565 +f 2448 2345 2337 +f 2270 2293 2276 +f 2323 2324 2328 +f 2429 1012 2054 +f 2226 2243 2213 +f 2395 325 772 +f 2370 2367 2380 +f 2054 2435 2451 +f 2435 2397 2451 +f 2451 2397 900 +f 1774 1974 1975 +f 2305 2290 2283 +f 846 2305 2283 +f 2320 1215 2285 +f 2139 2448 2337 +f 2448 2395 772 +f 1232 1231 1216 +f 2272 2285 2284 +f 2367 2371 2380 +f 2371 2405 2380 +f 2380 2405 2419 +f 2419 2429 2450 +f 2429 176 1012 +f 2397 2373 900 +f 2373 2398 900 +f 2373 1379 2398 +f 2372 1500 1508 +f 1133 1303 1142 +f 2252 2273 2272 +f 891 2252 2272 +f 2419 2405 2429 +f 2405 2430 2429 +f 2429 2430 176 +f 2189 2186 2181 +f 2212 2219 2218 +f 2312 2139 2337 +f 2139 2384 2448 +f 2448 2384 2395 +f 899 855 843 +f 2272 2273 2285 +f 2331 2303 2299 +f 176 2435 2054 +f 1012 176 2054 +f 2177 2185 2176 +f 2218 2219 2225 +f 1216 1220 1215 +f 2378 2139 2312 +f 2384 14 2395 +f 2324 2295 2255 +f 2240 2273 2252 +f 2371 2387 2405 +f 2410 2430 2405 +f 2430 2442 176 +f 2435 2344 2397 +f 2397 2344 2373 +f 2456 1888 2455 +f 2242 2267 2233 +f 2233 2262 2229 +f 2378 2384 2139 +f 2323 2310 2295 +f 2323 2322 2310 +f 2240 2274 2273 +f 974 841 990 +f 2490 1447 2486 +f 2387 2410 2405 +f 2442 2141 176 +f 2344 1778 2373 +f 972 1379 2373 +f 1778 972 2373 +f 1379 972 428 +f 1211 2437 1223 +f 1228 1215 1220 +f 702 2378 2312 +f 17 518 2415 +f 1888 26 1244 +f 2324 2323 2295 +f 2305 2311 2290 +f 2307 2285 2273 +f 2274 2307 2273 +f 2307 2320 2285 +f 2369 531 506 +f 2435 2258 2344 +f 2296 2324 2288 +f 1233 1217 2361 +f 2360 2371 2367 +f 2410 2442 2430 +f 176 2141 2258 +f 176 2258 2435 +f 539 2331 66 +f 2350 2392 2317 +f 2268 2225 2253 +f 1508 1500 2371 +f 2360 1508 2371 +f 2371 1500 2387 +f 972 2366 428 +f 1626 1686 1358 +f 1759 1807 1819 +f 2277 2257 2245 +f 2277 2299 2257 +f 1784 2228 1736 +f 2265 2240 1736 +f 2228 2265 1736 +f 2265 2274 2240 +f 1209 2320 2307 +f 2320 1209 1216 +f 1555 1584 1560 +f 2387 1500 2372 +f 2410 2420 2442 +f 2433 972 1778 +f 2433 2366 972 +f 955 522 1225 +f 2339 2307 2274 +f 2372 1493 2387 +f 2411 2420 2410 +f 2420 954 2442 +f 2442 954 2141 +f 2344 2433 1778 +f 2205 2212 2218 +f 2328 2334 2351 +f 2394 2401 2414 +f 2250 2256 2271 +f 2339 1209 2307 +f 2328 2322 2323 +f 866 845 2425 +f 3 316 893 +f 2387 2411 2410 +f 2441 2141 954 +f 2141 2441 2258 +f 2354 2433 2344 +f 2254 2294 2270 +f 2269 2254 2270 +f 863 2305 846 +f 2441 2354 2258 +f 2258 2354 2344 +f 2319 2355 51 +f 2223 2228 1784 +f 1493 2411 2387 +f 1560 2449 1555 +f 2288 2324 2255 +f 825 2251 2238 +f 2251 2245 2238 +f 1299 84 1312 +f 2246 2265 2228 +f 2313 2274 2265 +f 2313 2339 2274 +f 2251 2277 2245 +f 2319 51 2331 +f 891 1862 2252 +f 2443 954 2420 +f 2443 2441 954 +f 511 2447 2439 +f 2242 2233 2211 +f 188 15 814 +f 2443 2426 2441 +f 2426 2354 2441 +f 2306 2403 2433 +f 2433 2403 2366 +f 539 2303 2331 +f 2246 2228 2223 +f 1030 1819 1807 +f 2354 2306 2433 +f 2413 2412 2376 +f 2438 2455 1888 +f 1848 1857 2176 +f 2207 2208 2223 +f 2208 2246 2223 +f 1209 2339 1217 +f 2339 2361 1217 +f 1221 1210 2388 +f 554 109 78 +f 386 1375 95 +f 2327 2326 2318 +f 2179 2182 1393 +f 2182 2208 1393 +f 1393 2208 2207 +f 2361 2399 2388 +f 2388 2399 1211 +f 2306 2354 2426 +f 2403 2359 2366 +f 2214 2226 2213 +f 2268 2253 2276 +f 889 2200 2179 +f 2200 2182 2179 +f 2200 2221 2182 +f 2221 2208 2182 +f 2314 2265 2246 +f 2314 2313 2265 +f 2339 2374 2361 +f 2478 2434 2379 +f 2205 2217 2199 +f 2208 2259 2246 +f 2259 2275 2246 +f 2314 2321 2313 +f 2313 2347 2339 +f 2347 2374 2339 +f 2374 2399 2361 +f 153 154 2426 +f 154 2306 2426 +f 2385 2359 2403 +f 2221 2259 2208 +f 2306 2357 2403 +f 2357 2385 2403 +f 2237 2256 2231 +f 2172 2180 889 +f 2180 2200 889 +f 2200 2201 2221 +f 2246 2291 2314 +f 2374 2444 2399 +f 571 555 2311 +f 2192 2205 2199 +f 2173 2180 2172 +f 2279 2246 2275 +f 2279 2291 2246 +f 2292 2314 2291 +f 2321 2362 2313 +f 2362 2347 2313 +f 2347 2389 2374 +f 2444 955 2437 +f 2292 2291 2279 +f 2452 2444 2374 +f 2054 2356 1996 +f 2338 2306 154 +f 2186 2192 2191 +f 2193 2201 2200 +f 2259 2221 2201 +f 2247 2259 2201 +f 2452 955 2444 +f 2278 2277 2251 +f 2338 2357 2306 +f 2181 2186 2185 +f 2276 2326 2281 +f 2432 2457 2446 +f 2198 2201 2193 +f 2198 2232 2201 +f 2232 2247 2201 +f 2389 2452 2374 +f 2452 1630 955 +f 1403 1749 1444 +f 1555 1996 1561 +f 2357 2427 2385 +f 2385 2428 230 +f 2409 2415 2424 +f 2304 2331 2299 +f 2193 2200 2180 +f 2445 2452 2389 +f 1565 1759 1927 +f 2380 1544 2370 +f 2338 2427 2357 +f 2427 2428 2385 +f 230 222 253 +f 2202 2198 2193 +f 2202 2209 2198 +f 2209 2241 2198 +f 2241 2232 2198 +f 2266 2275 2259 +f 2365 1340 1128 +f 2415 518 2424 +f 2338 170 2427 +f 170 2428 2427 +f 2181 2185 2177 +f 2196 2195 2189 +f 2183 2193 2180 +f 2453 1630 2452 +f 2197 2214 2189 +f 2401 2409 2414 +f 822 2220 2197 +f 1210 2361 2388 +f 2187 2193 2183 +f 2187 2202 2193 +f 2266 2279 2275 +f 2279 2300 2292 +f 2375 2347 2362 +f 2375 2390 2347 +f 2390 2389 2347 +f 2453 2452 2445 +f 1347 1630 2453 +f 1630 1347 522 +f 2220 2206 2197 +f 2262 2350 2286 +f 170 254 2428 +f 2457 1973 2446 +f 1973 1365 2446 +f 2174 2183 2180 +f 2194 2202 2187 +f 2222 2241 2209 +f 2222 2260 2241 +f 2266 2259 2247 +f 2390 2445 2389 +f 2264 2251 825 +f 2363 2368 2351 +f 2326 2393 2341 +f 1855 1850 1851 +f 2210 2209 2202 +f 2210 2222 2209 +f 2261 2260 2222 +f 2280 2279 2266 +f 2280 2300 2279 +f 251 263 2359 +f 2277 2304 2299 +f 2220 2230 2206 +f 2202 2194 2210 +f 2213 2243 2234 +f 2328 2327 2322 +f 2294 2310 2293 +f 2214 2196 2189 +f 2196 2213 2219 +f 2224 2222 2210 +f 2421 2390 2375 +f 2206 2230 2214 +f 2194 2203 2210 +f 2224 2261 2222 +f 2421 2445 2390 +f 2322 2327 2318 +f 2393 2408 2341 +f 1365 1973 510 +f 2216 2210 2203 +f 2216 2224 2210 +f 2266 2308 2280 +f 2280 2308 2300 +f 2407 2421 2375 +f 2175 2183 2174 +f 2194 2190 2203 +f 2454 2445 2421 +f 522 1347 523 +f 2456 2455 2423 +f 823 2197 2178 +f 2281 2333 2287 +f 2188 2187 2183 +f 2188 2190 2194 +f 2187 2188 2194 +f 2308 2315 2300 +f 2407 2375 2362 +f 2443 2420 2503 +f 2420 2411 2503 +f 2411 1493 2503 +f 1493 1487 2503 +f 1487 1318 2503 +f 1318 1320 2503 +f 1320 2443 2503 diff --git a/demos/model3D/files/Duck.glb b/demos/model3D/files/Duck.glb new file mode 100644 index 0000000000000000000000000000000000000000..217170d2bd67051270be974292dc3b834eefe206 Binary files /dev/null and b/demos/model3D/files/Duck.glb differ diff --git a/demos/model3D/files/Fox.gltf b/demos/model3D/files/Fox.gltf new file mode 100644 index 0000000000000000000000000000000000000000..ff3115c05d97ac673c511affe1b3fecc64e1c3d3 --- /dev/null +++ b/demos/model3D/files/Fox.gltf @@ -0,0 +1,1777 @@ +{ + "asset": { + "copyright": "CC-BY 4.0 Model by PixelMannen https://opengameart.org/content/fox-and-shiba and @tomkranis https://sketchfab.com/3d-models/low-poly-fox-by-pixelmannen-animated-371dea88d7e04a76af5763f2a36866bc and @AsoboStudio with @scurest https://github.com/KhronosGroup/glTF-Sample-Models/pull/150#issuecomment-406300118", + "version": "2.0" + }, + "accessors": [ + { + "bufferView": 0, + "componentType": 5126, + "count": 1728, + "type": "VEC3", + "byteOffset": 0, + "min": [ + -12.592718124389648, + -0.12174476683139801, + -88.09500122070312 + ], + "max": [ + 12.592718124389648, + 78.90718841552734, + 66.62486267089844 + ] + }, + { + "bufferView": 1, + "componentType": 5126, + "count": 1728, + "type": "VEC2", + "byteOffset": 0 + }, + { + "bufferView": 1, + "componentType": 5123, + "count": 1728, + "type": "VEC4", + "byteOffset": 13824 + }, + { + "bufferView": 2, + "byteOffset": 0, + "componentType": 5126, + "count": 1728, + "type": "VEC4" + }, + { + "bufferView": 3, + "byteOffset": 0, + "componentType": 5126, + "count": 24, + "type": "MAT4" + }, + { + "bufferView": 4, + "byteOffset": 0, + "componentType": 5126, + "count": 83, + "type": "SCALAR", + "min": [ + 0.0 + ], + "max": [ + 3.4166667461395264 + ] + }, + { + "bufferView": 5, + "byteOffset": 0, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 1328, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 2656, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 3984, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 5312, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 6640, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 7968, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 9296, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 10624, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 11952, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 13280, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 14608, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 15936, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 17264, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 18592, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 19920, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 21248, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 22576, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 23904, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 6, + "byteOffset": 0, + "componentType": 5126, + "count": 83, + "type": "VEC3" + }, + { + "bufferView": 5, + "byteOffset": 25232, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 4, + "byteOffset": 332, + "componentType": 5126, + "count": 18, + "type": "SCALAR", + "min": [ + 0.0 + ], + "max": [ + 0.7083333134651184 + ] + }, + { + "bufferView": 5, + "byteOffset": 26560, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 26848, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 27136, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 27424, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 27712, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28000, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28288, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28576, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28864, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 29152, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 29440, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 29728, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30016, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30304, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30592, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30880, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 31168, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 31456, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 31744, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 6, + "byteOffset": 996, + "componentType": 5126, + "count": 18, + "type": "VEC3" + }, + { + "bufferView": 5, + "byteOffset": 32032, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 4, + "byteOffset": 404, + "componentType": 5126, + "count": 25, + "type": "SCALAR", + "min": [ + 0.0 + ], + "max": [ + 1.1583333015441895 + ] + }, + { + "bufferView": 5, + "byteOffset": 32320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 32720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 33120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 33520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 33920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 34320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 34720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 35120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 35520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 35920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 36320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 36720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 37120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 37520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 37920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 38320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 38720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 39120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 39520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 6, + "byteOffset": 1212, + "componentType": 5126, + "count": 25, + "type": "VEC3" + }, + { + "bufferView": 5, + "byteOffset": 39920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + } + ], + "animations": [ + { + "channels": [ + { + "sampler": 0, + "target": { + "node": 8, + "path": "rotation" + } + }, + { + "sampler": 1, + "target": { + "node": 7, + "path": "rotation" + } + }, + { + "sampler": 2, + "target": { + "node": 11, + "path": "rotation" + } + }, + { + "sampler": 3, + "target": { + "node": 10, + "path": "rotation" + } + }, + { + "sampler": 4, + "target": { + "node": 9, + "path": "rotation" + } + }, + { + "sampler": 5, + "target": { + "node": 14, + "path": "rotation" + } + }, + { + "sampler": 6, + "target": { + "node": 13, + "path": "rotation" + } + }, + { + "sampler": 7, + "target": { + "node": 12, + "path": "rotation" + } + }, + { + "sampler": 8, + "target": { + "node": 6, + "path": "rotation" + } + }, + { + "sampler": 9, + "target": { + "node": 5, + "path": "rotation" + } + }, + { + "sampler": 10, + "target": { + "node": 17, + "path": "rotation" + } + }, + { + "sampler": 11, + "target": { + "node": 16, + "path": "rotation" + } + }, + { + "sampler": 12, + "target": { + "node": 15, + "path": "rotation" + } + }, + { + "sampler": 13, + "target": { + "node": 20, + "path": "rotation" + } + }, + { + "sampler": 14, + "target": { + "node": 19, + "path": "rotation" + } + }, + { + "sampler": 15, + "target": { + "node": 18, + "path": "rotation" + } + }, + { + "sampler": 16, + "target": { + "node": 24, + "path": "rotation" + } + }, + { + "sampler": 17, + "target": { + "node": 23, + "path": "rotation" + } + }, + { + "sampler": 18, + "target": { + "node": 22, + "path": "rotation" + } + }, + { + "sampler": 19, + "target": { + "node": 4, + "path": "translation" + } + }, + { + "sampler": 20, + "target": { + "node": 4, + "path": "rotation" + } + } + ], + "samplers": [ + { + "input": 5, + "output": 6 + }, + { + "input": 5, + "output": 7 + }, + { + "input": 5, + "output": 8 + }, + { + "input": 5, + "output": 9 + }, + { + "input": 5, + "output": 10 + }, + { + "input": 5, + "output": 11 + }, + { + "input": 5, + "output": 12 + }, + { + "input": 5, + "output": 13 + }, + { + "input": 5, + "output": 14 + }, + { + "input": 5, + "output": 15 + }, + { + "input": 5, + "output": 16 + }, + { + "input": 5, + "output": 17 + }, + { + "input": 5, + "output": 18 + }, + { + "input": 5, + "output": 19 + }, + { + "input": 5, + "output": 20 + }, + { + "input": 5, + "output": 21 + }, + { + "input": 5, + "output": 22 + }, + { + "input": 5, + "output": 23 + }, + { + "input": 5, + "output": 24 + }, + { + "input": 5, + "output": 25 + }, + { + "input": 5, + "output": 26 + } + ], + "name": "Survey" + }, + { + "channels": [ + { + "sampler": 0, + "target": { + "node": 8, + "path": "rotation" + } + }, + { + "sampler": 1, + "target": { + "node": 7, + "path": "rotation" + } + }, + { + "sampler": 2, + "target": { + "node": 11, + "path": "rotation" + } + }, + { + "sampler": 3, + "target": { + "node": 10, + "path": "rotation" + } + }, + { + "sampler": 4, + "target": { + "node": 9, + "path": "rotation" + } + }, + { + "sampler": 5, + "target": { + "node": 14, + "path": "rotation" + } + }, + { + "sampler": 6, + "target": { + "node": 13, + "path": "rotation" + } + }, + { + "sampler": 7, + "target": { + "node": 12, + "path": "rotation" + } + }, + { + "sampler": 8, + "target": { + "node": 6, + "path": "rotation" + } + }, + { + "sampler": 9, + "target": { + "node": 5, + "path": "rotation" + } + }, + { + "sampler": 10, + "target": { + "node": 17, + "path": "rotation" + } + }, + { + "sampler": 11, + "target": { + "node": 16, + "path": "rotation" + } + }, + { + "sampler": 12, + "target": { + "node": 15, + "path": "rotation" + } + }, + { + "sampler": 13, + "target": { + "node": 20, + "path": "rotation" + } + }, + { + "sampler": 14, + "target": { + "node": 19, + "path": "rotation" + } + }, + { + "sampler": 15, + "target": { + "node": 18, + "path": "rotation" + } + }, + { + "sampler": 16, + "target": { + "node": 24, + "path": "rotation" + } + }, + { + "sampler": 17, + "target": { + "node": 23, + "path": "rotation" + } + }, + { + "sampler": 18, + "target": { + "node": 22, + "path": "rotation" + } + }, + { + "sampler": 19, + "target": { + "node": 4, + "path": "translation" + } + }, + { + "sampler": 20, + "target": { + "node": 4, + "path": "rotation" + } + } + ], + "samplers": [ + { + "input": 27, + "output": 28 + }, + { + "input": 27, + "output": 29 + }, + { + "input": 27, + "output": 30 + }, + { + "input": 27, + "output": 31 + }, + { + "input": 27, + "output": 32 + }, + { + "input": 27, + "output": 33 + }, + { + "input": 27, + "output": 34 + }, + { + "input": 27, + "output": 35 + }, + { + "input": 27, + "output": 36 + }, + { + "input": 27, + "output": 37 + }, + { + "input": 27, + "output": 38 + }, + { + "input": 27, + "output": 39 + }, + { + "input": 27, + "output": 40 + }, + { + "input": 27, + "output": 41 + }, + { + "input": 27, + "output": 42 + }, + { + "input": 27, + "output": 43 + }, + { + "input": 27, + "output": 44 + }, + { + "input": 27, + "output": 45 + }, + { + "input": 27, + "output": 46 + }, + { + "input": 27, + "output": 47 + }, + { + "input": 27, + "output": 48 + } + ], + "name": "Walk" + }, + { + "channels": [ + { + "sampler": 0, + "target": { + "node": 8, + "path": "rotation" + } + }, + { + "sampler": 1, + "target": { + "node": 7, + "path": "rotation" + } + }, + { + "sampler": 2, + "target": { + "node": 11, + "path": "rotation" + } + }, + { + "sampler": 3, + "target": { + "node": 10, + "path": "rotation" + } + }, + { + "sampler": 4, + "target": { + "node": 9, + "path": "rotation" + } + }, + { + "sampler": 5, + "target": { + "node": 14, + "path": "rotation" + } + }, + { + "sampler": 6, + "target": { + "node": 13, + "path": "rotation" + } + }, + { + "sampler": 7, + "target": { + "node": 12, + "path": "rotation" + } + }, + { + "sampler": 8, + "target": { + "node": 6, + "path": "rotation" + } + }, + { + "sampler": 9, + "target": { + "node": 5, + "path": "rotation" + } + }, + { + "sampler": 10, + "target": { + "node": 17, + "path": "rotation" + } + }, + { + "sampler": 11, + "target": { + "node": 16, + "path": "rotation" + } + }, + { + "sampler": 12, + "target": { + "node": 15, + "path": "rotation" + } + }, + { + "sampler": 13, + "target": { + "node": 20, + "path": "rotation" + } + }, + { + "sampler": 14, + "target": { + "node": 19, + "path": "rotation" + } + }, + { + "sampler": 15, + "target": { + "node": 18, + "path": "rotation" + } + }, + { + "sampler": 16, + "target": { + "node": 24, + "path": "rotation" + } + }, + { + "sampler": 17, + "target": { + "node": 23, + "path": "rotation" + } + }, + { + "sampler": 18, + "target": { + "node": 22, + "path": "rotation" + } + }, + { + "sampler": 19, + "target": { + "node": 4, + "path": "translation" + } + }, + { + "sampler": 20, + "target": { + "node": 4, + "path": "rotation" + } + } + ], + "samplers": [ + { + "input": 49, + "output": 50 + }, + { + "input": 49, + "output": 51 + }, + { + "input": 49, + "output": 52 + }, + { + "input": 49, + "output": 53 + }, + { + "input": 49, + "output": 54 + }, + { + "input": 49, + "output": 55 + }, + { + "input": 49, + "output": 56 + }, + { + "input": 49, + "output": 57 + }, + { + "input": 49, + "output": 58 + }, + { + "input": 49, + "output": 59 + }, + { + "input": 49, + "output": 60 + }, + { + "input": 49, + "output": 61 + }, + { + "input": 49, + "output": 62 + }, + { + "input": 49, + "output": 63 + }, + { + "input": 49, + "output": 64 + }, + { + "input": 49, + "output": 65 + }, + { + "input": 49, + "output": 66 + }, + { + "input": 49, + "output": 67 + }, + { + "input": 49, + "output": 68 + }, + { + "input": 49, + "output": 69 + }, + { + "input": 49, + "output": 70 + } + ], + "name": "Run" + } + ], + "bufferViews": [ + { + "buffer": 0, + "byteOffset": 0, + "byteLength": 20736, + "byteStride": 12 + }, + { + "buffer": 0, + "byteOffset": 20736, + "byteLength": 27648, + "byteStride": 8 + }, + { + "buffer": 0, + "byteOffset": 48384, + "byteLength": 27648, + "byteStride": 16 + }, + { + "buffer": 0, + "byteOffset": 76032, + "byteLength": 1536 + }, + { + "buffer": 0, + "byteOffset": 77568, + "byteLength": 504, + "byteStride": 4 + }, + { + "buffer": 0, + "byteOffset": 78072, + "byteLength": 40320, + "byteStride": 16 + }, + { + "buffer": 0, + "byteOffset": 118392, + "byteLength": 1512, + "byteStride": 12 + } + ], + "buffers": [ + { + "uri": "data:application/octet-stream;base64,nZsDQJHbDEJnXLjB/NytHBbkDkLh1czBgpDNvb3RK0IkPSPCx6VTnGmWT0IYnlFCNonWQIGrVUJD0lFC4O6cQI8HUkL5dGVC9ierQC7yZkIYwWlCkKFAQHQ8bEIGx3VCOXWanDIUYEKpP4VC7apvQA2rUkJ/TndC9ierQC7yZkIYwWlC1rvFP6UrXEKYO4VCNonWQIGrVUJD0lFCyDggQUlwakLr5ExC9ierQC7yZkIYwWlCZ7AEQUOMUUIm4CxC6M4fQbrSY0KLzihCyDggQUlwakLr5ExCIM2hQDmF7UGbCLRBdMZ1QHsO7UFCqa9BBgOQQBR02UGqO6dBp0yYQJr7i0LecUxCfmYYQTBxhEIHr0NCxntJQXvQnUIGeEpCgQqHnCpwSkKWQmxC4O6cQI8HUkL5dGVC7apvQA2rUkJ/TndCgQqHnCpwSkKWQmxC7apvQA2rUkJ/TndC9w6fnMrhVkLuP4VC3zoXnFezQUIbdyxCZ7AEQUOMUUIm4CxCx6VTnGmWT0IYnlFC91XhQJiaK0JFqxbCNFZhQGGEKUL3DRTCgpDNvb3RK0IkPSPCdo7aQEQ8C0LDS4TBpOGtQIH7CEJIWB/BAY9SHOtkA0IsVB7BAY9SHOtkA0IsVB7BV5JdHB+QA0JwBDTBdo7aQEQ8C0LDS4TBnZsDQJHbDEJnXLjBF8JwP1TQB0K/KIXBn32GHPbRB0JIKYXBn32GHPbRB0JIKYXB/NytHBbkDkLh1czBnZsDQJHbDEJnXLjBnZsDQJHbDEJnXLjBNFZhQGGEKUL3DRTCHwGQQCfC3EGMtgjC3YhFQEPu6kHynZtBICHaP0wA6EFi/X9BlMVnQNaEzEF5NINBo595QC/wckFy54vCDyAZHSC+ZEEt1IrChec7QK5ibEH4A6zCMubMQL+tjkHNrZHCo595QC/wckFy54vChec7QK5ibEH4A6zCnEUuHSy2GEIRGIjCKqKYQNb2v0F3KpzCJEsmQDPDk0FN4q7CKqKYQNb2v0F3KpzCMubMQL+tjkHNrZHChec7QK5ibEH4A6zC3/HMQHJjCUI5ax/BBmQNQVpSEkL+CiHBpN+gQKRoA0LqFzVBNFZhQGGEKUL3DRTCnZsDQJHbDEJnXLjBgpDNvb3RK0IkPSPCal6bm+RVEkIZBeBBLcMLQNEfD0J8z8RBYYPYQByeFUKvZttBx6VTnGmWT0IYnlFCZ7AEQUOMUUIm4CxCNonWQIGrVUJD0lFCgQqHnCpwSkKWQmxCx6VTnGmWT0IYnlFC4O6cQI8HUkL5dGVC1rvFP6UrXEKYO4VC9ierQC7yZkIYwWlCOXWanDIUYEKpP4VC7apvQA2rUkJ/TndC4O6cQI8HUkL5dGVC9ierQC7yZkIYwWlC9w6fnMrhVkLuP4VC7apvQA2rUkJ/TndC1rvFP6UrXEKYO4VC4O6cQI8HUkL5dGVCNonWQIGrVUJD0lFC9ierQC7yZkIYwWlCQobgQIykOEJ/HRBCYYPYQByeFUKvZttBIkcKQZhhREKe5g5CNonWQIGrVUJD0lFCZ7AEQUOMUUIm4CxCyDggQUlwakLr5ExCdo7aQEQ8C0LDS4TBV5JdHB+QA0JwBDTBG/lsQPhuCUKmp4XBal6bm+RVEkIZBeBBwKVEGco2AEJmSHpBLcMLQNEfD0J8z8RBA8qGQL5mL0LypSPC91XhQJiaK0JFqxbCgpDNvb3RK0IkPSPC3/HMQHJjCUI5ax/BpOGtQIH7CEJIWB/Bdo7aQEQ8C0LDS4TBG/lsQPhuCUKmp4XBV5JdHB+QA0JwBDTBF8JwP1TQB0K/KIXBdMZ1QHsO7UFCqa9BLcMLQNEfD0J8z8RB3YhFQEPu6kHynZtBwlVEHfIooUGkMLDCnEUuHSy2GEIRGIjCJEsmQDPDk0FN4q7Chec7QK5ibEH4A6zCDyAZHSC+ZEEt1IrCPF85HSXsX0F6YKvCJEsmQDPDk0FN4q7CKqKYQNb2v0F3KpzChec7QK5ibEH4A6zCPF85HSXsX0F6YKvCwlVEHfIooUGkMLDCJEsmQDPDk0FN4q7Chec7QK5ibEH4A6zCPF85HSXsX0F6YKvCJEsmQDPDk0FN4q7CnZsDwJHbDEJnXLjBgpDNvb3RK0IkPSPC/NytHBbkDkLh1czBYYPYQByeFUKvZttBQobgQIykOEJ/HRBCfq/nmxl9LkJsKhFCfq/nmxl9LkJsKhFCal6bm+RVEkIZBeBBYYPYQByeFUKvZttBx6VTnGmWT0IYnlFC4O6cwI8HUkL5dGVCNonWwIGrVUJD0lFC9ierwC7yZkIYwWlCOXWanDIUYEKpP4VCkKFAwHQ8bEIGx3VCZ6tvwA2rUkJ/TndCyrzFv6UrXEKYO4VC9ierwC7yZkIYwWlCNonWwIGrVUJD0lFC9ierwC7yZkIYwWlCyDggwUlwakLr5ExCZ7AEwUOMUUIm4CxCyDggwUlwakLr5ExC6M4fwbrSY0KLzihCIM2hwDmF7UGbCLRBBgOQwBR02UGqO6dBdMZ1wHsO7UFCqa9Bp0yYwJr7i0LecUxCxntJwXvQnUIGeEpCfmYYwTBxhEIHr0NCgQqHnCpwSkKWQmxCZ6tvwA2rUkJ/TndC4O6cwI8HUkL5dGVCgQqHnCpwSkKWQmxC9w6fnMrhVkLuP4VCZ6tvwA2rUkJ/TndC3zoXnFezQUIbdyxCx6VTnGmWT0IYnlFCZ7AEwUOMUUIm4CxC91XhwJiaK0JFqxbCgpDNvb3RK0IkPSPCulVhwGGEKUL3DRTCV5JdHB+QA0JwBDTBAY9SHOtkA0IsVB7BaOGtwIH7CEJIWB/BaOGtwIH7CEJIWB/Bdo7awEQ8C0LDS4TBV5JdHB+QA0JwBDTB/NytHBbkDkLh1czBn32GHPbRB0JIKYXBF8Jwv1TQB0LPKIXBF8Jwv1TQB0LPKIXBnZsDwJHbDEJnXLjB/NytHBbkDkLh1czBnZsDwJHbDEJnXLjBHwGQwCfC3EGMtgjCulVhwGGEKUL3DRTC3YhFwEPu6kHynZtBlMVnwNaEzEF5NINBICHav0wA6EFi/X9Bo595wC/wckFy54vChec7wK5ibEH4A6zCDyAZHSC+ZEEt1IrC9eXMwL+tjkHNrZHChec7wK5ibEH4A6zCo595wC/wckFy54vCnEUuHSy2GEIRGIjCqkomwDPDk0FN4q7CKqKYwNb2v0F3KpzCKqKYwNb2v0F3KpzChec7wK5ibEH4A6zC9eXMwL+tjkHNrZHC3/HMwHJjCUI5ax/BpN+gwKRoA0LqFzVBBmQNwVpSEkL+CiHBulVhwGGEKUL3DRTCgpDNvb3RK0IkPSPCnZsDwJHbDEJnXLjBal6bm+RVEkIZBeBBnoPYwByeFUKvZttBLcMLwNEfD0J8z8RBx6VTnGmWT0IYnlFCNonWwIGrVUJD0lFCZ7AEwUOMUUIm4CxCgQqHnCpwSkKWQmxC4O6cwI8HUkL5dGVCx6VTnGmWT0IYnlFCyrzFv6UrXEKYO4VCOXWanDIUYEKpP4VC9ierwC7yZkIYwWlCZ6tvwA2rUkJ/TndC9ierwC7yZkIYwWlC4O6cwI8HUkL5dGVC9w6fnMrhVkLuP4VCyrzFv6UrXEKYO4VCZ6tvwA2rUkJ/TndC4O6cwI8HUkL5dGVC9ierwC7yZkIYwWlCNonWwIGrVUJD0lFCQobgwIykOEJ/HRBCIkcKwZhhREKe5g5CnoPYwByeFUKvZttBNonWwIGrVUJD0lFCyDggwUlwakLr5ExCZ7AEwUOMUUIm4CxCdo7awEQ8C0LDS4TBG/lswPhuCUKmp4XBV5JdHB+QA0JwBDTBal6bm+RVEkIZBeBBLcMLwNEfD0J8z8RBwKVEGco2AEJmSHpBhzaNwL5mL0LypSPCgpDNvb3RK0IkPSPC91XhwJiaK0JFqxbC3/HMwHJjCUI5ax/Bdo7awEQ8C0LDS4TBaOGtwIH7CEJIWB/BG/lswPhuCUKmp4XBnZsDwJHbDEJnXLjBF8Jwv1TQB0LPKIXBdMZ1wHsO7UFCqa9B3YhFwEPu6kHynZtBLcMLwNEfD0J8z8RBwlVEHfIooUGkMLDCqkomwDPDk0FN4q7CnEUuHSy2GEIRGIjChec7wK5ibEH4A6zCPF85HSXsX0F6YKvCDyAZHSC+ZEEt1IrCqkomwDPDk0FN4q7Chec7wK5ibEH4A6zCKqKYwNb2v0F3KpzCPF85HSXsX0F6YKvCqkomwDPDk0FN4q7CwlVEHfIooUGkMLDChec7wK5ibEH4A6zCqkomwDPDk0FN4q7CPF85HSXsX0F6YKvCnoPYwByeFUKvZttBal6bm+RVEkIZBeBBfq/nmxl9LkJsKhFCfq/nmxl9LkJsKhFCQobgwIykOEJ/HRBCnoPYwByeFUKvZttBdMZ1QHsO7UFCqa9BIM2hQDmF7UGbCLRBYYPYQByeFUKvZttBYYPYQByeFUKvZttBLcMLQNEfD0J8z8RBdMZ1QHsO7UFCqa9B3YhFQEPu6kHynZtBlMVnQNaEzEF5NINBBgOQQBR02UGqO6dBBgOQQBR02UGqO6dBdMZ1QHsO7UFCqa9B3YhFQEPu6kHynZtBdMZ1wHsO7UFCqa9BLcMLwNEfD0J8z8RBnoPYwByeFUKvZttBnoPYwByeFUKvZttBIM2hwDmF7UGbCLRBdMZ1wHsO7UFCqa9BICHaP0wA6EFi/X9B3YhFQEPu6kHynZtBLcMLQNEfD0J8z8RBLcMLQNEfD0J8z8RBwKVEGco2AEJmSHpBICHaP0wA6EFi/X9BICHav0wA6EFi/X9BwKVEGco2AEJmSHpBLcMLwNEfD0J8z8RBLcMLwNEfD0J8z8RB3YhFwEPu6kHynZtBICHav0wA6EFi/X9B3YhFwEPu6kHynZtBdMZ1wHsO7UFCqa9BBgOQwBR02UGqO6dBBgOQwBR02UGqO6dBlMVnwNaEzEF5NINB3YhFwEPu6kHynZtBBmQNwVpSEkL+CiHBLeUfwVzZFkKOdITBdo7awEQ8C0LDS4TBdo7awEQ8C0LDS4TB3/HMwHJjCUI5ax/BBmQNwVpSEkL+CiHBwKVEGco2AEJmSHpBaOGtwIH7CEJIWB/BAY9SHOtkA0IsVB7BaOGtwIH7CEJIWB/BwKVEGco2AEJmSHpBpN+gwKRoA0LqFzVBpN+gwKRoA0LqFzVB3/HMwHJjCUI5ax/BaOGtwIH7CEJIWB/BBmQNQVpSEkL+CiHB3/HMQHJjCUI5ax/Bdo7aQEQ8C0LDS4TBdo7aQEQ8C0LDS4TBLeUfQVzZFkKOdITBBmQNQVpSEkL+CiHBwKVEGco2AEJmSHpBAY9SHOtkA0IsVB7BpOGtQIH7CEJIWB/BpOGtQIH7CEJIWB/B3/HMQHJjCUI5ax/BpN+gQKRoA0LqFzVBpN+gQKRoA0LqFzVBwKVEGco2AEJmSHpBpOGtQIH7CEJIWB/BV5JdHB+QA0JwBDTBn32GHPbRB0JIKYXBF8JwP1TQB0K/KIXBV5JdHB+QA0JwBDTBF8Jwv1TQB0LPKIXBn32GHPbRB0JIKYXBV5JdHB+QA0JwBDTBG/lswPhuCUKmp4XBF8Jwv1TQB0LPKIXBnZsDQJHbDEJnXLjBG/lsQPhuCUKmp4XBF8JwP1TQB0K/KIXBIkcKwZhhREKe5g5CQobgwIykOEJ/HRBCZ7AEwUOMUUIm4CxCZ7AEwUOMUUIm4CxC6M4fwbrSY0KLzihCIkcKwZhhREKe5g5CQobgwIykOEJ/HRBCfq/nmxl9LkJsKhFC3zoXnFezQUIbdyxC3zoXnFezQUIbdyxCZ7AEwUOMUUIm4CxCQobgwIykOEJ/HRBCIkcKQZhhREKe5g5C6M4fQbrSY0KLzihCZ7AEQUOMUUIm4CxCZ7AEQUOMUUIm4CxCQobgQIykOEJ/HRBCIkcKQZhhREKe5g5CQobgQIykOEJ/HRBCZ7AEQUOMUUIm4CxC3zoXnFezQUIbdyxC3zoXnFezQUIbdyxCfq/nmxl9LkJsKhFCQobgQIykOEJ/HRBCA8qGQL5mL0LypSPCgpDNvb3RK0IkPSPCbtvwHG7GA0I3+C7CQSO/QBggCULpxTPCA8qGQL5mL0LypSPCbtvwHG7GA0I3+C7CpN+gQKRoA0LqFzVBBmQNQVpSEkL+CiHBCVcgQawGFULhiCHBCVcgQawGFULhiCHBgcohQWYTD0KU4C9BpN+gQKRoA0LqFzVB2W29HGkRgkLAcW3Bji2vHFbFgULhoDXBQIO/QFGEc0L2tjLBQIO/QFGEc0L2tjLBwLgfQWAGa0INTMDB2W29HGkRgkLAcW3BlD0VQSPEYkID4RbCnCwrQcgXRUIqLBfCOQrhQIpsQkKVyyPCwLgfQWAGa0INTMDBpYM4QfiVRkLsO8XBnCwrQcgXRUIqLBfCnCwrQcgXRUIqLBfC91XhQJiaK0JFqxbCA8qGQL5mL0LypSPCpN+gQKRoA0LqFzVBgcohQWYTD0KU4C9BY0EVQSna30H1n1ZBABUhQdaickJPj7VB+ietG33PhUL9CrVBwDjnGtMJj0JHlgBCylEzQa9KV0L5V69BABUhQdaickJPj7VBWzb5QE8DhULzzAJCkUImQQKQgEJ7/SJCWzb5QE8DhULzzAJCremVQLI9kELXCyVC6M4fQbrSY0KLzihCkUImQQKQgEJ7/SJCfmYYQTBxhEIHr0NCremVQLI9kELXCyVC0H4Lm8JAk0KcsCRCzBv5m992jkLSvUxCWzb5QE8DhULzzAJCwDjnGtMJj0JHlgBC0H4Lm8JAk0KcsCRCyDggQUlwakLr5ExCfmYYQTBxhEIHr0NC9ierQC7yZkIYwWlCkUImQQKQgEJ7/SJCremVQLI9kELXCyVCxntJQXvQnUIGeEpCfmYYQTBxhEIHr0NCp0yYQJr7i0LecUxCRJYcQL71eEIts2ZCkKFAQHQ8bEIGx3VCT5JenO08dkKeZ2pCOXWanDIUYEKpP4VC9ierQC7yZkIYwWlCRJYcQL71eEIts2ZCkKFAQHQ8bEIGx3VCIkcKQZhhREKe5g5CvPofQQY7TUJK/A1C6M4fQbrSY0KLzihCfmYYQTBxhEIHr0NCkUImQQKQgEJ7/SJCxntJQXvQnUIGeEpCremVQLI9kELXCyVCp0yYQJr7i0LecUxCxntJQXvQnUIGeEpCOQrhQIpsQkKVyyPCA8qGQL5mL0LypSPCQSO/QBggCULpxTPCpYM4QfiVRkLsO8XBLeUfQVzZFkKOdITBFAsVQQbpAULh9pDBQSO/QBggCULpxTPCbtvwHG7GA0I3+C7CeETQQKjGqUEruGPCp0yYQJr7i0LecUxCzBv5m992jkLSvUxCRJYcQL71eEIts2ZCyDggQV4LZ0KGfAFBZXw/HFQdgEKGfAFBPqUIHAt1hELYRIBBuM7nHMhjgULh1czBwLgfQWAGa0INTMDBlD0VQSPEYkID4RbC3KYIHeZEdUJFqxbClD0VQSPEYkID4RbCgpDNvSfxYEIIfyPCnCwrQcgXRUIqLBfCpYM4QfiVRkLsO8XB8405QVxe9EEN9dXBLeUfQVzZFkKOdITBdo7aQEQ8C0LDS4TB+kziQMlVAUJX7ofB91XhQJiaK0JFqxbCnCwrQcgXRUIqLBfC48ERQehC30FdDwnCNFZhQGGEKUL3DRTC91XhQJiaK0JFqxbCuy/fQFOV4EFgHxLCKYACQR5umkHEoBjCuw0MQRZ/l0H7hBbCzQ4KQXzHfEFwOhvCNxWZQN/EfkGfOxnCakGfQCj2jUGs/QfCK8qUQLmvkUGqgg7C+kziQMlVAUJX7ofBG/lsQPhuCUKmp4XBakGfQCj2jUGs/QfCaC3JQMGcnEFPMhrCEQzgQCfon0F9kBzCWHDgQH6DgkFbTyHCKtWNQPtGk0EJXRHCTuiWQGLDlUEQRhXCNxWZQN/EfkGfOxnCFAsVQQbpAULh9pDB+kziQMlVAUJX7ofBCez4QKs8pUGVtPPB8405QVxe9EEN9dXBFAsVQQbpAULh9pDBCez4QKs8pUGVtPPBK8qUQLmvkUGqgg7CKtWNQPtGk0EJXRHCNxWZQN/EfkGfOxnCY0EVQSna30H1n1ZBN/AmQQVU50FnL4BBpJ8QQUrqh0F9FnhBlMVnQNaEzEF5NINBPcePQAVU50GoSFZBBna9QG+sjUHJzGhBnoPYwByeFUKvZttByDggwbI2KkJivtVB+BQXwVbl7EE7Ja5B+BQXwVbl7EE7Ja5BWXXgwBzc7kHmqcBBnoPYwByeFUKvZttBwKVEGco2AEJmSHpBpN+gQKRoA0LqFzVBPcePQAVU50GoSFZBPcePQAVU50GoSFZBY0EVQSna30H1n1ZBBna9QG+sjUHJzGhBlngUHfkDTkIw70HCmmSxQHBoUEI88iXCpeTKQDCkN0LOvUbCQSO/QBggCULpxTPCb/UJQWsRyUFizGzC0gvzQPAxIULKoT3CvHbnwIpsQkKVyyPCHtG3wHBoUEI88iXCPgvPwDCkN0LOvUbCPgvPwDCkN0LOvUbCLjL3wPAxIULKoT3CvHbnwIpsQkKVyyPCJHL5QLltCkIqToHCb/UJQWsRyUFizGzCMubMQL+tjkHNrZHCeETQQKjGqUEruGPC1CgFHZgyoUEDBWLCDyAZHSC+ZEEt1IrCb/UJQWsRyUFizGzCeETQQKjGqUEruGPCo595QC/wckFy54vCZ4i2QHygFUL7dYTCJHL5QLltCkIqToHCKqKYQNb2v0F3KpzCnEUuHSy2GEIRGIjCZ4i2QHygFUL7dYTCKqKYQNb2v0F3KpzC+kziQMlVAUJX7ofBdo7aQEQ8C0LDS4TBG/lsQPhuCUKmp4XB2W29HGkRgkLAcW3BwLgfQWAGa0INTMDBuM7nHMhjgULh1czBmmSxQHBoUEI88iXClD0VQSPEYkID4RbCOQrhQIpsQkKVyyPCgpDNvSfxYEIIfyPClD0VQSPEYkID4RbCmmSxQHBoUEI88iXClD0VQSPEYkID4RbCwLgfQWAGa0INTMDBnCwrQcgXRUIqLBfCABUhQdaickJPj7VBPqUIHAt1hELYRIBB+ietG33PhUL9CrVBOQrhQIpsQkKVyyPCnCwrQcgXRUIqLBfCA8qGQL5mL0LypSPCWzb5QE8DhULzzAJCABUhQdaickJPj7VBwDjnGtMJj0JHlgBCRBorQbqccUJjDwdCylEzQa9KV0L5V69BWzb5QE8DhULzzAJCPcePQAVU50GoSFZBpN+gQKRoA0LqFzVBY0EVQSna30H1n1ZByDggQUlwakLr5ExC6M4fQbrSY0KLzihCfmYYQTBxhEIHr0NCremVQLI9kELXCyVCWzb5QE8DhULzzAJC0H4Lm8JAk0KcsCRCRJYcQL71eEIts2ZCzBv5m992jkLSvUxCT5JenO08dkKeZ2pC9ierQC7yZkIYwWlCfmYYQTBxhEIHr0NCRJYcQL71eEIts2ZCkKFAQHQ8bEIGx3VCRJYcQL71eEIts2ZCT5JenO08dkKeZ2pCY0EVQSna30H1n1ZBgcohQWYTD0KU4C9BN/AmQQVU50FnL4BBWXXgQBzc7kHmqcBBYYPYQByeFUKvZttBIM2hQDmF7UGbCLRBCVcgQawGFULhiCHBuG4vQURmMEL/gibBgcohQWYTD0KU4C9BlngUHfkDTkIw70HCgpDNvSfxYEIIfyPCmmSxQHBoUEI88iXC8405QVxe9EEN9dXBpYM4QfiVRkLsO8XBFAsVQQbpAULh9pDBb/UJQWsRyUFizGzCQSO/QBggCULpxTPCeETQQKjGqUEruGPCp0yYQJr7i0LecUxCremVQLI9kELXCyVCzBv5m992jkLSvUxCHaYgQQ7MbEJxbnVByDggQV4LZ0KGfAFBPqUIHAt1hELYRIBB3KYIHeZEdUJFqxbCuM7nHMhjgULh1czBlD0VQSPEYkID4RbC48ERQehC30FdDwnCnCwrQcgXRUIqLBfC8405QVxe9EEN9dXBQIO/QFGEc0L2tjLBcewfQahqaULh4DDBwLgfQWAGa0INTMDBFAsVQQbpAULh9pDBLeUfQVzZFkKOdITB+kziQMlVAUJX7ofBuy/fQFOV4EFgHxLC91XhQJiaK0JFqxbC48ERQehC30FdDwnCHwGQQCfC3EGMtgjCNFZhQGGEKUL3DRTCuy/fQFOV4EFgHxLCakGfQCj2jUGs/QfCG/lsQPhuCUKmp4XBK8qUQLmvkUGqgg7CICHaP0wA6EFi/X9BwKVEGco2AEJmSHpBPcePQAVU50GoSFZBpJ8QQUrqh0F9FnhBN/AmQQVU50FnL4BB77sTQTD6xkGBpJ9BZ4i2QHygFUL7dYTClngUHfkDTkIw70HCJHL5QLltCkIqToHCeETQQKjGqUEruGPCbtvwHG7GA0I3+C7C1CgFHZgyoUEDBWLCnEUuHSy2GEIRGIjClngUHfkDTkIw70HCZ4i2QHygFUL7dYTCJHL5QLltCkIqToHClngUHfkDTkIw70HCpeTKQDCkN0LOvUbCKqKYQNb2v0F3KpzCJHL5QLltCkIqToHCMubMQL+tjkHNrZHCo595QC/wckFy54vCeETQQKjGqUEruGPCDyAZHSC+ZEEt1IrCMubMQL+tjkHNrZHCb/UJQWsRyUFizGzCo595QC/wckFy54vChzaNwL5mL0LypSPCbtvwHG7GA0I3+C7CgpDNvb3RK0IkPSPCBCO/wBggCULpxTPCbtvwHG7GA0I3+C7ChzaNwL5mL0LypSPCgcohwWYTD0KU4C9BCVcgwawGFULhiCHBBmQNwVpSEkL+CiHBBmQNwVpSEkL+CiHBpN+gwKRoA0LqFzVBgcohwWYTD0KU4C9BwLgfwWAGa0INTMDBQIO/wFGEc0L2tjLBji2vHFbFgULhoDXBji2vHFbFgULhoDXB2W29HGkRgkLAcW3BwLgfwWAGa0INTMDBHBA0wcHmVELiEHRBXWMhwf4KFkJweXBByDggwbI2KkJivtVByDggwbI2KkJivtVBylEzwa9KV0L5V69BHBA0wcHmVELiEHRBlD0VwSPEYkID4RbCvHbnwIpsQkKVyyPCfSwrwcgXRUIqLBfCwLgfwWAGa0INTMDBfSwrwcgXRUIqLBfCpYM4wfiVRkLsO8XBfSwrwcgXRUIqLBfChzaNwL5mL0LypSPC91XhwJiaK0JFqxbCpN+gwKRoA0LqFzVBY0EVwSna30H1n1ZBgcohwWYTD0KU4C9BHhUhwdaickJPj7VBwDjnGtMJj0JHlgBC+ietG33PhUL9CrVBylEzwa9KV0L5V69BWzb5wE8DhULzzAJCHhUhwdaickJPj7VBkUImwQKQgEJ7/SJC6umVwLI9kELXCyVCWzb5wE8DhULzzAJCylEzQa9KV0L5V69BRBorQbqccUJjDwdCvPofQQY7TUJK/A1CvPofQQY7TUJK/A1CyDggQbI2KkJivtVBylEzQa9KV0L5V69B6M4fwbrSY0KLzihCfmYYwTBxhEIHr0NCkUImwQKQgEJ7/SJC6umVwLI9kELXCyVCzBv5m992jkLSvUxC0H4Lm8JAk0KcsCRCWzb5wE8DhULzzAJC0H4Lm8JAk0KcsCRCwDjnGtMJj0JHlgBCyDggwUlwakLr5ExC9ierwC7yZkIYwWlCfmYYwTBxhEIHr0NCkUImwQKQgEJ7/SJCxntJwXvQnUIGeEpC6umVwLI9kELXCyVCfmYYwTBxhEIHr0NCRJYcwL71eEIts2ZCp0yYwJr7i0LecUxCkKFAwHQ8bEIGx3VCOXWanDIUYEKpP4VCT5JenO08dkKeZ2pC9ierwC7yZkIYwWlCkKFAwHQ8bEIGx3VCRJYcwL71eEIts2ZCIkcKwZhhREKe5g5C6M4fwbrSY0KLzihCvPofwQY7TUJK/A1CfmYYwTBxhEIHr0NCxntJwXvQnUIGeEpCkUImwQKQgEJ7/SJC6umVwLI9kELXCyVCxntJwXvQnUIGeEpCp0yYwJr7i0LecUxCvHbnwIpsQkKVyyPCBCO/wBggCULpxTPChzaNwL5mL0LypSPCpYM4wfiVRkLsO8XBFAsVwQbpAULh9pDBLeUfwVzZFkKOdITBBCO/wBggCULpxTPCeETQwKjGqUEruGPCbtvwHG7GA0I3+C7Cp0yYwJr7i0LecUxCRJYcwL71eEIts2ZCzBv5m992jkLSvUxCyDggwV4LZ0KGfAFBPqUIHAt1hELYRIBBZXw/HFQdgEKGfAFBuM7nHMhjgULh1czBlD0VwSPEYkID4RbCwLgfwWAGa0INTMDB3KYIHeZEdUJFqxbCgpDNvSfxYEIIfyPClD0VwSPEYkID4RbCfSwrwcgXRUIqLBfC8405wVxe9EEN9dXBpYM4wfiVRkLsO8XBLeUfwVzZFkKOdITB+kziwMlVAUJX7ofBdo7awEQ8C0LDS4TB91XhwJiaK0JFqxbC48ERwehC30FdDwnCfSwrwcgXRUIqLBfCulVhwGGEKUL3DRTCfi/fwFOV4EFgHxLC91XhwJiaK0JFqxbCCoACwR5umkHEoBjCzQ4KwXzHfEFwOhvCnQ0MwSV/l0H7hBbC+kziwMlVAUJX7ofBLkGfwCj2jUGs/QfCG/lswPhuCUKmp4XBKy3JwMGcnEFPMhrCG3DgwH6DgkFbTyHCEQzgwCfon0F9kBzCKtWNwPtGk0EJXRHCNxWZwN/EfkGfOxnCTuiWwGLDlUEQRhXCFAsVwQbpAULh9pDBCez4wKs8pUGVtPPB+kziwMlVAUJX7ofB8405wVxe9EEN9dXBCez4wKs8pUGVtPPBFAsVwQbpAULh9pDBK8qUwLmvkUGqgg7CNxWZwN/EfkGfOxnCKtWNwPtGk0EJXRHCY0EVwSna30H1n1ZBpJ8QwUrqh0F9FnhBN/AmwQVU50FnL4BBlMVnwNaEzEF5NINBBna9wG+sjUHJzGhBPcePwAVU50GoSFZBwKVEGco2AEJmSHpBPcePwAVU50GoSFZBpN+gwKRoA0LqFzVBPcePwAVU50GoSFZBBna9wG+sjUHJzGhBY0EVwSna30H1n1ZBlngUHfkDTkIw70HCJHL5wLltCkIqToHCPgvPwDCkN0LOvUbCLjL3wPAxIULKoT3Cb/UJwWsRyUFizGzCBCO/wBggCULpxTPC0gvzQPAxIULKoT3Cb/UJQWsRyUFizGzCJHL5QLltCkIqToHCJHL5QLltCkIqToHCpeTKQDCkN0LOvUbC0gvzQPAxIULKoT3CJHL5wLltCkIqToHC9eXMwL+tjkHNrZHCb/UJwWsRyUFizGzCeETQwKjGqUEruGPCDyAZHSC+ZEEt1IrC1CgFHZgyoUEDBWLCb/UJwWsRyUFizGzCo595wC/wckFy54vCeETQwKjGqUEruGPCZ4i2wHygFUL7dYTCKqKYwNb2v0F3KpzCJHL5wLltCkIqToHCnEUuHSy2GEIRGIjCKqKYwNb2v0F3KpzCZ4i2wHygFUL7dYTC+kziwMlVAUJX7ofBG/lswPhuCUKmp4XBdo7awEQ8C0LDS4TB2W29HGkRgkLAcW3BuM7nHMhjgULh1czBwLgfwWAGa0INTMDBHtG3wHBoUEI88iXCvHbnwIpsQkKVyyPClD0VwSPEYkID4RbCgpDNvSfxYEIIfyPCHtG3wHBoUEI88iXClD0VwSPEYkID4RbClD0VwSPEYkID4RbCfSwrwcgXRUIqLBfCwLgfwWAGa0INTMDBHhUhwdaickJPj7VB+ietG33PhUL9CrVBPqUIHAt1hELYRIBBvHbnwIpsQkKVyyPChzaNwL5mL0LypSPCfSwrwcgXRUIqLBfCWzb5wE8DhULzzAJCwDjnGtMJj0JHlgBCHhUhwdaickJPj7VBWzb5wE8DhULzzAJCylEzwa9KV0L5V69BYhorwbqccUJjDwdCPcePwAVU50GoSFZBY0EVwSna30H1n1ZBpN+gwKRoA0LqFzVByDggwUlwakLr5ExCfmYYwTBxhEIHr0NC6M4fwbrSY0KLzihC6umVwLI9kELXCyVC0H4Lm8JAk0KcsCRCWzb5wE8DhULzzAJCRJYcwL71eEIts2ZCT5JenO08dkKeZ2pCzBv5m992jkLSvUxC9ierwC7yZkIYwWlCRJYcwL71eEIts2ZCfmYYwTBxhEIHr0NCkKFAwHQ8bEIGx3VCT5JenO08dkKeZ2pCRJYcwL71eEIts2ZCY0EVwSna30H1n1ZBN/AmwQVU50FnL4BBgcohwWYTD0KU4C9BWXXgwBzc7kHmqcBBIM2hwDmF7UGbCLRBnoPYwByeFUKvZttBCVcgwawGFULhiCHBgcohwWYTD0KU4C9BuG4vwURmMEL/gibBlngUHfkDTkIw70HCHtG3wHBoUEI88iXCgpDNvSfxYEIIfyPC8405wVxe9EEN9dXBFAsVwQbpAULh9pDBpYM4wfiVRkLsO8XBb/UJwWsRyUFizGzCeETQwKjGqUEruGPCBCO/wBggCULpxTPCp0yYwJr7i0LecUxCzBv5m992jkLSvUxC6umVwLI9kELXCyVCPqUIHAt1hELYRIBByDggwV4LZ0KGfAFBHaYgwQ7MbEJxbnVB3KYIHeZEdUJFqxbClD0VwSPEYkID4RbCuM7nHMhjgULh1czB48ERwehC30FdDwnC8405wVxe9EEN9dXBfSwrwcgXRUIqLBfCQIO/wFGEc0L2tjLBwLgfwWAGa0INTMDBcewfwahqaULh4DDBFAsVwQbpAULh9pDB+kziwMlVAUJX7ofBLeUfwVzZFkKOdITBfi/fwFOV4EFgHxLC48ERwehC30FdDwnC91XhwJiaK0JFqxbCHwGQwCfC3EGMtgjCfi/fwFOV4EFgHxLCulVhwGGEKUL3DRTCLkGfwCj2jUGs/QfCNxWZwN/EfkGfOxnCK8qUwLmvkUGqgg7CPcePwAVU50GoSFZBwKVEGco2AEJmSHpBICHav0wA6EFi/X9BpJ8QwUrqh0F9FnhB77sTwTD6xkGBpJ9BN/AmwQVU50FnL4BBZ4i2wHygFUL7dYTCJHL5wLltCkIqToHClngUHfkDTkIw70HCeETQwKjGqUEruGPC1CgFHZgyoUEDBWLCbtvwHG7GA0I3+C7CnEUuHSy2GEIRGIjCZ4i2wHygFUL7dYTClngUHfkDTkIw70HCLjL3wPAxIULKoT3CPgvPwDCkN0LOvUbCJHL5wLltCkIqToHCJHL5wLltCkIqToHCb/UJwWsRyUFizGzCLjL3wPAxIULKoT3CKqKYwNb2v0F3KpzC9eXMwL+tjkHNrZHCJHL5wLltCkIqToHCo595wC/wckFy54vCDyAZHSC+ZEEt1IrCeETQwKjGqUEruGPC9eXMwL+tjkHNrZHCo595wC/wckFy54vCb/UJwWsRyUFizGzCKtWNQPtGk0EJXRHCK8qUQLmvkUGqgg7CG/lsQPhuCUKmp4XBG/lsQPhuCUKmp4XBnZsDQJHbDEJnXLjBKtWNQPtGk0EJXRHCyDggwV4LZ0KGfAFBcewfwahqaULh4DDBnvU2weuVS0JsdCvBnvU2weuVS0JsdCvBhsw0waGIUkI6dQpByDggwV4LZ0KGfAFBgcohQWYTD0KU4C9BuG4vQURmMEL/gibBnvU2QeuVS0JsdCvBnvU2QeuVS0JsdCvBhsw0QaGIUkI6dQpBgcohQWYTD0KU4C9BgcohwWYTD0KU4C9BN/AmwQVU50FnL4BBXWMhwf4KFkJweXBBhsw0waGIUkI6dQpBnvU2weuVS0JsdCvBuG4vwURmMEL/gibBuG4vwURmMEL/gibBgcohwWYTD0KU4C9Bhsw0waGIUkI6dQpByDggQV4LZ0KGfAFBhsw0QaGIUkI6dQpBnvU2QeuVS0JsdCvBnvU2QeuVS0JsdCvBcewfQahqaULh4DDByDggQV4LZ0KGfAFBYYPYQByeFUKvZttBWXXgQBzc7kHmqcBB2hQXQVbl7EE7Ja5B2hQXQVbl7EE7Ja5ByDggQbI2KkJivtVBYYPYQByeFUKvZttBN/AmwQVU50FnL4BB77sTwTD6xkGBpJ9B+BQXwVbl7EE7Ja5BIM2hwDmF7UGbCLRBWXXgwBzc7kHmqcBBJc7jwPts1UFmZrVBJc7jwPts1UFmZrVBBgOQwBR02UGqO6dBIM2hwDmF7UGbCLRBIM2hQDmF7UGbCLRBBgOQQBR02UGqO6dBJc7jQPts1UFmZrVBJc7jQPts1UFmZrVBWXXgQBzc7kHmqcBBIM2hQDmF7UGbCLRBWXXgQBzc7kHmqcBBJc7jQPts1UFmZrVB77sTQTD6xkGBpJ9B77sTQTD6xkGBpJ9B2hQXQVbl7EE7Ja5BWXXgQBzc7kHmqcBBWXXgwBzc7kHmqcBB+BQXwVbl7EE7Ja5B77sTwTD6xkGBpJ9B77sTwTD6xkGBpJ9BJc7jwPts1UFmZrVBWXXgwBzc7kHmqcBBlMVnQNaEzEF5NINBICHaP0wA6EFi/X9BPcePQAVU50GoSFZBlMVnwNaEzEF5NINBPcePwAVU50GoSFZBICHav0wA6EFi/X9BN/AmQQVU50FnL4BB2hQXQVbl7EE7Ja5B77sTQTD6xkGBpJ9B2hQXQVbl7EE7Ja5BN/AmQQVU50FnL4BBXWMhQf4KFkJTeXBBXWMhQf4KFkJTeXBByDggQbI2KkJivtVB2hQXQVbl7EE7Ja5BHBA0QcHmVELiEHRBylEzQa9KV0L5V69ByDggQbI2KkJivtVByDggQbI2KkJivtVBXWMhQf4KFkJTeXBBHBA0QcHmVELiEHRBXWMhQf4KFkJTeXBBgcohQWYTD0KU4C9Bhsw0QaGIUkI6dQpBhsw0QaGIUkI6dQpBHBA0QcHmVELiEHRBXWMhQf4KFkJTeXBBHaYgQQ7MbEJxbnVBHBA0QcHmVELiEHRBhsw0QaGIUkI6dQpBhsw0QaGIUkI6dQpByDggQV4LZ0KGfAFBHaYgQQ7MbEJxbnVBHaYgwQ7MbEJxbnVBHBA0wcHmVELiEHRBylEzwa9KV0L5V69BylEzwa9KV0L5V69BHhUhwdaickJPj7VBHaYgwQ7MbEJxbnVByDggwbI2KkJivtVBXWMhwf4KFkJweXBBN/AmwQVU50FnL4BBN/AmwQVU50FnL4BB+BQXwVbl7EE7Ja5ByDggwbI2KkJivtVBgcohQWYTD0KU4C9BXWMhQf4KFkJTeXBBN/AmQQVU50FnL4BBHaYgwQ7MbEJxbnVByDggwV4LZ0KGfAFBhsw0waGIUkI6dQpBhsw0waGIUkI6dQpBHBA0wcHmVELiEHRBHaYgwQ7MbEJxbnVBHhUhwdaickJPj7VBPqUIHAt1hELYRIBBHaYgwQ7MbEJxbnVBABUhQdaickJPj7VBHaYgQQ7MbEJxbnVBPqUIHAt1hELYRIBBHaYgQQ7MbEJxbnVBABUhQdaickJPj7VBylEzQa9KV0L5V69BylEzQa9KV0L5V69BHBA0QcHmVELiEHRBHaYgQQ7MbEJxbnVBHBA0wcHmVELiEHRBhsw0waGIUkI6dQpBgcohwWYTD0KU4C9BgcohwWYTD0KU4C9BXWMhwf4KFkJweXBBHBA0wcHmVELiEHRBEQzgQCfon0F9kBzCaC3JQMGcnEFPMhrCHwGQQCfC3EGMtgjCHwGQQCfC3EGMtgjCuy/fQFOV4EFgHxLCEQzgQCfon0F9kBzCTuiWQGLDlUEQRhXCKtWNQPtGk0EJXRHCnZsDQJHbDEJnXLjBnZsDQJHbDEJnXLjBHwGQQCfC3EGMtgjCTuiWQGLDlUEQRhXCuw0MQRZ/l0H7hBbCKYACQR5umkHEoBjCuy/fQFOV4EFgHxLCuy/fQFOV4EFgHxLC48ERQehC30FdDwnCuw0MQRZ/l0H7hBbCnQ0MwSV/l0H7hBbC48ERwehC30FdDwnCfi/fwFOV4EFgHxLCfi/fwFOV4EFgHxLCCoACwR5umkHEoBjCnQ0MwSV/l0H7hBbCEQzgwCfon0F9kBzCfi/fwFOV4EFgHxLCHwGQwCfC3EGMtgjCHwGQwCfC3EGMtgjCKy3JwMGcnEFPMhrCEQzgwCfon0F9kBzC48ERwehC30FdDwnCQO4SwafzjEHX+hDC8405wVxe9EEN9dXB48ERQehC30FdDwnC8405QVxe9EEN9dXBQO4SQafzjEHX+hDCKtWNwPtGk0EJXRHCnZsDwJHbDEJnXLjBG/lswPhuCUKmp4XBG/lswPhuCUKmp4XBK8qUwLmvkUGqgg7CKtWNwPtGk0EJXRHCTuiWwGLDlUEQRhXCHwGQwCfC3EGMtgjCnZsDwJHbDEJnXLjBnZsDwJHbDEJnXLjBKtWNwPtGk0EJXRHCTuiWwGLDlUEQRhXCG/lswPhuCUKmp4XBLkGfwCj2jUGs/QfCK8qUwLmvkUGqgg7COQrhQIpsQkKVyyPC0gvzQPAxIULKoT3CpeTKQDCkN0LOvUbCpeTKQDCkN0LOvUbCmmSxQHBoUEI88iXCOQrhQIpsQkKVyyPCHtG3wHBoUEI88iXClngUHfkDTkIw70HCPgvPwDCkN0LOvUbCvHbnwIpsQkKVyyPCLjL3wPAxIULKoT3CBCO/wBggCULpxTPCOQrhQIpsQkKVyyPCQSO/QBggCULpxTPC0gvzQPAxIULKoT3CZXw/HFQdgEKGfAFBji2vHFbFgULhoDXBQIO/wFGEc0L2tjLBZXw/HFQdgEKGfAFBQIO/QFGEc0L2tjLBji2vHFbFgULhoDXBcewfQahqaULh4DDBQIO/QFGEc0L2tjLBZXw/HFQdgEKGfAFBZXw/HFQdgEKGfAFByDggQV4LZ0KGfAFBcewfQahqaULh4DDBcewfQahqaULh4DDBnvU2QeuVS0JsdCvBpYM4QfiVRkLsO8XBpYM4QfiVRkLsO8XBwLgfQWAGa0INTMDBcewfQahqaULh4DDBuG4vQURmMEL/gibBCVcgQawGFULhiCHBLeUfQVzZFkKOdITBLeUfQVzZFkKOdITBpYM4QfiVRkLsO8XBuG4vQURmMEL/gibBpYM4QfiVRkLsO8XBnvU2QeuVS0JsdCvBuG4vQURmMEL/gibBLeUfQVzZFkKOdITBCVcgQawGFULhiCHBBmQNQVpSEkL+CiHBpYM4wfiVRkLsO8XBuG4vwURmMEL/gibBnvU2weuVS0JsdCvBcewfwahqaULh4DDByDggwV4LZ0KGfAFBZXw/HFQdgEKGfAFBZXw/HFQdgEKGfAFBQIO/wFGEc0L2tjLBcewfwahqaULh4DDBcewfwahqaULh4DDBwLgfwWAGa0INTMDBpYM4wfiVRkLsO8XBpYM4wfiVRkLsO8XBnvU2weuVS0JsdCvBcewfwahqaULh4DDBLeUfwVzZFkKOdITBBmQNwVpSEkL+CiHBCVcgwawGFULhiCHBuG4vwURmMEL/gibBpYM4wfiVRkLsO8XBLeUfwVzZFkKOdITBLeUfwVzZFkKOdITBCVcgwawGFULhiCHBuG4vwURmMEL/gibBylEzwa9KV0L5V69ByDggwbI2KkJivtVBvPofwQY7TUJK/A1CvPofwQY7TUJK/A1CYhorwbqccUJjDwdCylEzwa9KV0L5V69BRBorQbqccUJjDwdCkUImQQKQgEJ7/SJC6M4fQbrSY0KLzihC6M4fQbrSY0KLzihCvPofQQY7TUJK/A1CRBorQbqccUJjDwdCvPofQQY7TUJK/A1CIkcKQZhhREKe5g5CYYPYQByeFUKvZttBYYPYQByeFUKvZttByDggQbI2KkJivtVBvPofQQY7TUJK/A1CvPofwQY7TUJK/A1CyDggwbI2KkJivtVBnoPYwByeFUKvZttBnoPYwByeFUKvZttBIkcKwZhhREKe5g5CvPofwQY7TUJK/A1CYhorwbqccUJjDwdCvPofwQY7TUJK/A1C6M4fwbrSY0KLzihC6M4fwbrSY0KLzihCkUImwQKQgEJ7/SJCYhorwbqccUJjDwdCkUImQQKQgEJ7/SJCRBorQbqccUJjDwdCWzb5QE8DhULzzAJCkUImwQKQgEJ7/SJCWzb5wE8DhULzzAJCYhorwbqccUJjDwdCQO4SQafzjEHX+hDCCez4QKs8pUGVtPPB38v0QG42gEGfPQXCakGfQCj2jUGs/QfCNxWZQN/EfkGfOxnC6zORQBO2i0CurgfCQO4SQafzjEHX+hDC38v0QG42gEGfPQXCj08VQaH06UBTygvCA9PdQH0U1j2WjgnCj08VQaH06UBTygvCaN0VQeSSTUBu9APCNxWZQN/EfkGfOxnCWHDgQH6DgkFbTyHCA9PdQH0U1j2WjgnC38v0QG42gEGfPQXCakGfQCj2jUGs/QfCCNikQJKZ0UBZ7QXCzQ4KQXzHfEFwOhvCQO4SQafzjEHX+hDCj08VQaH06UBTygvCWHDgQH6DgkFbTyHCzQ4KQXzHfEFwOhvCj08VQaH06UBTygvCRr2yQFbRcD5EAN7B6zORQBO2i0CurgfCnEGPQFJV+b11p//BRr2yQFbRcD5EAN7BnEGPQFJV+b11p//BvgIVQaK70b3cZ//BA9PdQH0U1j2WjgnCaN0VQeSSTUBu9APCvgIVQaK70b3cZ//BaN0VQeSSTUBu9APCj08VQaH06UBTygvCnSP+QI+KkD5XHt7Bj08VQaH06UBTygvCOHDeQIvDzkATvQHCnSP+QI+KkD5XHt7BOHDeQIvDzkATvQHCCNikQJKZ0UBZ7QXCRr2yQFbRcD5EAN7BBna9QG+sjUHJzGhBpJ8QQUrqh0F9FnhBCQwAQUfp8kCN+nJBBna9QG+sjUHJzGhBC2a1QFXPokA/AIJBJJmNQMw5jEGHu4JB7UUEQVz1hUHskKJBXGzhQI41hkEcWq5Bc8beQFaCuEDkg6ZBby2+QKDVh0GjkaJBVmSSQOLgiEHm/5pBF++UQEooy0DS7Y1BVmSSQOLgiEHm/5pBFtuBQP+Ii0H5vIdBF++UQEooy0DS7Y1BpJ8QQUrqh0F9FnhB77sTQTD6xkGBpJ9BMe8OQePvhkEWTptBxe2lQMULTD8Y8LtBF++UQEooy0DS7Y1BagydQHE5db08dolBagydQHE5db08dolBNzoLQYzvNr3ypolBLL8GQV7zED/PqLpBF++UQEooy0DS7Y1BC2a1QFXPokA/AIJBagydQHE5db08dolBC2a1QFXPokA/AIJBOGoNQYk7pEAgaYdBNzoLQYzvNr3ypolBql8IQZCivUB5YJVBc8beQFaCuEDkg6ZBiQvjQDzQZj65rMlBc8beQFaCuEDkg6ZBF++UQEooy0DS7Y1Bxe2lQMULTD8Y8LtBOGoNQYk7pEAgaYdBql8IQZCivUB5YJVBLL8GQV7zED/PqLpBEQzgQCfon0F9kBzCuy/fQFOV4EFgHxLCKYACQR5umkHEoBjCCez4QKs8pUGVtPPB+kziQMlVAUJX7ofBakGfQCj2jUGs/QfCTuiWQGLDlUEQRhXCHwGQQCfC3EGMtgjCaC3JQMGcnEFPMhrC38v0QG42gEGfPQXCCez4QKs8pUGVtPPBakGfQCj2jUGs/QfCQO4SQafzjEHX+hDC8405QVxe9EEN9dXBCez4QKs8pUGVtPPBCNikQJKZ0UBZ7QXCakGfQCj2jUGs/QfC6zORQBO2i0CurgfCj08VQaH06UBTygvC38v0QG42gEGfPQXCOHDeQIvDzkATvQHC6zORQBO2i0CurgfCNxWZQN/EfkGfOxnCA9PdQH0U1j2WjgnCOHDeQIvDzkATvQHC38v0QG42gEGfPQXCCNikQJKZ0UBZ7QXCA9PdQH0U1j2WjgnCWHDgQH6DgkFbTyHCj08VQaH06UBTygvCnEGPQFJV+b11p//B6zORQBO2i0CurgfCA9PdQH0U1j2WjgnCnSP+QI+KkD5XHt7BRr2yQFbRcD5EAN7BvgIVQaK70b3cZ//BA9PdQH0U1j2WjgnCvgIVQaK70b3cZ//BnEGPQFJV+b11p//BvgIVQaK70b3cZ//BaN0VQeSSTUBu9APCnSP+QI+KkD5XHt7BRr2yQFbRcD5EAN7BCNikQJKZ0UBZ7QXC6zORQBO2i0CurgfCnSP+QI+KkD5XHt7BOHDeQIvDzkATvQHCRr2yQFbRcD5EAN7BBna9QG+sjUHJzGhBY0EVQSna30H1n1ZBpJ8QQUrqh0F9FnhBCQwAQUfp8kCN+nJBpJ8QQUrqh0F9FnhBOGoNQYk7pEAgaYdBFtuBQP+Ii0H5vIdBlMVnQNaEzEF5NINBJJmNQMw5jEGHu4JBMe8OQePvhkEWTptB77sTQTD6xkGBpJ9B7UUEQVz1hUHskKJBXGzhQI41hkEcWq5BJc7jQPts1UFmZrVBby2+QKDVh0GjkaJBC2a1QFXPokA/AIJBBna9QG+sjUHJzGhBCQwAQUfp8kCN+nJBOGoNQYk7pEAgaYdBpJ8QQUrqh0F9FnhBql8IQZCivUB5YJVBNzoLQYzvNr3ypolBOGoNQYk7pEAgaYdBLL8GQV7zED/PqLpBC2a1QFXPokA/AIJBCQwAQUfp8kCN+nJBOGoNQYk7pEAgaYdBxe2lQMULTD8Y8LtBagydQHE5db08dolBiQvjQDzQZj65rMlBiQvjQDzQZj65rMlBagydQHE5db08dolBLL8GQV7zED/PqLpBagydQHE5db08dolBC2a1QFXPokA/AIJBNzoLQYzvNr3ypolBLL8GQV7zED/PqLpBql8IQZCivUB5YJVBiQvjQDzQZj65rMlBiQvjQDzQZj65rMlBc8beQFaCuEDkg6ZBxe2lQMULTD8Y8LtBQO4SwafzjEHX+hDC38v0wG42gEGfPQXCCez4wKs8pUGVtPPBLkGfwCj2jUGs/QfC6zORwBO2i0CurgfCNxWZwN/EfkGfOxnCQO4SwafzjEHX+hDCcU8VwaH06UBTygvC38v0wG42gEGfPQXCA9PdwH0U1j2WjgnCSt0VweSSTUBu9APCcU8VwaH06UBTygvCNxWZwN/EfkGfOxnCA9PdwH0U1j2WjgnCG3DgwH6DgkFbTyHC38v0wG42gEGfPQXCCNikwJKZ0UBZ7QXCLkGfwCj2jUGs/QfCzQ4KwXzHfEFwOhvCcU8VwaH06UBTygvCQO4SwafzjEHX+hDCG3DgwH6DgkFbTyHCcU8VwaH06UBTygvCzQ4KwXzHfEFwOhvCRr2ywFbRcD5EAN7BnEGPwFJV+b11p//B6zORwBO2i0CurgfCRr2ywFbRcD5EAN7BnwIVwaK70b3cZ//BnEGPwFJV+b11p//BA9PdwH0U1j2WjgnCnwIVwaK70b3cZ//BSt0VweSSTUBu9APCSt0VweSSTUBu9APCnSP+wI+KkD5XHt7BcU8VwaH06UBTygvCcU8VwaH06UBTygvCnSP+wI+KkD5XHt7BOHDewIvDzkATvQHCOHDewIvDzkATvQHCRr2ywFbRcD5EAN7BCNikwJKZ0UBZ7QXCBna9wG+sjUHJzGhBJwwAwUfp8kCN+nJBpJ8QwUrqh0F9FnhBJJmNwMw5jEGHu4JBSGa1wFXPokA/AIJBBna9wG+sjUHJzGhB7UUEwVz1hUHskKJBc8bewFaCuEDkg6ZBXGzhwI41hkEcWq5Bby2+wKDVh0GjkaJBVO+UwEooy0DS7Y1BVmSSwOLgiEHm/5pBVmSSwOLgiEHm/5pBVO+UwEooy0DS7Y1BFtuBwA+Ji0H5vIdBpJ8QwUrqh0F9FnhBql8IwZCivUB5YJVBMe8OwePvhkEWTptBxe2lwMULTD8Y8LtBagydwHE5db08dolBVO+UwEooy0DS7Y1BagydwHE5db08dolBLL8GwV7zED/PqLpBNzoLwYzvNr3ypolBVO+UwEooy0DS7Y1BagydwHE5db08dolBSGa1wFXPokA/AIJBSGa1wFXPokA/AIJBNzoLwYzvNr3ypolBOGoNwYk7pEAgaYdBql8IwZCivUB5YJVBiQvjwDzQZj65rMlBc8bewFaCuEDkg6ZBc8bewFaCuEDkg6ZBxe2lwMULTD8Y8LtBVO+UwEooy0DS7Y1BOGoNwYk7pEAgaYdBLL8GwV7zED/PqLpBql8IwZCivUB5YJVBEQzgwCfon0F9kBzCCoACwR5umkHEoBjCfi/fwFOV4EFgHxLCCez4wKs8pUGVtPPBLkGfwCj2jUGs/QfC+kziwMlVAUJX7ofBTuiWwGLDlUEQRhXCKy3JwMGcnEFPMhrCHwGQwCfC3EGMtgjC38v0wG42gEGfPQXCLkGfwCj2jUGs/QfCCez4wKs8pUGVtPPBQO4SwafzjEHX+hDCCez4wKs8pUGVtPPB8405wVxe9EEN9dXBCNikwJKZ0UBZ7QXC6zORwBO2i0CurgfCLkGfwCj2jUGs/QfCcU8VwaH06UBTygvCOHDewIvDzkATvQHC38v0wG42gEGfPQXC6zORwBO2i0CurgfCA9PdwH0U1j2WjgnCNxWZwN/EfkGfOxnCOHDewIvDzkATvQHCCNikwJKZ0UBZ7QXC38v0wG42gEGfPQXCA9PdwH0U1j2WjgnCcU8VwaH06UBTygvCG3DgwH6DgkFbTyHCnEGPwFJV+b11p//BA9PdwH0U1j2WjgnC6zORwBO2i0CurgfCnSP+wI+KkD5XHt7BnwIVwaK70b3cZ//BRr2ywFbRcD5EAN7BA9PdwH0U1j2WjgnCnEGPwFJV+b11p//BnwIVwaK70b3cZ//BnwIVwaK70b3cZ//BnSP+wI+KkD5XHt7BSt0VweSSTUBu9APCRr2ywFbRcD5EAN7B6zORwBO2i0CurgfCCNikwJKZ0UBZ7QXCnSP+wI+KkD5XHt7BRr2ywFbRcD5EAN7BOHDewIvDzkATvQHCBna9wG+sjUHJzGhBpJ8QwUrqh0F9FnhBY0EVwSna30H1n1ZBJwwAwUfp8kCN+nJBOGoNwYk7pEAgaYdBpJ8QwUrqh0F9FnhBFtuBwA+Ji0H5vIdBJJmNwMw5jEGHu4JBlMVnwNaEzEF5NINBMe8OwePvhkEWTptB7UUEwVz1hUHskKJB77sTwTD6xkGBpJ9BXGzhwI41hkEcWq5Bby2+wKDVh0GjkaJBJc7jwPts1UFmZrVBSGa1wFXPokA/AIJBJwwAwUfp8kCN+nJBBna9wG+sjUHJzGhBOGoNwYk7pEAgaYdBql8IwZCivUB5YJVBpJ8QwUrqh0F9FnhBNzoLwYzvNr3ypolBLL8GwV7zED/PqLpBOGoNwYk7pEAgaYdBSGa1wFXPokA/AIJBOGoNwYk7pEAgaYdBJwwAwUfp8kCN+nJBxe2lwMULTD8Y8LtBiQvjwDzQZj65rMlBagydwHE5db08dolBiQvjwDzQZj65rMlBLL8GwV7zED/PqLpBagydwHE5db08dolBagydwHE5db08dolBNzoLwYzvNr3ypolBSGa1wFXPokA/AIJBLL8GwV7zED/PqLpBiQvjwDzQZj65rMlBql8IwZCivUB5YJVBiQvjwDzQZj65rMlBxe2lwMULTD8Y8LtBc8bewFaCuEDkg6ZB7UUEQVz1hUHskKJBc8beQFaCuEDkg6ZBql8IQZCivUB5YJVBql8IQZCivUB5YJVBMe8OQePvhkEWTptB7UUEQVz1hUHskKJBJJmNwMw5jEGHu4JBFtuBwA+Ji0H5vIdBVO+UwEooy0DS7Y1BVO+UwEooy0DS7Y1BSGa1wFXPokA/AIJBJJmNwMw5jEGHu4JBby2+wKDVh0GjkaJBXGzhwI41hkEcWq5Bc8bewFaCuEDkg6ZBc8bewFaCuEDkg6ZBVO+UwEooy0DS7Y1Bby2+wKDVh0GjkaJBXGzhQI41hkEcWq5B7UUEQVz1hUHskKJB77sTQTD6xkGBpJ9B77sTQTD6xkGBpJ9BJc7jQPts1UFmZrVBXGzhQI41hkEcWq5Bby2+QKDVh0GjkaJBF++UQEooy0DS7Y1Bc8beQFaCuEDkg6ZBc8beQFaCuEDkg6ZBXGzhQI41hkEcWq5Bby2+QKDVh0GjkaJBJJmNQMw5jEGHu4JBC2a1QFXPokA/AIJBF++UQEooy0DS7Y1BF++UQEooy0DS7Y1BFtuBQP+Ii0H5vIdBJJmNQMw5jEGHu4JBVmSSwOLgiEHm/5pBBgOQwBR02UGqO6dBJc7jwPts1UFmZrVBJc7jwPts1UFmZrVBby2+wKDVh0GjkaJBVmSSwOLgiEHm/5pBFtuBwA+Ji0H5vIdBlMVnwNaEzEF5NINBBgOQwBR02UGqO6dBBgOQwBR02UGqO6dBVmSSwOLgiEHm/5pBFtuBwA+Ji0H5vIdBVmSSQOLgiEHm/5pBby2+QKDVh0GjkaJBJc7jQPts1UFmZrVBJc7jQPts1UFmZrVBBgOQQBR02UGqO6dBVmSSQOLgiEHm/5pBFtuBQP+Ii0H5vIdBVmSSQOLgiEHm/5pBBgOQQBR02UGqO6dBBgOQQBR02UGqO6dBlMVnQNaEzEF5NINBFtuBQP+Ii0H5vIdBXGzhwI41hkEcWq5BJc7jwPts1UFmZrVB77sTwTD6xkGBpJ9B77sTwTD6xkGBpJ9B7UUEwVz1hUHskKJBXGzhwI41hkEcWq5B7UUEwVz1hUHskKJBMe8OwePvhkEWTptBql8IwZCivUB5YJVBql8IwZCivUB5YJVBc8bewFaCuEDkg6ZB7UUEwVz1hUHskKJBql8IQZCivUB5YJVBpJ8QQUrqh0F9FnhBMe8OQePvhkEWTptBlMVnQNaEzEF5NINBBna9QG+sjUHJzGhBJJmNQMw5jEGHu4JBlMVnwNaEzEF5NINBJJmNwMw5jEGHu4JBBna9wG+sjUHJzGhB77sTwTD6xkGBpJ9BpJ8QwUrqh0F9FnhBMe8OwePvhkEWTptBKy3JwMGcnEFPMhrCTuiWwGLDlUEQRhXCNxWZwN/EfkGfOxnCNxWZwN/EfkGfOxnCG3DgwH6DgkFbTyHCKy3JwMGcnEFPMhrCaC3JQMGcnEFPMhrCWHDgQH6DgkFbTyHCNxWZQN/EfkGfOxnCNxWZQN/EfkGfOxnCTuiWQGLDlUEQRhXCaC3JQMGcnEFPMhrCKYACQR5umkHEoBjCzQ4KQXzHfEFwOhvCWHDgQH6DgkFbTyHCWHDgQH6DgkFbTyHCEQzgQCfon0F9kBzCKYACQR5umkHEoBjCCoACwR5umkHEoBjCEQzgwCfon0F9kBzCG3DgwH6DgkFbTyHCG3DgwH6DgkFbTyHCzQ4KwXzHfEFwOhvCCoACwR5umkHEoBjCnQ0MwSV/l0H7hBbCQO4SwafzjEHX+hDC48ERwehC30FdDwnCzQ4KwXzHfEFwOhvCQO4SwafzjEHX+hDCnQ0MwSV/l0H7hBbCuw0MQRZ/l0H7hBbC48ERQehC30FdDwnCQO4SQafzjEHX+hDCzQ4KQXzHfEFwOhvCuw0MQRZ/l0H7hBbCQO4SQafzjEHX+hDC1rvFP6UrXEKYO4VCOXWanDIUYEKpP4VC9w6fnMrhVkLuP4VCyrzFv6UrXEKYO4VC9w6fnMrhVkLuP4VCOXWanDIUYEKpP4VCq1kHP5W1LT9zoAs/bxAtP9ArHj8g1Tg/A33CPUwYNT8QA909lSk+P1DHoz3g9T0/xAihPTdPRT8K1ng9jzlHPzIg+zyKA0Q/b39uPZASPz/ECKE9N09FP6/rFz3ZQEI/EAPdPZUpPj+NX/g9qDlFP8QIoT03T0U/Q3IiPqbtOz/CiSg+bapCP41f+D2oOUU/9UppPsrAMT7dfGM+yZM0PrOXXT5n1Sc+X3kQPhq/cD9Zayg+x4FrP7ixOT6BIXs/YodxPeONOD9Qx6M94PU9P29/bj2QEj8/YodxPeONOD9vf249kBI/P8uf7zyLb0A/bZEUPvJcLz9DciI+pu07PwN9wj1MGDU/+S4VP2H7PT8d4xY/Z+45P9ArHj8g1Tg/HqX6PqFILz9KJew+Gw4rPz+n8D5CziM/P6fwPkLOIz8jMvQ+0GMkPx6l+j6hSC8/q1kHP5W1LT9aZwA/A3coP5XwAD9YVSc/lfAAP1hVJz9zoAs/bxAtP6tZBz+VtS0/EcPOPl4sbD7tDqk+J756Pus5uT7SwjU+tJJWPhdHNT76YUQ+oWY4PrCpQz66TiM+XRZjP7STLT+asWQ/c4QoP3XodD8cQDc/7MJjP28pMz9dFmM/tJMtP3XodD8cQDc/KXtTP0s+Sj9l42U/19k8P/1NdD8Xgjw/ZeNlP9fZPD/swmM/bykzP3XodD8cQDc/53LrPlpILD/Nlek+AHQwP1GHtT7TUCM/HeMWP2fuOT+rWQc/lbUtP9ArHj8g1Tg/WtluPnx+ID/mBoM+tYggP5BNgj65cCg/A33CPUwYNT9DciI+pu07PxAD3T2VKT4/YodxPeONOD8DfcI9TBg1P1DHoz3g9T0/r+sXPdlAQj/ECKE9N09FPzIg+zyKA0Q/b39uPZASPz9Qx6M94PU9P8QIoT03T0U/y5/vPItvQD9vf249kBI/P6/rFz3ZQEI/UMejPeD1PT8QA909lSk+P8QIoT03T0U/8ztNPs8yMz+QTYI+uXAoP8aGTj7T+jc/EAPdPZUpPj9DciI+pu07P41f+D2oOUU/HqX6PqFILz8jMvQ+0GMkP74U/j7u0Ss/WtluPnx+ID/nxJY+cJoWP+YGgz61iCA/a/AaPysTPj/5LhU/Yfs9P9ArHj8g1Tg/53LrPlpILD9KJew+Gw4rPx6l+j6hSC8/vhT+Pu7RKz8jMvQ+0GMkP1pnAD8Ddyg/3XxjPsmTND6P/HE+rkpSPrSSVj4XRzU+UaN0P86KQD8pe1M/Sz5KP/1NdD8Xgjw/deh0PxxANz+asWQ/c4QoPzOodj/7rzM//U10PxeCPD9l42U/19k8P3XodD8cQDc/CvV4PxTtNj/8N3c/DYk/P/1NdD8Xgjw/deh0PxxANz8K9Xg/FO02P/1NdD8Xgjw/uHMBPuEJtT47jwo90jnHPn9O4T3y7LI+kE2CPrlwKD/zO00+zzIzP5vIPD70Tik/m8g8PvROKT9a2W4+fH4gP5BNgj65cCg/cjEOP+z41z7KNRE/Ck3qPpATCj/5aOk+N+MQPyL7+D4mOB0/Yp/4PkZEFT9Bnv0+QKUWP7KE7T57vRs/1NL0PjfjED8i+/g+kBMKP/lo6T434xA/Ivv4PngJBj9i1/Y+OLr6PpCe4j54CQY/Ytf2Phx79j4fv+8+pfNhPzav+j6Px2Q/BoH1PsptYz/f+/s+9FDbPWuCbD9tWZ49VP94P9kFoz1HzGg/0AsXP8eE4D5ApRY/soTtPso1ET8KTeo+0AsXP8eE4D5o5h0//5HxPkClFj+yhO0+H/MBP7hAyj5yMQ4/7PjXPji6+j6QnuI+aXSHPeLo0j47jwo90jnHPj1Jej06dMo+csE5Pp32pD6fBUE+GCGkPmZORz6p+bI+Zk5HPqn5sj5V3Cg+Hw66PnLBOT6d9qQ+f07hPfLssj74bB0+coupPsAiHz775as+wCIfPvvlqz64cwE+4Qm1Pn9O4T3y7LI+HcxiP5HUcj41RWw/V7E4PnXndT97aXo+calmPzcW/D7ONms/Er/yPnE8az93TP0+p61BP/rtWz+Txy8/DWxlP6weQD883FY/3PNAPwaBYT+Txy8/DWxlP6etQT/67Vs/hv9QP5C/eD9pVDA/CK5qP1a7Pj/xKms/Vrs+P/Eqaz+Txy8/DWxlP9zzQD8GgWE/vD1IPup7tT7jb5s+uJOoPgFqSj4S9r0+PUl6PTp0yj47jwo90jnHPrhzAT7hCbU+ELHZPtSYqD6Xb80+f2u3PiAlzj6UoKc+cjEOP+z41z6QEwo/+WjpPji6+j6QnuI+0AsXP8eE4D7KNRE/Ck3qPnIxDj/s+Nc+e70bP9TS9D4mOB0/Yp/4PjfjED8i+/g+QKUWP7KE7T434xA/Ivv4Pso1ET8KTeo+aOYdP/+R8T57vRs/1NL0PkClFj+yhO0+yjURPwpN6j434xA/Ivv4PpATCj/5aOk+9wbnPlRSzz44heU+DcbYPpdvzT5/a7c+kBMKP/lo6T54CQY/Ytf2Pji6+j6QnuI+VdwoPh8Ouj79TiM+v9WyPnLBOT6d9qQ+ELHZPtSYqD4gJc4+lKCnPg5OvD4JF5I+XVI1PR5U0j47jwo90jnHPml0hz3i6NI+vD1IPup7tT5V3Cg+Hw66PmZORz6p+bI+/U4jPr/Vsj64cwE+4Qm1PsAiHz775as+ym1jP9/7+z5xqWY/Nxb8PmUXYD/OjQU/ZvQvP4C1bj9pVDA/CK5qP4b/UD+Qv3g/k8cvPw1sZT8SES4/c9hhP6weQD883FY/aVQwPwiuaj+Txy8/DWxlP1a7Pj/xKms/9bwrP7sOZT9pVDA/CK5qP3hjLT+9rG0/k8cvPw1sZT9pVDA/CK5qP/W8Kz+7DmU/l2/NPn9rtz4Qsdk+1JioPs7+8D5WZLw+zv7wPlZkvD73Buc+VFLPPpdvzT5/a7c+3XxjPsmTND71Smk+ysAxPhHjhT4Pf00+EeOFPg9/TT6P/HE+rkpSPt18Yz7JkzQ+tJJWPhdHNT6wqUM+uk4jPrOXXT5n1Sc+s5ddPmfVJz7dfGM+yZM0PrSSVj4XRzU+ym1jP9/7+z5lF2A/zo0FP3SaWT9WmgQ/dJpZP1aaBD+l82E/Nq/6PsptYz/f+/s++mFEPqFmOD60klY+F0c1Po/8cT6uSlI+j/xxPq5KUj5gdUQ+RgZJPvphRD6hZjg+cTxrP3dM/T5bYGs/js0CP2UXYD/OjQU/ZRdgP86NBT9xqWY/Nxb8PnE8az93TP0+calmPzcW/D7KbWM/3/v7Po/HZD8GgfU+j8dkPwaB9T7ONms/Er/yPnGpZj83Fvw+AWpKPhL2vT68Ayw+wCHEPlXcKD4fDro+VdwoPh8Ouj68PUg+6nu1PgFqSj4S9r0+td2kPvMcmT5mTkc+qfmyPp8FQT4YIaQ+Zk5HPqn5sj613aQ+8xyZPuNvmz64k6g+42+bPriTqD68PUg+6nu1PmZORz6p+bI+zZXpPgB0MD/ncus+WkgsPx6l+j6hSC8/HqX6PqFILz+zJPg+BDk0P82V6T4AdDA/m42tPrItGz8/p/A+Qs4jP0ol7D4bDis/SiXsPhsOKz/ncus+WkgsP1GHtT7TUCM/UYe1PtNQIz+bja0+si0bP0ol7D4bDis/IzL0PtBjJD+V8AA/WFUnP1pnAD8Ddyg/csE5Pp32pD7AIh8+++WrPvhsHT5yi6k+csE5Pp32pD79TiM+v9WyPsAiHz775as+q1kHP5W1LT++FP4+7tErP1pnAD8Ddyg/OIXlPg3G2D73Buc+VFLPPji6+j6QnuI+OLr6PpCe4j4ce/Y+H7/vPjiF5T4Nxtg+9wbnPlRSzz7O/vA+VmS8Ph/zAT+4QMo+H/MBP7hAyj44uvo+kJ7iPvcG5z5UUs8+xoZOPtP6Nz/CiSg+bapCP0NyIj6m7Ts/Q3IiPqbtOz/zO00+zzIzP8aGTj7T+jc/8ztNPs8yMz9DciI+pu07P22RFD7yXC8/bZEUPvJcLz+byDw+9E4pP/M7TT7PMjM/W+kxP6VJNT9r8y8/cM8vPyLhOz9X6yg/bD4+P6qeMD9b6TE/pUk1PyLhOz9X6yg/UYe1PtNQIz/Nlek+AHQwP/3c6D7kLjI//dzoPuQuMj+jyLI+6DArP1GHtT7TUCM/aAXuPsZrXj+QMOQ+NgVeP4bJ5D4TC1Q/hsnkPhMLVD+3QwM/18BOP2gF7j7Ga14/QdMSP1A6TT/dJxM/LqpFP2XgGD+TAEU/t0MDP9fATj/wxAQ/iJ9DP90nEz8uqkU/3ScTPy6qRT/5LhU/Yfs9P2vwGj8rEz4/bFsEPh07aD44Ed09zyx5PiTV1z00ElE+btuHPnJTSz96w4U+JnBbPz1EUz6Dpl0/FciMPt/5QT9u24c+clNLP+ymVD6jj1E/UpotPvgYTD/splQ+o49RP2pQJD4+W1c/wokoPm2qQj9Smi0++BhMP2GkBz50lk0/alAkPj5bVz8tYCI+ZaldP2tF2z1ma1k/7KZUPqOPUT89RFM+g6ZdPy1gIj5lqV0/jV/4Pag5RT9hpAc+dJZNP8QIoT03T0U/7s5KPjunZT9cymk+ysNuP7ixOT6BIXs/YaQHPnSWTT+CdPE9j6VTP2KFmz2dSEw/CtZ4PY85Rz/rp3892nNNPzIg+zyKA0Q/xAihPTdPRT9ihZs9nUhMPwrWeD2POUc/xoZOPtP6Nz9B9U8+/aM7P8KJKD5tqkI/WWsoPseBaz/uzko+O6dlP7ixOT6BIXs/XMppPsrDbj+gNHQ+deZ6P7ixOT6BIXs/5SkvP3QMPD9b6TE/pUk1P2w+Pj+qnjA/YLALP5eqjD7VtPs+rRVtPoj0+z5lHFM+bD4+P6qeMD8i4Ts/V+soPyofUj9xWiw/gnTxPY+lUz9rRds9ZmtZP2KFmz2dSEw/n1axPhuDSj+yf64+wvtaP4nwlz47qVs/P28GP3IaXj+3QwM/18BOP0HTEj9QOk0/HOsWP2yVWD9B0xI/UDpNP4HOHD/8x1I/ZycbP9qpgT5gsAs/l6qMPkZCBz8glj0+1bT7Pq0VbT7ZsvQ+ibRdPmjq9T7mslE+ZycbP0p/Xz5nJxs/2qmBPtnqDj9GsyI+7Q6pPie+ej6+a6A+Z5l1PrOYsD719zI+NC8PPzgx5D0wEg4/TFDjPcHlDT8JMsI9Y0a4PvJ37z2+2sE+R3YFPjNUvT60qgU+GyzkPvtzYT6ME98+3lhwPr7awT5HdgU+K4azPjMyCD6sGbE+qikJPoMTsT6Qae09eGG7PlneBT44vLg+2PMFPmNGuD7yd+89iPT7PmUcUz5o6vU+5rJRPm2rBT99kwY+RkIHPyCWPT6I9Ps+ZRxTPm2rBT99kwY+M1S9PrSqBT54Ybs+Wd4FPmNGuD7yd+89JNXXPTQSUT474Lo9541TPjSc0j11eBg+sKlDPrpOIz4S9TI+SMEzPm2sND6eX/Q9JJdPP9EeDz8zpkw/at4VP3bhRz/+0wU/duFHP/7TBT/L9Es/8N4FPySXTz/RHg8/YHVEPkYGST7Q0iU+HO5DPhL1Mj5IwTM+bFsEPhL1Uj4k1dc9NBJRPsSV8z1DcBw+S+o0Pw/UST+E9Cw/o69AP4KOOj+hLEA/bD4+P6qeMD890VE/GRsyPwFoPD9OnDg/3Xp1P5Tbaj9uoXc/OINvPwoPaj964W4/Cg9qP3rhbj9mSWg/bkxnP916dT+U22o/mS1RPz9zPj890VE/GRsyP+zCYz9vKTM/Kh9SP3FaLD9CmVI/DHkkP5qxZD9zhCg/PdFRPxkbMj8qH1I/cVosP10WYz+0ky0/TDdRP2UBQz+ZLVE/P3M+P2XjZT/X2Tw/KXtTP0s+Sj9MN1E/ZQFDP2XjZT/X2Tw/GyzkPvtzYT5bDOY+nWdsPowT3z7eWHA+aAXuPsZrXj+3QwM/18BOPz9vBj9yGl4/i94ZP4/hST9B0xI/UDpNP2XgGD+TAEU/gc4cP/zHUj9B0xI/UDpNP4veGT+P4Uk/QdMSP1A6TT+3QwM/18BOP90nEz8uqkU/btuHPnJTSz+J8Jc+O6lbP3rDhT4mcFs/ZeAYP5MART/dJxM/LqpFP2vwGj8rEz4/7KZUPqOPUT9u24c+clNLPz1EUz6Dpl0/yatTPo1fSD8VyIw+3/lBP+ymVD6jj1E/bFsEPhL1Uj5sWwQ+HTtoPiTV1z00ElE+jV/4Pag5RT/CiSg+bapCP2GkBz50lk0/alAkPj5bVz/splQ+o49RPy1gIj5lqV0/YoWbPZ1ITD9rRds9ZmtZP+unfz3ac00/xAihPTdPRT9hpAc+dJZNP2KFmz2dSEw/CtZ4PY85Rz9ihZs9nUhMP+unfz3ac00/JNXXPTQSUT44Ed09zyx5Pjvguj3njVM+5NZ0PsUaLj4R44U+D39NPvVKaT7KwDE+/dzoPuQuMj/D1OY+Vwg7P6PIsj7oMCs/S+o0Pw/UST+4ySg/Uz1JP4T0LD+jr0A/RkIHPyCWPT5gsAs/l6qMPoj0+z5lHFM+PdFRPxkbMj9sPj4/qp4wPyofUj9xWiw/gnTxPY+lUz9qUCQ+PltXP2tF2z1ma1k/eJqcPt7lSj+fVrE+G4NKP4nwlz47qVs/HOsWP2yVWD8/bwY/chpeP0HTEj9QOk0/2eoOP0azIj5nJxs/2qmBPkZCBz8glj0+hsnkPhMLVD9FY+U+ZK1NP7dDAz/XwE4/iPT7PmUcUz7VtPs+rRVtPmjq9T7mslE+KqoSPzl9HT5nJxs/Sn9fPtnqDj9GsyI+6zm5PtLCNT7tDqk+J756PrOYsD719zI+vtrBPkd2BT6ME98+3lhwPjNUvT60qgU++mFEPqFmOD5gdUQ+RgZJPhL1Mj5IwTM+NJzSPXV4GD474Lo9541TPjUomj3z5zs+TDdRP2UBQz9L6jQ/D9RJP5ktUT8/cz4/Kh9SP3FaLD8i4Ts/V+soP0KZUj8MeSQ/KXtTP0s+Sj9L6jQ/D9RJP0w3UT9lAUM/mS1RPz9zPj9L6jQ/D9RJP4KOOj+hLEA/ZeNlP9fZPD+ZLVE/P3M+P+zCYz9vKTM/XRZjP7STLT8qH1I/cVosP5qxZD9zhCg/7MJjP28pMz890VE/GRsyP10WYz+0ky0/pbxyP4IcZD8M6Wg/VIxXP2ywdD92pF4/7IVmPxQ+Xz8M6Wg/VIxXP6W8cj+CHGQ/qrmcPlKAuD6GN0s+OnnBPgFqSj4S9r0+AWpKPhL2vT7jb5s+uJOoPqq5nD5SgLg+VrgFPhXJ9z6wHkc+WacCP2HGRD6Vmww/YcZEPpWbDD8KFDE+NpIMP1a4BT4Vyfc+BMmrPgO16D5xWqg+eJq8PhYYyj7Thcg+FhjKPtOFyD44Zb4+qkTpPgTJqz4Dteg+y9WPPdcS8j6hR0w9O4ngPpc4kj2gxeI+VrgFPhXJ9z6XOJI9oMXiPtOhAz7YReE+lziSPaDF4j5dUjU9HlTSPml0hz3i6NI+uB02P4cYBz95dj0/rfwCP7NcOj8ziww/yJrBPkhQ/D6OW9w+ar8RP1zHwD4TRw4/OGW+PqpE6T4G2t0+MbEFP8iawT5IUPw+B0LyPsQjAT/x1/Q+LowMPwba3T4xsQU/FciMPt/5QT/Jq1M+jV9IP0H1Tz79ozs/QfVPPv2jOz/0FYQ+lx4xPxXIjD7f+UE/HHv2Ph+/7z7rbgI/onoDPwdC8j7EIwE/8df0Pi6MDD+/1Ac/iNUPPx2r9D7C3BI/BtrdPjGxBT8dq/Q+wtwSP45b3D5qvxE/eAkGP2LX9j434xA/Ivv4PutuAj+iegM/g4oqPfgXZT9tWZ49VP94PxR4pzw8wG8/624CP6J6Az9e8RA/QX0DPzmYBT+I1wk/RkQVP0Ge/T4mOB0/Yp/4PsNHFD/g9gQ/N+MQPyL7+D5GRBU/QZ79Pl7xED9BfQM/OIXlPg3G2D4ce/Y+H7/vPo0l5D7G/d8+2QWjPUfMaD9tWZ49VP94P4OKKj34F2U/FHinPDzAbz9tWZ49VP94PwFRsDzDKHw/3Xp1P5Tbaj/shWY/FD5fP6W8cj+CHGQ/9DE/P/d0jT7/50w/JbFUPtkHTT+wqm4+7IVmPxQ+Xz/XpVI/VdpaPwzpaD9UjFc/OZgFP4jXCT9e8RA/QX0DP7/UBz+I1Q8//nuYPk3z9j4eqa4+660NPxVYmD4//Qs/OrHnPRzrCj/L1Y891xLyPla4BT4Vyfc+D/FPPQETBD9/ifg8PV/7PsvVjz3XEvI+7bovP1x0gj4OoEM/4Co/PvQxPz/3dI0+2QdNP7Cqbj4g7U8/pkdTPteIUD9JSV8+7bovP00UYT5q9zs/SUgkPu26Lz9cdII+ded1P3tpej62gHA/TFM0Pi8Wej8ttHM+ELM7Pz5b5z2D/Dw/ilvFPRTQPD9TeuY9JuRXP98WbD6L3WY/fy4KPjvFWj/n+3k+FxBuP9RFCj5I4W4/4c/wPctKbz82ygo+ERlqP7JlCT7OUWs/jIH1PbZqaz/v/gg+/+dMPyWxVD7WNkU/PSgIPiDtTz+mR1M+DqBDP+AqPz7WNkU/PSgIPv/nTD8lsVQ+gh9pPxGOCT7OUWs/jIH1PREZaj+yZQk+eXY9P638Aj+jk0E/Wd3qPoXRQD+vegQ/zjZrPxK/8j6KkG4/4undPmmLbz+6pPo+W2BrP47NAj9pi28/uqT6Pgn7cj+bPAE/rWw3P9TwAT9tVj0/WcLqPnl2PT+t/AI/845vP5C/eD8icVM/AftsPwoPaj964W4/ZkloP25MZz8U6VI/pptgP+yFZj8UPl8/AWg8P06cOD890VE/GRsyP5ktUT8/cz4/mS1RPz9zPj+Cjjo/oSxAPwFoPD9OnDg/InFTPwH7bD/c80A/BoFhPxTpUj+mm2A/16VSP1XaWj+sHkA/PNxWP206Uj/P+FI/FOlSP6abYD+nrUE/+u1bP9elUj9V2lo/aFlTP/CJcT9Wuz4/8SprPyJxUz8B+2w/hv9QP5C/eD9Wuz4/8SprP2hZUz/wiXE/JuRXP98WbD47xVo/5/t5Pm41Vz8MV3c+ChQxPjaSDD86sec9HOsKP1a4BT4Vyfc+TRM2PQ0a6j6hR0w9O4ngPsvVjz3XEvI+f4n4PD1f+z5NEzY9DRrqPsvVjz3XEvI+y9WPPdcS8j6XOJI9oMXiPla4BT4Vyfc+yJrBPkhQ/D5cx8A+E0cOPx6prj7rrQ0/oUdMPTuJ4D5dUjU9HlTSPpc4kj2gxeI+BtrdPjGxBT+OW9w+ar8RP8iawT5IUPw+BtrdPjGxBT84Zb4+qkTpPr3/3z7IJvk+rWw3P9TwAT95dj0/rfwCP7gdNj+HGAc/eAkGP2LX9j7rbgI/onoDPxx79j4fv+8+8df0Pi6MDD8dq/Q+wtwSPwba3T4xsQU/XvEQP0F9Az/DRxQ/4PYEP7/UBz+I1Q8/N+MQPyL7+D5e8RA/QX0DP+tuAj+iegM/RkQVP0Ge/T7DRxQ/4PYEP17xED9BfQM/eXY9P638Aj+F0UA/r3oEP7NcOj8ziww/RghfPxYV+T6l82E/Nq/6PnSaWT9WmgQ/hjdLPjp5wT6quZw+UoC4PtUFTD7gSdM+845vP5C/eD9uoXc/OINvPz+oez9hHHg/DqBDP+AqPz7/50w/JbFUPvQxPz/3dI0+FOlSP6abYD/XpVI/VdpaP+yFZj8UPl8/OZgFP4jXCT+/1Ac/iNUPP/HX9D4ujAw/HqmuPuutDT/+e5g+TfP2PlILrT7Zlvk+D/FPPQETBD/L1Y891xLyPjqx5z0c6wo/avc7P0lIJD4OoEM/4Co/Pu26Lz9cdII+sB5HPlmnAj9WuAU+Fcn3PicxSD4yk/g+/+dMPyWxVD4g7U8/pkdTPtkHTT+wqm4+GTg4P/kRHz5q9zs/SUgkPu26Lz9NFGE+NUVsP1exOD62gHA/TFM0PnXndT97aXo+i91mP38uCj7OUWs/jIH1PYIfaT8Rjgk+aYtvP7qk+j5bYGs/js0CP3E8az93TP0+o5NBP1nd6j64PEY/kIL/PoXRQD+vegQ/aFlTP/CJcT8icVM/AftsP/OObz+Qv3g/16VSP1XaWj9tOlI/z/hSPwzpaD9UjFc/hv9QP5C/eD9oWVM/8IlxP/OObz+Qv3g/ZkloP25MZz8KD2o/euFuPyJxUz8B+2w/InFTPwH7bD8U6VI/pptgP2ZJaD9uTGc/Vrs+P/Eqaz/c80A/BoFhPyJxUz8B+2w/p61BP/rtWz+sHkA/PNxWP9elUj9V2lo/3PNAPwaBYT+nrUE/+u1bPxTpUj+mm2A/eGG7PlneBT4zVL0+tKoFPowT3z7eWHA+jBPfPt5YcD4Rw84+XixsPnhhuz5Z3gU+/nuYPk3z9j4nMUg+MpP4PnakSj4FxOQ+dqRKPgXE5D4TY5k+xyvoPv57mD5N8/Y+o8iyPugwKz/D1OY+Vwg7P07w5T4Nw0M/TvDlPg3DQz+PxrE+NxtDP6PIsj7oMCs/s1w6PzOLDD+F0UA/r3oEP1gfPz8O2w4/E2OZPscr6D52pEo+BcTkPtUFTD7gSdM+1QVMPuBJ0z6quZw+UoC4PhNjmT7HK+g+n1axPhuDSj+PxrE+NxtDP07w5T4Nw0M/TvDlPg3DQz9FY+U+ZK1NP59WsT4bg0o/vY3NPEpGbj4RjEM9af1NPkt1gT2A1VE+S3WBPYDVUT6Yp/M8k6qFPr2NzTxKRm4+hdFAP696BD+4PEY/kIL/PnbhRz/+0wU/pfNhPzav+j5GCF8/FhX5PsAgYT/oFvI+wCBhP+gW8j6Px2Q/BoH1PqXzYT82r/o+9UppPsrAMT6zl10+Z9UnPnTtaz4VcyA+dO1rPhVzID7k1nQ+xRouPvVKaT7KwDE+EYxDPWn9TT6mtWk9SUxAPjUomj3z5zs+NSiaPfPnOz5LdYE9gNVRPhGMQz1p/U0+y/RLP/DeBT924Uc//tMFP7g8Rj+Qgv8+uDxGP5CC/z58fEo/YvcBP8v0Sz/w3gU/sKlDPrpOIz76YUQ+oWY4PhL1Mj5IwTM+zjZrPxK/8j5pi28/uqT6PnE8az93TP0+O+C6PeeNUz5LdYE9gNVRPjUomj3z5zs+S3WBPYDVUT474Lo9541TPgKbsz0MdH0+ApuzPQx0fT6Yp/M8k6qFPkt1gT2A1VE+G2OfPh6KQj8VyIw+3/lBP/QVhD6XHjE/9BWEPpceMT/V0KY+JLUsPxtjnz4eikI/1dCmPiS1LD+jyLI+6DArP4/GsT43G0M/j8axPjcbQz8bY58+HopCP9XQpj4ktSw/eJqcPt7lSj8bY58+HopCP4/GsT43G0M/j8axPjcbQz+fVrE+G4NKP3ianD7e5Uo/UgutPtmW+T4Eyas+A7XoPjhlvj6qROk+OGW+PqpE6T7ImsE+SFD8PlILrT7Zlvk+M6ZMP2reFT9YHz8/DtsOP4XRQD+vegQ/hdFAP696BD924Uc//tMFPzOmTD9q3hU/OBHdPc8seT4Cm7M9DHR9Pjvguj3njVM+UgutPtmW+T7+e5g+TfP2PhNjmT7HK+g+E2OZPscr6D4Eyas+A7XoPlILrT7Zlvk+yJrBPkhQ/D4eqa4+660NP1ILrT7Zlvk+btuHPnJTSz94mpw+3uVKP4nwlz47qVs/eJqcPt7lSj9u24c+clNLPxXIjD7f+UE/FciMPt/5QT8bY58+HopCP3ianD7e5Uo/BMmrPgO16D4TY5k+xyvoPqq5nD5SgLg+qrmcPlKAuD5xWqg+eJq8PgTJqz4Dteg+rBmxPqopCT4rhrM+MzIIPus5uT7SwjU+6zm5PtLCNT6zmLA+9fcyPqwZsT6qKQk+OLy4PtjzBT54Ybs+Wd4FPhHDzj5eLGw+EcPOPl4sbD7rObk+0sI1Pji8uD7Y8wU+MBIOP0xQ4z00Lw8/ODHkPSqqEj85fR0+KqoSPzl9HT7Z6g4/RrMiPjASDj9MUOM9FNA8P1N65j1q9zs/SUgkPhk4OD/5ER8+GTg4P/kRHz4Qszs/PlvnPRTQPD9TeuY9y0pvPzbKCj62gHA/TFM0PjVFbD9XsTg+NUVsP1exOD4XEG4/1EUKPstKbz82ygo+avc7P0lIJD7XMD8/Jc3fPQ6gQz/gKj8+2eoOP0azIj5GQgc/IJY9PmyxCz+lo9w9ERlqP7JlCT4dzGI/kdRyPjvFWj/n+3k+O8VaP+f7eT6CH2k/EY4JPhEZaj+yZQk+tmprP+/+CD41RWw/V7E4Ph3MYj+R1HI+HcxiP5HUcj4RGWo/smUJPrZqaz/v/gg+O8VaP+f7eT6L3WY/fy4KPoIfaT8Rjgk+5SkvP3QMPD8BaDw/Tpw4P4KOOj+hLEA/go46P6EsQD+E9Cw/o69AP+UpLz90DDw/bqF3PziDbz/zjm8/kL94PwoPaj964W4/3Xp1P5Tbaj9mSWg/bkxnP+yFZj8UPl8/5SkvP3QMPD9sPj4/qp4wPwFoPD9OnDg/FViYPj/9Cz9hxkQ+lZsMP7AeRz5ZpwI/sn+uPsL7Wj+GyeQ+EwtUP5Aw5D42BV4/RWPlPmStTT+GyeQ+EwtUP7J/rj7C+1o/sn+uPsL7Wj+fVrE+G4NKP0Vj5T5krU0/RWPlPmStTT9O8OU+DcNDP/DEBD+In0M/8MQEP4ifQz+3QwM/18BOP0Vj5T5krU0/w9TmPlcIOz/93Og+5C4yP7Mk+D4EOTQ/syT4PgQ5ND/wxAQ/iJ9DP8PU5j5XCDs/8MQEP4ifQz9O8OU+DcNDP8PU5j5XCDs/syT4PgQ5ND/93Og+5C4yP82V6T4AdDA/06EDPthF4T7VBUw+4EnTPnakSj4FxOQ+JzFIPjKT+D7+e5g+TfP2PhVYmD4//Qs/FViYPj/9Cz+wHkc+WacCPycxSD4yk/g+JzFIPjKT+D5WuAU+Fcn3PtOhAz7YReE+06EDPthF4T52pEo+BcTkPicxSD4yk/g+vAMsPsAhxD4Bako+Eva9PoY3Sz46ecE+1QVMPuBJ0z7ToQM+2EXhPrwDLD7AIcQ+vAMsPsAhxD6GN0s+OnnBPtUFTD7gSdM+OGW+PqpE6T4WGMo+04XIPo0l5D7G/d8+jSXkPsb93z69/98+yCb5Pjhlvj6qROk+yatTPo1fSD9Smi0++BhMP8KJKD5tqkI/wokoPm2qQj9B9U8+/aM7P8mrUz6NX0g/QfVPPv2jOz/Ghk4+0/o3P5BNgj65cCg/kE2CPrlwKD/0FYQ+lx4xP0H1Tz79ozs/jSXkPsb93z4WGMo+04XIPpdvzT5/a7c+l2/NPn9rtz44heU+DcbYPo0l5D7G/d8+vf/fPsgm+T6NJeQ+xv3fPhx79j4fv+8+HHv2Ph+/7z4HQvI+xCMBP73/3z7IJvk+UpotPvgYTD/Jq1M+jV9IP+ymVD6jj1E/B0LyPsQjAT8G2t0+MbEFP73/3z7IJvk+bLELP6Wj3D1tqwU/fZMGPigPBz/Hgdc9vtrBPkd2BT5jRrg+8nfvPQu3xD4Ul4M9bLELP6Wj3D0oDwc/x4HXPQACBj/vkng9oSwEP0rtxTwAAgY/75J4PXZuAj+ndDA9Y0a4PvJ37z2DE7E+kGntPfhwwT4EIC49xAjJPnIZ9z2+2sE+R3YFPpHwxT7oE5k9weUNPwkywj1ssQs/paPcPQACBj/vkng90bAQPzz3vj3B5Q0/CTLCPQACBj/vkng9NBDTPszQOD0Lt8Q+FJeDPfFHyT40nDI909jOPrAf4jzxR8k+NJwyPW0fwj7KG+A8oSwEP0rtxTx2bgI/p3QwPfEtAD+kUuw8dm4CP6d0MD0AAgY/75J4PYE99j4YIxI9AAIGP++SeD2wjAE/lueBPYE99j4YIxI9G/PKPuOonD2R8MU+6BOZPTQQ0z7M0Dg9xJXzPUNwHD40nNI9dXgYPjUp5T0o7tg9baw0Pp5f9D2zszg+HLZtPQwBQD5tH/I9zc6iPa1oEz4dlJA9NbQRPuF8qj18Kbw93/xWPgBW5z0wLE8+ZHXrPUAWQj5Qi4E9MCxPPmR16z1FgEM+xvjwPUAWQj5Qi4E9NJzSPXV4GD41KJo98+c7PjFBrT3YCxU+5jtYPtXKBD1AFkI+UIuBPYjxOj5ETwo9ZRwDPmzrhz2tM949S1mGPVZG4z1I/Ao9QBZCPlCLgT2zszg+HLZtPYjxOj5ETwo9j9/7PTzBvj1fmdc9omK8Pa0z3j1LWYY9kNrEPSelwD3hfKo9fCm8PX2wjD1Hcnk9nMBUPnI1cj1AFkI+UIuBPeY7WD7VygQ9X5nXPaJivD2Q2sQ9J6XAPR6Koj3obIE9qkgRP+au5T0qqhI/OX0dPjQvDz84MeQ9B3zOPisVFD4bLOQ++3NhPr7awT5HdgU+OLy4PtjzBT7rObk+0sI1PiuGsz4zMgg+xAjJPnIZ9z0HfM4+KxUUPr7awT5HdgU+bLELP6Wj3D1GQgc/IJY9Pm2rBT99kwY+kfDFPugTmT2+2sE+R3YFPgu3xD4Ul4M9AAIGP++SeD0oDwc/x4HXPbCMAT+W54E9C7fEPhSXgz1jRrg+8nfvPfhwwT4EIC49G/PKPuOonD3ECMk+chn3PZHwxT7oE5k9oSwEP0rtxTzRsBA/PPe+PQACBj/vkng98UfJPjScMj0Lt8Q+FJeDPfhwwT4EIC49TFDLPuvjoTzT2M4+sB/iPG0fwj7KG+A8+HDBPgQgLj1tH8I+yhvgPPFHyT40nDI98S0AP6RS7Dx2bgI/p3QwPYE99j4YIxI9NBDTPszQOD2R8MU+6BOZPQu3xD4Ul4M9x0vXPgslUz0b88o+46icPTQQ0z7M0Dg9xJXzPUNwHD4k1dc9NBJRPjSc0j11eBg+NSnlPSju2D00nNI9dXgYPl+Z1z2iYrw9RYBDPsb48D2wqUM+uk4jPgwBQD5tH/I9MUGtPdgLFT41KJo98+c7Ps3Ooj2taBM+i8VfPl+a4j107Ws+FXMgPt/8Vj4AVuc9j9/7PTzBvj3ElfM9Q3AcPjUp5T0o7tg9X5nXPaJivD00nNI9dXgYPpDaxD0npcA9rTPePUtZhj1fmdc9omK8PR6Koj3obIE9j9/7PTzBvj01KeU9KO7YPV+Z1z2iYrw9Ja4DPlFNCT1lHAM+bOuHPS+G8j1gI8k8L4byPWAjyTxlHAM+bOuHPVZG4z1I/Ao9ZRwDPmzrhz2P3/s9PMG+Pa0z3j1LWYY9HoqiPehsgT2Q2sQ9J6XAPX2wjD1Hcnk9t2FkPppB/DycwFQ+cjVyPeY7WD7VygQ91zA/PyXN3z0c00M/R6vaPdY2RT89KAg+i91mP38uCj4Z42M/zqeOPc5Raz+MgfU91zA/PyXN3z0z4EQ/++Z+PRzTQz9Hq9o9orVGP2SV0jy9c0g/qMc2PTPgRD/75n49zlFrP4yB9T1+AWU/bTpCPUjhbj/hz/A9ExBjP1WhAT4rhmM/Y4CkPYvdZj9/Lgo+g/w8P4pbxT0z4EQ/++Z+PdcwPz8lzd89cjE6P0Ihwj0z4EQ/++Z+PYP8PD+KW8U9G0tcPznSWT3iIGE/rHNMPRnjYz/Op449HvtdPyRGDz1uT2Q/V+sEPeIgYT+sc0w9orVGP2SV0jxCtEo/pfj4PL1zSD+oxzY9vXNIP6jHNj2Dw08/GXYYPTPgRD/75n49M+BEP/vmfj2Dw08/GXYYPYJVST8XEYU9NBJhPwjpqT0bS1w/OdJZPSuGYz9jgKQ9bVY9P1nC6j4kCUI/pWXUPqOTQT9Z3eo+OblrP4qR3T4b9Ww/bqK+PoqQbj/i6d0+861HP/9Z6z5wB0o/5gjRPkP+ST9/pes+E+5lP0xQ2z74qWo/+nvBPubmZz+cMdw+5uZnP5wx3D74qWo/+nvBPhvYaj8MWd0+o5NBP1nd6j5bskY/zH/QPkBQRj+qgOs+NdRkPwwisj7UKGw/8kKyPvipaj/6e8E+f4VAP7q7vj5gzEY/dcmwPiNrRT9o0MA++KlqP/p7wT7UKGw/8kKyPhv1bD9uor4+vhZAP12ozD4ja0U/aNDAPnqORD9hUM4+W7JGP8x/0D4kl08/1H7DPnAHSj/mCNE+8fVlP7a7vz411GQ/DCKyPvipaj/6e8E+eo5EP2FQzj5ozEw/ZkrDPluyRj/Mf9A+mpk5P2bY6D0Qszs/PlvnPRk4OD/5ER8+o+lgP64PGz6L3WY/fy4KPibkVz/fFmw+tmprP+/+CD4XEG4/1EUKPjVFbD9XsTg+ExBjP1WhAT6L3WY/fy4KPqPpYD+uDxs+1zA/PyXN3z3WNkU/PSgIPg6gQz/gKj8+K4ZjP2OApD0Z42M/zqeOPYvdZj9/Lgo+M+BEP/vmfj2CVUk/FxGFPRzTQz9Hq9o9GeNjP86njj1+AWU/bTpCPc5Raz+MgfU9NBJhPwjpqT0rhmM/Y4CkPRMQYz9VoQE+orVGP2SV0jwz4EQ/++Z+PXIxOj9CIcI94iBhP6xzTD1+AWU/bTpCPRnjYz/Op449O45fPx9k2TxuT2Q/V+sEPR77XT8kRg89fgFlP206Qj3iIGE/rHNMPW5PZD9X6wQ9QrRKP6X4+DyDw08/GXYYPb1zSD+oxzY9G0tcPznSWT0Z42M/zqeOPSuGYz9jgKQ9WFZaPwcmdz0bS1w/OdJZPTQSYT8I6ak9bVY9P1nC6j6jk0E/Wd3qPnl2PT+t/AI/JAlCP6Vl1D56jkQ/YVDOPqOTQT9Z3eo+G9hqPwxZ3T45uWs/ipHdPs42az8Sv/I+QFBGP6qA6z7zrUc//1nrPrg8Rj+Qgv8+ibZjP8dM2j4T7mU/TFDbPsAgYT/oFvI+vhZAP12ozD4kCUI/pWXUPm1WPT9Zwuo+eo5EP2FQzj5bskY/zH/QPqOTQT9Z3eo+I2tFP2jQwD5ozEw/ZkrDPnqORD9hUM4+vhZAP12ozD56jkQ/YVDOPiQJQj+lZdQ+xXNCP/Zcrj6YikU/wjGrPn+FQD+6u74+mIpFP8Ixqz5gzEY/dcmwPn+FQD+6u74+f4VAP7q7vj4ja0U/aNDAPr4WQD9dqMw+aMxMP2ZKwz4kl08/1H7DPluyRj/Mf9A+R8dhP5CIsT411GQ/DCKyPvH1ZT+2u78+zc6iPa1oEz7hfKo9fCm8PZDaxD0npcA9kNrEPSelwD0xQa092AsVPs3Ooj2taBM+OblrP4qR3T4b2Go/DFndPvipaj/6e8E++KlqP/p7wT4b9Ww/bqK+Pjm5az+Kkd0+E+5lP0xQ2z6JtmM/x0zaPvH1ZT+2u78+8fVlP7a7vz74qWo/+nvBPhPuZT9MUNs+HZSQPTW0ET7NzqI9rWgTPjUomj3z5zs+NSiaPfPnOz6mtWk9SUxAPh2UkD01tBE+3/xWPgBW5z1AFkI+UIuBPZzAVD5yNXI9nMBUPnI1cj2LxV8+X5riPd/8Vj4AVuc9DAFAPm0f8j2zszg+HLZtPUAWQj5Qi4E9QBZCPlCLgT1FgEM+xvjwPQwBQD5tH/I95uZnP5wx3D6Px2Q/BoH1PsAgYT/oFvI+wCBhP+gW8j4T7mU/TFDbPubmZz+cMdw+G9hqPwxZ3T7ONms/Er/yPo/HZD8GgfU+j8dkPwaB9T7m5mc/nDHcPhvYaj8MWd0+MCxPPmR16z3f/FY+AFbnPXTtaz4VcyA+dO1rPhVzID6zl10+Z9UnPjAsTz5kdes9RYBDPsb48D0wLE8+ZHXrPbOXXT5n1Sc+s5ddPmfVJz6wqUM+uk4jPkWAQz7G+PA9Q/5JP3+l6z58fEo/YvcBP7g8Rj+Qgv8+uDxGP5CC/z7zrUc//1nrPkP+ST9/pes+861HP/9Z6z5AUEY/qoDrPluyRj/Mf9A+W7JGP8x/0D5wB0o/5gjRPvOtRz//Wes+kNrEPSelwD00nNI9dXgYPjFBrT3YCxU+sKlDPrpOIz5trDQ+nl/0PQwBQD5tH/I9zjZrPxK/8j45uWs/ipHdPoqQbj/i6d0+uDxGP5CC/z6jk0E/Wd3qPkBQRj+qgOs+FxBuP9RFCj62ams/7/4IPs5Raz+MgfU9zlFrP4yB9T1I4W4/4c/wPRcQbj/URQo+K4azPjMyCD6DE7E+kGntPWNGuD7yd+89Y0a4PvJ37z04vLg+2PMFPiuGsz4zMgg+NC8PPzgx5D3B5Q0/CTLCPdGwED8897490bAQPzz3vj2qSBE/5q7lPTQvDz84MeQ9ELM7Pz5b5z2amTk/ZtjoPXIxOj9CIcI9cjE6P0Ihwj2D/Dw/ilvFPRCzOz8+W+c9FNA8P1N65j3XMD8/Jc3fPWr3Oz9JSCQ+g/w8P4pbxT3XMD8/Jc3fPRTQPD9TeuY9MBIOP0xQ4z3Z6g4/RrMiPmyxCz+lo9w9weUNPwkywj0wEg4/TFDjPWyxCz+lo9w9r+sXPdlAQj8yIPs8igNEP8uf7zyLb0A/e70bP9TS9D5o5h0//5HxPiY4HT9in/g+AgAQAAIAAgACABAAFAACAAIADQACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIACgACAAIAAgAKAAIAAgACAAoACwACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAQAAIAAgACABAAAgACAAIADQACAAIAAgAQAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAIAEAACAAIAAgAQAAIAAgACAAIAAgACAAIAAgACAAIAAgACAAIAAgACABAAFAACAAIAEAACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIACgACAAIAAgAKAAsAAgACAAsACgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwAOAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIAAwACAAIAAgADABAAAgACAAoABAACAAIAAgAQAAIAAgACABAAAgACAAIADQACAAIABAAFAAcACgAKAAQAAgACAAoAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAKAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAQAAIAAgADAAIAAgACAAIAEAARAAIABAAFAAcACgAEAAoABwACAAoABAACAAIAAgANAAIAAgACABAAAgACAAIADQACAAIAAwACAAIAAgADAAIAAgACAAIAEAACAAIAAgAQABEAAgADAAIAAgACAAIAAgACAAIACgACAAIAAgAKAAQAAgACAAoAAgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIAAgAUAAIAAgACAA0AAgACAAIAEAAUAAIACgACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAEAAUABwAKAAoAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABwACAAIAAgAHAAgAAgACAAcAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAUAAIAAgACAA0AAgACAAIAFAACAAIAAwACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgACABQAAgACAAMAAgACAAIAAgAQABQAAgACAAIAAgACAAIAAgACAAIAAgACAAIAAgACABQAAgACAAIAEAAUAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIABwACAAIAAgAIAAcAAgACAAcACAACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwAOAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIAAwACAAIAAgAHAAQAAgACAAMAFAACAAIAAgAUAAIAAgACAA0AAgACAAIAFAACAAIABAAFAAcACgAHAAIAAgACAAcABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAFAAQAAgACAAcAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAUAAIAAgACABQAFQACAAMAAgACAAIABAAFAAcACgAHAAQAAgACAAQACgAHAAIAAgANAAIAAgACAA0AAgACAAIAFAACAAIAAwACAAIAAgACABQAAgACAAMAAgACAAIAAgAUABUAAgACABQAAgACAAIAAgACAAIABwACAAIAAgAHAAIAAgACAAcABAACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIABwACAAIAAgAEAAUABwAKAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAcAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAQAAgACAAoAAgACAAIACgACAAIAAgALAAoAAgACAAoACwACAAIACgALAAIAAgAKAAIAAgACAAoAAgACAAIABwACAAIAAgAHAAQAAgACAAcAAgACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIACgALAAIAAgAKAAIAAgACAAoABAACAAIACgAEAAIAAgAEAAoABwACAAoACwACAAIABwAIAAIAAgAEAAoABwACAAcABAACAAIABwAEAAIAAgAHAAIAAgACAAcACAACAAIABwACAAIAAgAHAAIAAgACAAcACAACAAIABwAIAAIAAgAIAAcAAgACAAcAAgACAAIAAwAUAAIAAgACABQAAgACAAIAFAACAAIAAgAUAAIAAgADAAIAAgACAAMAFAACAAIABAAKAAcAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAoABwACAAcABAACAAIABwAEAAIAAgADAAIAAgACAAMAAgACAAIAAwAQAAIAAgADAAIAAgACAAIAEAACAAIAAgAQAAIAAgACABAAAgACAAMAEAACAAIABAAKAAcAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAoABAACAAIACgAEAAIAAgAEAAoABwACAAMAAgACAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAwACAAIAAgACABQAFQACAAIAAgACAAIAAgAQAAIAAgACABAAEQACAAIAAgACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABQAEAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIAAgANAAIAAgACAA0AAgACAA0ADgACAAIADQAOAAIAAgACAA0AAgACAA0ADgACAAIACgAEAAIAAgADABAAAgACAAMAEAACAAIAAwAQAAIAAgAKAAQAAgACAAoABAACAAIAAwACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgACAAIAAgACAAMAAgACAAIAAgANAAIAAgACABAAAgACAAIADQACAAIAAgACAAIAAgACABAAAgACAAIAEAACAAIAAgAQAAIAAgACABAAAgACAAIADQACAAIACgAEAAIAAgAKAAQAAgACAAoACwACAAIABAACAAIAAgAEAAIAAgACAAUABAACAAIABAACAAIAAgAEAAIAAgACAAUABAACAAIABgACAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgANAAIAAgACAA0AAgACAA0ADgACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIADQAOAAIAAgANAA4AAgACAA8ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgACAAIAAgACAAIAAgACAAIADQACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgAQAAIAAgACABAAAgACABAAEQACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQAQAAIAAgACABAAEQACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQAQAAIAAgARABAAAgACABEAAgACAAIAEAARAAIAAgARABAAAgACABEAAgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIACgALAAIAAgAKAAsAAgACAAsAAgACAAIACwAKAAIAAgAKAAsAAgACAAsAAgACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIABAAKAAcAAgAKAAQAAgACAAoACwACAAIACgALAAIAAgAKAAsAAgACAAsAAgACAAIADQAOAAIAAgACAA0AAgACAA0ADgACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIAAgANAAIAAgACAA0AAgACAA0ADgACAAIADQAOAAIAAgANAA4AAgACAAIADQACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIAEQAQAAIAAgACABAAAgACAAIAEAARAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACAAIAAgACAAIAEAACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACABAAAgACAAIADQACAAIABQAEAAIAAgAEAAIAAgACAAUABAACAAIABQAEAAIAAgAEAAIAAgACAAUABAACAAIACgALAAIAAgAKAAQAAgACAAoACwACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIACgALAAIAAgAKAAQAAgACAAoACwACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIAAwAQAAIAAgADAAIAAgACAAoABAACAAIADQAOAAIAAgACAA0AAgACAAIADQACAAIAEAARAAIAAgACABAAAgACABEAEAACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAAIAAgACAAIADQACAAIAEQAQAAIAAgACABAAAgACABAAEQACAAIAAwACAAIAAgADAAIAAgACAAIAAgACAAIAEQAQAAIAAgACABAAAgACABEAEAACAAIAEQAQAAIAAgACABAAAgACABEAEAACAAIAEQAQAAIAAgACABAAAgACABEAEAACAAIAEQASAAIAAgACABAAEQACABEAEgACAAIACgALAAIAAgAEAAoABwACAAoACwACAAIACwACAAIAAgAKAAsAAgACAAsACgACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA0ADgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIAAgANAAIAAgANAA4AAgACAAIADQACAAIADQAOAAIAAgANAA4AAgACAAIADQACAAIABwAEAAIAAgADABQAAgACAAMAFAACAAIAAwAUAAIAAgAHAAQAAgACAAcABAACAAIAAgACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAIAAgACAAIABAACAAIAAgAHAAIAAgACAAcAAgACAAIABwACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAA0AAgACAAIAFAACAAIAAgACAAIAAgACABQAAgACAAIAFAACAAIAAgAUAAIAAgACAA0AAgACAAIAFAACAAIABwAEAAIAAgAHAAgAAgACAAcABAACAAIABAACAAIAAgAFAAQAAgACAAQAAgACAAIABAACAAIAAgAFAAQAAgACAAQAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABAACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAKAAIAAgACAAQAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgANAAIAAgANAA4AAgACAAIADQACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgACAAIAAgACAA0AAgACAAIAAgACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgAUAAIAAgAUABUAAgACAAIAFAACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAUAAIAAgAVABYAAgACAAIAFAAVAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAUAAIAAgAVAAIAAgACABUAFAACAAIAFAAVAAIAAgAVAAIAAgACABUAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIABwAIAAIAAgAIAAIAAgACAAcACAACAAIACAAHAAIAAgAIAAIAAgACAAcACAACAAIABAAKAAcAAgAHAAgAAgACAAcABAACAAIABwAIAAIAAgAIAAIAAgACAAcACAACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIADQAOAAIAAgAPAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA0ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIAFQAUAAIAAgACABQAFQACAAIAFAACAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACABQAAgACAAIAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAA0AAgACAAIAFAACAAIABQAEAAIAAgAFAAQAAgACAAQAAgACAAIABQAEAAIAAgAEAAIAAgACAAUABAACAAIABwAIAAIAAgAHAAgAAgACAAcABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABwAIAAIAAgAHAAgAAgACAAcABAACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIAAwAUAAIAAgAHAAQAAgACAAMAAgACAAIADQAOAAIAAgACAA0AAgACAAIADQACAAIAFAAVAAIAAgAVABQAAgACAAIAFAACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAA0AAgACAAIAAgACAAIAFQAUAAIAAgAUABUAAgACAAIAFAACAAIAAwACAAIAAgACAAIAAgACAAMAAgACAAIAFQAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIABwAIAAIAAgAEAAoABwACAAcACAACAAIACAACAAIAAgAIAAcAAgACAAcACAACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADQAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIAEQASAAIAAgARABIAAgACAAIAEAARAAIAAgAQABEAAgACABAAAgACABEAEgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAIAAgACAAQAAgACAAIACgAEAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAIAAgACAAoABAACAAIABwAEAAIAAgAHAAgAAgACAAcAAgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAHAAQAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAQAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIABwAIAAIAAgAIAAcAAgACAAcAAgACAAIABwACAAIAAgAHAAIAAgACAAcACAACAAIABwAIAAIAAgAHAAgAAgACAAcAAgACAAIACgACAAIAAgAKAAsAAgACAAoACwACAAIACgALAAIAAgAKAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAsAAgACAAsACgACAAIACwAKAAIAAgAKAAIAAgACAAoAAgACAAIABwACAAIAAgAHAAIAAgACAAgABwACAAIACAAHAAIAAgAHAAgAAgACAAcAAgACAAIACwAKAAIAAgAKAAsAAgACAAoACwACAAIACAAHAAIAAgAHAAgAAgACAAcACAACAAIACgALAAIAAgAKAAIAAgACAAsACgACAAIACgACAAIAAgAKAAsAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIABAACAAIAAgAEAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAQAAgACAAIACgACAAIAAgAKAAQAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAoAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABwACAAIAAgAHAAIAAgACAAcACAACAAIABwAIAAIAAgAHAAIAAgACAAcAAgACAAIACgAEAAIAAgAKAAIAAgACAAoACwACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAcABAACAAIABwAEAAIAAgAHAAIAAgACAAQAAgACAAIAEQASAAIAAgARABIAAgACABEAEAACAAIAEQAQAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACAAIAEAACAAIAAgAQAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEAACAAIAEQAQAAIAAgARABAAAgACABEAEgACAAIAFQAWAAIAAgAVABQAAgACABUAFAACAAIAFQAUAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABQAAgACABUAFAACAAIAFQAUAAIAAgAVABYAAgACABUAFgACAAIAFQAUAAIAAgAVABYAAgACABQAFQACAAIAEQAQAAIAAgAQABEAAgACABEAEgACAAIAFQAWAAIAAgACABQAAgACAAIAFAAVAAIAAgAUABUAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABQAAgACAAIAFAACAAIAAgAUAAIAAgAVABYAAgACABUAFgACAAIAAgAUABUAAgAVABYAAgACABUAFgACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIADQAOAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAIAEAACAAIAAgAQAAIAAgACAAIAAgACAAMAAgACAAIAAwACAAIAAgADABAAAgACAAIAEAACAAIAAgAQAAIAAgACABAAAgACAAMAAgACAAIAAgAQAAIAAgADAAIAAgACAAMAAgACAAIAAgAQAAIAAgADABAAAgACAAMAEAACAAIAAgAUAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgACAAIAAgACAAIAFAACAAIAAgAUAAIAAgADAAIAAgACAAMAAgACAAIAAgAUAAIAAgADABQAAgACAAMAFAACAAIAAwACAAIAAgACABQAAgACAAIAFAACAAIAAgAUAAIAAgADABQAAgACAAMAAgACAAIABAACAAIAAgAHAAIAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAQAAgACAAIABQAEAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAUABAACAAIABQAEAAIAAgAHAAIAAgACAAcAAgACAAIABwACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIAEQASAAIAAgARAAIAAgACABIAEQACAAIAEQASAAIAAgARABIAAgACABMAEgACAAIAEQASAAIAAgASABEAAgACABIAEwACAAIAEwASAAIAAgASABMAAgACABMAAgACAAIAEQASAAIAAgARABIAAgACABMAEgACAAIAEgARAAIAAgARABIAAgACABIAEwACAAIAEQASAAIAAgARABIAAgACABIAEwACAAIAEQASAAIAAgARABIAAgACABIAEwACAAIAEwACAAIAAgATABIAAgACABMAAgACAAIAEwACAAIAAgATAAIAAgACABMAAgACAAIAEwASAAIAAgATAAIAAgACABMAAgACAAIAEwACAAIAAgASABMAAgACABMAAgACAAIAEgATAAIAAgASABMAAgACABMAAgACAAIAEgATAAIAAgASABMAAgACABMAAgACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgAMAAsAAgACAAsAAgACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAoAAgACAAsAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAACAAIAAgAMAAIAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIAEQASAAIAAgARABAAAgACABEAEgACAAIAEQACAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABAAAgACABEAEgACAAIAEgARAAIAAgARAAIAAgACABEAEgACAAIAEQASAAIAAgAQABEAAgACABEAAgACAAIAEgATAAIAAgARABIAAgACABMAEgACAAIAEgATAAIAAgASABEAAgACABIAEwACAAIAEwASAAIAAgARABIAAgACABMAEgACAAIAEgATAAIAAgASABEAAgACABIAEwACAAIAEwASAAIAAgARABIAAgACABIAEwACAAIAEwACAAIAAgATABIAAgACABMAEgACAAIAEwACAAIAAgATAAIAAgACABMAAgACAAIAEwASAAIAAgATAAIAAgACABMAAgACAAIAEwACAAIAAgATAAIAAgACABMAAgACAAIAEwACAAIAAgASABMAAgACABMAEgACAAIAEwACAAIAAgASABMAAgACABMAAgACAAIACwACAAIAAgAKAAsAAgACAAsAAgACAAIADAALAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAoAAgACAAsAAgACAAIACwACAAIAAgALAAoAAgACAAsAAgACAAIACwACAAIAAgAKAAsAAgACAAsAAgACAAIADAALAAIAAgALAAIAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAwACwACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwACwACAAIADAACAAIAAgAMAAIAAgACAAwAAgACAAIADAACAAIAAgAMAAIAAgACAAwAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIAFQAWAAIAAgAWABUAAgACABUAAgACAAIAFQAWAAIAAgAXABYAAgACABUAFgACAAIAFQAWAAIAAgAWABcAAgACABYAFQACAAIAFwAWAAIAAgAXAAIAAgACABYAFwACAAIAFQAWAAIAAgAXABYAAgACABUAFgACAAIAFgAVAAIAAgAWABcAAgACABUAFgACAAIAFQAWAAIAAgAWABcAAgACABUAFgACAAIAFQAWAAIAAgAWABcAAgACABUAFgACAAIAFwACAAIAAgAXAAIAAgACABcAFgACAAIAFwACAAIAAgAXAAIAAgACABcAAgACAAIAFwAWAAIAAgAXAAIAAgACABcAAgACAAIAFwACAAIAAgAXAAIAAgACABYAFwACAAIAFgAXAAIAAgAXAAIAAgACABYAFwACAAIAFgAXAAIAAgAXAAIAAgACABYAFwACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkAAgACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIAFQAWAAIAAgAVABYAAgACABUAFAACAAIAFQACAAIAAgAVABYAAgACABUAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFAACAAIAFgAVAAIAAgAVABYAAgACABUAAgACAAIAFQAWAAIAAgAVAAIAAgACABQAFQACAAIAFgAXAAIAAgAXABYAAgACABUAFgACAAIAFgAXAAIAAgAWABcAAgACABYAFQACAAIAFwAWAAIAAgAXABYAAgACABUAFgACAAIAFgAXAAIAAgAWABcAAgACABYAFQACAAIAFwAWAAIAAgAWABcAAgACABUAFgACAAIAFwACAAIAAgAXABYAAgACABcAFgACAAIAFwACAAIAAgAXAAIAAgACABcAAgACAAIAFwAWAAIAAgAXAAIAAgACABcAAgACAAIAFwACAAIAAgAXAAIAAgACABcAAgACAAIAFwACAAIAAgAXABYAAgACABYAFwACAAIAFwACAAIAAgAXAAIAAgACABYAFwACAAIACAACAAIAAgAIAAIAAgACAAcACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAIAAIAAgACAAgABwACAAIACAACAAIAAgAIAAIAAgACAAgABwACAAIACAACAAIAAgAIAAIAAgACAAcACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkAAgACAAIACQACAAIAAgAJAAIAAgACAAkAAgACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACwACAAIAAgAMAAsAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACAACAAIAAgAIAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAIAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACwACAAIAAgALAAIAAgACAAsACgACAAIACwAKAAIAAgAKAAsAAgACAAsAAgACAAIACwACAAIAAgAMAAsAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACwACAAIAAgAMAAsAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACAACAAIAAgAHAAgAAgACAAcACAACAAIABwAIAAIAAgAIAAIAAgACAAgAAgACAAIACAACAAIAAgAIAAcAAgACAAcACAACAAIABwAIAAIAAgAIAAIAAgACAAgAAgACAAIACwACAAIAAgALAAIAAgACAAoACwACAAIACgALAAIAAgAKAAsAAgACAAsAAgACAAIACwACAAIAAgALAAIAAgACAAoACwACAAIACgALAAIAAgALAAoAAgACAAsAAgACAAIACAACAAIAAgAHAAgAAgACAAgABwACAAIACAAHAAIAAgAIAAIAAgACAAgAAgACAAIACAACAAIAAgAIAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACwAKAAIAAgALAAIAAgACAAsAAgACAAIACAAHAAIAAgAIAAIAAgACAAgAAgACAAIACAAHAAIAAgAIAAIAAgACAAgAAgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAEQASAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAmpkZP83MzD4AAAAAAAAAANo/Mz+amRk+AmcZPgAAAAAK12M/rkfhPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/MzEw+AAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAANo/Mz+amRk+AmcZPgAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAm8IXP7gehT5SjZc9++KVPWZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAM3MTD/MzEw+AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAm8IXP7gehT5SjZc9++KVPcrUTD/NzMw93IzMPQAAAABmZmY/zczMPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAgW4UPwE0pj72u8M9AAAAAM3MTD/MzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAADaPzM/mpkZPgJnGT4AAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAJvCFz+4HoU+Uo2XPfvilT0AAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAChcDz+wR+E+AAAAAAAAAADNzEw/zMxMPgAAAAAAAAAA2j8zP5qZGT4CZxk+AAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAJqZGT/NzMw+AAAAAAAAAADaPzM/mpkZPgJnGT4AAAAAmpkZP83MzD4AAAAAAAAAABiFaz9B16M9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAm8IXP7gehT5SjZc9++KVPQAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAADNzEw/zMxMPgAAAAAAAAAAm8IXP7gehT5SjZc9++KVPWZmZj/NzMw9AAAAAAAAAADK1Ew/zczMPdyMzD0AAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAChcDz+wR+E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAgW4UPwE0pj72u8M9AAAAAJqZGT/NzMw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAJvCFz+4HoU+Uo2XPfvilT0zM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAMrUTD/NzMw93IzMPQAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAytRMP83MzD3cjMw9AAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAMrUTD/NzMw93IzMPQAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAytRMP83MzD3cjMw9AAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAChcDz+wR+E+AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAfhWs/CtejPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAytRMP83MzD3cjMw9AAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAChcDz+wR+E+AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAexQuPwrXoz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAML1KD97FK4+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAABmZmY/zMzMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACZmRk/zszMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACZmRk/zszMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAytRMP83MzD3cjMw9AAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAoXA8/sEfhPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAgW4UPwE0pj72u8M9AAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAML1KD97FK4+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAML1KD97FK4+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAABiFaz9B16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAgW4UPwE0pj72u8M9AAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAABiFaz9B16M9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAgW4UPwE0pj72u8M9AAAAAB+Faz8K16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAFyPQj+PwnU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADhehQ/PgrXPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAA0MzM/mZmZPgAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAD0KVz8M1yM+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAABiFaz9B16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAA9Clc/DNcjPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAA0MzM/mZmZPgAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAA0MzM/mZmZPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAHsULj8K16M+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAD0KVz8M1yM+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAHsULj8K16M+AAAAAAAAAADhehQ/PgrXPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAADQzMz+ZmZk+AAAAAAAAAACamRk/zczMPgAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAHsULj8K16M+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAA9Clc/DNcjPgAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAB+Faz8K16M9AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAD0KVz8M1yM+AAAAAAAAAADhehQ/PgrXPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAADQzMz+ZmZk+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAHsULj8K16M+AAAAAAAAAADhehQ/PgrXPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAHsULj8K16M+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADQzMz+ZmZk+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAA9Clc/DNcjPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAB+Faz8K16M9AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAIAAAAAAAAAAgAAAAIAAAIA/AAAAgAAAAAAAAAAAAAAAgAAAgD8AAACAAAAAgAAAAAAAAACAAACAPwAAgD8AAACAAAAAAAAAAIAAAACA1Zp2tgEAgD8AAAAAAAAAAAEAgL/Vmna2AAAAgAAAAIAAAAAAAAAAgAAAgD/B0nGz/imLtQAAgL8AAAAA3E1vP7vftT7YW+K0AAAAALvftT7cTW+/cM1/NQAAAICZFvXBzAYhwjXYNjgAAIA/dVeCNdZfxbQAAIC/AAAAgNg5Y70Um38/2FvitAAAAAAUm38/2DljPW/NfzUAAACAbZXJQY+KVsI12DY4AACAP2aLgDVwaNe0AACAvwAAAICiYam8/fF/P9hb4rQAAAAA/fF/P6JhqTxwzX81AAAAgFwW1j9u51bCNtg2OAAAgD+NfhM1Y4RstQAAgL8AAACAsqgPP0nkUz/XW+K0AAAAgEnkUz+yqA+/cc1/NQAAAIBdgErCisrvwTXYNjgAAIA/gt+INegQUrQAAIC/AAAAgL5QZ74GYnk/2FvitAAAAAAGYnk/vlBnPnHNfzUAAACA9QSswVelhsI12DY4AACAPyNCJjiaKqm68v9/vwAAAICw13+/8KUPvSmCvTYAAAAA6qUPvaLXfz97Pqm6AAAAgLusRkIjaILBnznewAAAgD8732u46BWpuvL/f78AAAAArs1/v498ID05gr02AAAAAIV8ID2gzX8/eT6pugAAAICcucpB5dmRwZ853sAAAIA/a4h+uxVb5DwK5n+/AAAAAKsMC7912FY/fgLRPAAAAABH8VY/DQULPzOqQjwAAACA/r81wR2wccHLHevAAACAP9r7CrpICQC73v9/vwAAAABG2H+/8ZMOvR66HDoAAAAAF5UOvSnYfz91f/26AAAAgOGrRkJfVILBNyffQAAAgD8mmjC61DX6ut7/f78AAAAA/sx/v4GOIT0duhw6AAAAADmNIT3jzH8/dX/9ugAAAIBgucpBEMaRwTYn30AAAIA/Tk/9OyItL70Uwn+/AAAAgOYoC7/GoFY/yjskvQAAAAA/3VY/jBsLPyBbibwAAACA0jA2wZAlcMH2IPBAAACAP3cGs7S3/IM1AACAvwAAAICCTDy/QG8tv9pb4rQAAAAAQG8tv4JMPD9wzX81AAAAgJqpN0FDU4JCNNg2OAAAgD/Cnvq0ivt4NQAAgL8AAACAW2Iiv1LoRb/YW+K0AAAAAFLoRb9bYiI/b81/NQAAAIDfmB/Bg82AQjXYNjgAAIA/DFoXtUkRajUAAIC/AAAAgIgqDL/hN1a/2lvitAAAAADhN1a/iCoMP3DNfzUAAACALMMjwhRmcUI22DY4AACAP0A2sDgpKa85//9/vwAAAIAi6X2/ZI8CPuHiKrgAAAAAY48CPiHpfT+UWbM5AAAAgOKwUkI4obpB+F3fQAAAgD/Bhy+5u9udOQAAgL8AAACAcHZPv/b7Fb/f4iq4AAAAAPX7Fb9vdk8/lFmzOQAAAICi/QlBcV8gQvld30AAAIA/DZumuJfyCLkAAIC/AAAAAFJ3cr8/RaQ+29YLOAAAAAA/RaQ+UndyP0duHLkAAACAjy/aQVKs9kGOu95AAACAP6fbHrk3PKs3AACAvwAAAACnyK+9KA5/P9zWCzgAAAAAKA5/P6jIrz1Ibhy5AAAAgOtrA0I4wOo/j7veQAAAgD+5rBA1mEBuNQAAgL8AAACAMOV9v/EJAz7ZW+K0AAAAAPEJAz4w5X0/b81/NQAAAIC/vFJCInO6Qev13sAAAIA/RlZmtNBciDUAAIC/AAAAgIWIT7/s4hW/2FvitAAAAADs4hW/hYhPP2/NfzUAAACASF8KQb5WIELt9d7AAACAP50ZFDnWco85AQCAvwAAAICUiHK/NN+jPtnwQbgAAAAANN+jPpSIcj/xmp85AAAAgM/q2UFBwPZBoZHewAAAgD+FGqE5LCSltwAAgL8AAACA7nWxvYEJfz/Y8EG4AAAAAIEJfz/tdbE98pqfOQAAAIBCZwNCnC/vP6GR3sAAAIA/AAAAAKuqKj2rqqo9AAAAPquqKj5VVVU+AACAPlVVlT6rqqo+AADAPlVV1T6rquo+AAAAP6uqCj9VVRU/AAAgP6uqKj9VVTU/AABAP6uqSj9VVVU/AABgP6uqaj9VVXU/AACAP1VVhT+rqoo/AACQP1VVlT+rqpo/AACgP1VVpT+rqqo/AACwP1VVtT+rqro/AADAP1VVxT+rqso/AADQP1VV1T+rqto/AADgP1VV5T+rquo/AADwP1VV9T+rqvo/AAAAQKuqAkBVVQVAAAAIQKuqCkBVVQ1AAAAQQKuqEkBVVRVAAAAYQKuqGkBVVR1AAAAgQKuqIkBVVSVAAAAoQKuqKkBVVS1AAAAwQKuqMkBVVTVAAAA4QKuqOkBVVT1AAABAQKuqQkBVVUVAAABIQKuqSkBVVU1AAABQQKuqUkBVVVVAAABYQKuqWkAAAAAAq6oqPauqqj0AAAA+q6oqPlVVVT4AAIA+VVWVPquqqj4AAMA+VVXVPquq6j4AAAA/q6oKP1VVFT8AACA/q6oqP1VVNT8AAAAAq6oqPauqqj0AAAA+q6oqPlVVVT4AAIA+VVWVPquqqj4AAMA+VVXVPquq6j4AAAA/q6oKP1VVFT8AACA/q6oqP97dXT+IiGg/NDNzP97dfT9ERIQ/mpmJP+/ujj9ERJQ/6d/MvQ2coL5GsdC+QQtaP42ozb2SIJ++x1/SvmzmWT+sL829xTicvnBz1L7N7Vk/LXrLvdP0l74s4ta+kRxaPwKOyL32Y5K+lp/ZvhttWj+rQsS9s2OLvs+n3L4E31o/LNK+vUM4g77P3N++5mRbP9REuL184HO+Ri3jvsj3Wz9jo7C9djVfviSH5r6VkFw/WtCnvT1FSL5Z2em+gSxdPyD/nb1khS++SwztvrK/XT+EOZO9SxoVvvsN8L6XQ14/vImHvcBV8r0mzfK+BbJeP3q3db1IY7e94DL1vqUIXz9AuFq9h1N0vWw0977CPl8/Qi0+vScc7Lwkxfi+GVBfP3kvIL2iXTQ7WNr5viw5Xz/AqgC9kSMPPWtg+r5d+l4/JuC/vJYjij3ZW/q+0I5eP2p6eLwl78w90cn5vrX1XT+Tvtq7vcUHPimq+L4iL10/WNcFO+O7KD4E9fa+kz9cP9/UMjz9KEk+p7v0vrYlWz8fCqM8udxoPpQG8r5U5Fk/yD/tPKLUgz7G4O6++35YP+HYGz0GnpI+VFPrvnr+Vj8I7kA9FMagPoV1577NY1U/I6llPSw7rj4gWeO+grRTP+HohD2e7bo+fRHfvpr2UT81hZY91LDGPoq52r5ZNlA/SICcPUGMyj4ppNi+JMJPP4zpjj30aME+aWbavp6eUT8PwH49X0m2PptK3L4sw1M/ucVfPZguqj5Q3t2+hf5VP/WQQT0OXJ0+NRLfvvk8WD+3rCQ9/PSPPrvX376YdFo/mo4JPfwfgj4uJeC+HZxcP+v/4TxiDWg+munfvhiuXj+hzbU8/8FLPr0z376ynmA/+s6OPG+6Lz5YC96+M2hiPw87Wjx+VRQ+Jn3cvmAGZD9O/iI8sWL0PXSW2r5cdWU/PB/rO1MQwz2mdti+CLRmPylVojuhcJU9dTfWvt/CZz+0fFM79HhYPdj0076To2g/PYsCO+ZBEj0B2NG+3FRpP9i9kDpbFLA8rfnPvhndaT8tOQQ6eJ4sPFF2zr5zP2o/7WoVOTeXTjsSaM2+cH5qP4DARze/pIw5S/zMvl2Waj+wXY4yVMH1sTXyzL6SmGo/+VGOMmWq+LE18sy+kphqP/lRjjJlqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP8opWLt6mFG8W9bNvl5gaj/eCh28j3YWvbpBz77X4mk/VAyJvLw3gb34bNC+ADtpP2MAyLwLrrm91krRvhxlaD9sKgW9cXvzvcnU0b5PX2c/eXUnvZW/Fr6uCdK+7ipmP/9MSr1dKzO+LerRvjPPZD913my9lnVOvmSI0b5AU2M/Cj+HvXUaaL7P9dC+S8JhP4M8l73/m3++x0jQvv8pYD8PzKW9mwKKvn2kz75Tol4/mrCyvYufkr6GJM++sjZdPz2Hvb3ibZm+IujOvnD4Wz/16sW9iTeevjAOz75K+Fo/cuvKvVNeoL7OzM++bVRaP+nfzL0NnKC+RrHQvkELWj9Xeno9v61EvlEkmD6D7W4/uetuPZiaO76abpg+KmJvP5pXYz0hgzK+XbWYPk7Rbz9Bvlc9j2cpvp74mD7rOnA/8B9MPRNIIL5bOJk+/55wP+p8QD3oJBe+jHSZPoj9cD9z1TQ9Qf4NvjWtmT6EVnE/0ikpPVPUBL5U4pk+8alxP096HT2vTve96xOaPsz3cT8kxxE9AO/kvfFBmj4VQHI/oRAGPRCK0r1pbJo+yoJyPxKu9DxHIMC9VJOaPui/cj9CNd08EbKtvbG2mj5u93I/UbfFPNc/m7181po+WylzP9E0rjwJyoi9tPKaPq9Vcz9VrpY8LqJsvV0Lmz5nfHM/uUh+PNeqR71yIJs+g51zP/YuTzzrriK99DGbPgO5cz9eECA8al77vOQ/mz7lznM/NtzhOzhZsbxASps+Kt9zP4CSgzvsn068CFGbPtDpcz8oF5U6vyJquzxUmz7Y7nM/Rh/kuukfszvcU5s+Qe5zPx1Ul7uKpm086E+bPgzocz/jnPW7zdvAPF9Imz453HM/BPApvPNvBT1EPZs+x8pzP68NWbzwbio9lS6bPrezcz8uE4S8AGpPPVMcmz4Kl3M/dpybvEVgdD1+Bps+wXRzPyQis7xyqIw9Fu2aPtxMcz8m6b683ueVPQXfmj7ENnM/GZO2vC1cjz0T6Zo+jUZzP0OPrLwGf4c9i/SaPpNYcz+4iqK8nEJ/PWL/mj6VaXM/gIWYvB6Gbz2RCZs+k3lzP59/jrybyF89GBObPo2Icz8qeYS8KgpQPfwbmz6ClnM/SOR0vNhKQD04JJs+cqNzPz3VYLy9ijA90CubPl6vcz8/xUy848kgPcAymz5FunM/arQ4vF8IET0NOZs+J8RzP9GiJLxBRgE9sj6bPgXNcz+BkBC8LAfjPLJDmz7e1HM/Lvv4u+GAwzwKSJs+sttzP1DU0LvF+aM8vUubPoHhcz+YrKi7/nGEPMpOmz5L5nM/LISAu1XTSTwxUZs+EOpzP2m2MLvTwQo88VKbPtHscz9ux8C6a1+XOwxUmz6N7nM/isfAuYJflzp8VJs+Pe9zP/2rAK9ZE8ovhlSbPkjvcz8WpFwnVX+MJoNUmz5J73M/F6RcJ1V/jCaCVJs+Se9zPxekXCdVf4wmglSbPknvcz8YpFwnV3+MJoRUmz5I73M/F6RcJ1Z/jCaDVJs+SO9zPxmkXCdYf4wmg1SbPkjvcz8WpFwnVn+MJoRUmz5I73M/F6RcJ1d/jCaEVJs+SO9zPxekXCdXf4wmg1SbPkjvcz8XpFwnVX+MJoNUmz5I73M/F6RcJ1Z/jCaDVJs+SO9zPxekXCdVf4wmg1SbPkjvcz8XpFwnVX+MJoNUmz5I73M/GKRcJ1Z/jCaDVJs+SO9zPxikXCdXf4wmg1SbPkjvcz9M3LU6o8yOuxlUmz6h7nM//dyoO/+XhLzHTps+RuZzPxJdFTyKkOq8j0KbPhXTcz8aRVY8aD8ovY0vmz48tXM/6ZGLPDwvW73DFZs+u4xzPyz7qzy9Coe9MvWaPpZZcz/kXMw88HegvdrNmj7NG3M/rLXsPB7eub2/n5o+ZNNyPwuCBj0rPNO94GqaPl6Acj9moxY9BZHsvUIvmj6+InI/Kb4mPcLtAr7m7Jk+ibpxP6HRNj1IjQ++0KOZPsNHcT8e3UY9iiYcvgNUmT5xynA/6t9WPfm4KL6D/Zg+mEJwP07ZZj0ERDW+U6CYPj+wbz/pwHU9EvhAviFDmD7kHW8/V3p6Pb+tRL5RJJg+g+1uP3nDWrzjs8S7G2WhPmPrcj81Jlq8SevFuwAdoj7JzHI/92FavAwbxrv51qI+pq1yP09hWrwVl8a7LpOjPv6Ncj+Mblq8+/XGu55RpD7MbXI/YelZvKZIyLscO6U+H0ZyP0sLWbzV4cu7C0ipPuaScT9a5Fe8pxDQuwGPrT5b0HA/TXBXvEJO07svF7I+NPxvP5UCVrxZMti7wwe3PuQNbz9rAVW857Pcu3lvvD6GAG4/OBhVvAqI3LtpWrw+sARuP8IdVbz0stu7j+66Pl5Mbj+ecFW8gW7auyeOuT4vkW4/mQRWvNna2LuaN7g+gtNuP4QBVrwBKNi7rOu2PkQTbz+jVFa8hqjWu2ydtT7yUm8/9ZhWvHW71bvlaLQ+QY1vP88LV7xddNS77jSzPgLHbz/EHVe8pqbTu5QIsj7t/m8/dF5XvHSf0rtV4rA+TDVwPxWhV7y+ndG7tMKvPg5qcD9yn1e8T/XQu2mrrj7unHA/p5tYvPV/zbtdMKs+0DxxP9FiWbxC+8m7uUynPjLrcT95Llq8FcHGuzOloz72inI/djRbvOAkw7vtF6A+eSJzP45xW7xGQ8G7G9+dPmd/cz8o9Vq8V5jCu1C9nj5JW3M/vwdbvOkBw7v5iZ8+zzlzP1MtW7xFUsO7sVagPiIYcz/JzFq8smnEu5QloT7u9XI/To9avKVHxbur9qE+KtNyP/BdWrya+8W7dsqiPsCvcj928lm87BPHu56goz6/i3I/MgpavKOHx7s9eaQ+GGdyP1z5Wbx4H8i7pFSlPsRBcj+k/lm835XIu/sypj62G3I/Z3xZvBPMybsdFKc++fRxP++CWbwqcMq7j/mnPjzNcT8XDlm8Em3Lu6vbqD7dpXE/2e5YvAZHzLsHzak+kHtxPybkWLx+4My7FryqPmdRcT/ngFi8Ev7Nu3Wuqz5oJnE/11RYvN3lzruApKw+evpwP2QaWLzXws+7jJ+tPl7NcD+A6Ve8qbHQu1ierj5Kn3A/aKxXvN6h0bs3oa8+K3BwPxE2V7z/ztK7H6mwPtM/cD/eOle8ZXjTu/e9sT6/DHA//TVXvG9r07uLpbE+RRFwP8juVrzKkdO7Z02xPpIhcD+file8KIPSu3T2sD6VMXA/esJXvJsP0rugoLA+XkFwP6mGV7yBJtK7gUuwPgJRcD9Tl1e8ydjRu233rz5pYHA/IPxXvD8i0bvUo68+rm9wP368V7zsTdG7IlGvPsh+cD8BCFi8NajQu4X/rj6hjXA/xNdXvMqm0LtHrq4+Z5xwP+7uV7w+Y9C7F16uPvCqcD+U/le8VCDQu30Orj5YuXA/r2ZYvNV4z7u0v60+jsdwP/8YWLzHhs+7OHGtPrfVcD+UMli8wkfPu5YjrT6t43A/ykJYvI/+zruC1qw+hPFwP2xOWLwBtM67YoqsPij/cD8ZXVi8aG3Ou2c+rD6+DHE/XANZvB3Py7t9Uak+P5FxP0jsWbwiesi7vemlPkYocj/tZlq859vFu3uhoj6etnI/JAlbvJP+wrvVdp8+8jxzPw6qW7wqHcC7ZUacPkjBcz8o5Fu8HVC/u9ZUmz7d53M/GrVbvDX0v7skFJw+VMlzPySXW7x+kMC77L2cPheucz9Rd1u8SR3Bu8RlnT4Jk3M/D+xavGsUwrtbDZ4+63dzP5UsW7xbYsK7osWePutZcz8LE1u8+AzDuzF2nz4MPXM/6PFavFaow7s/KKA+zB9zP5wZW7zl08O7ltygPgMCcz95w1q847PEuxtloT5j63I/A9gbMzuHMTL8eYw+Ci12P0nVGzOjay8yIAOLPjdidj+WVBwzZbMuMnmHiT51l3Y/wfobM4RlLDKXBog+zsx2P8eGHDM4cSoysYCGPjUCdz8DPhwzSE4oMu2thD5JQXc/g9AcM6yaHjIxs3o+kzV4P66zHTP+ehQy7hNrPrQpeT+aPR4zp8YJMshWWj7tHHo/3+keM8Tw/DEw50c+FRN7P9+hHzOxZeMxB3kzPpIJfD9t3x8zL8vkMbkgND4YAnw/mKAfM+Kd6zEW7zk+l757P1LpHjPHb/Ix94s/Pjl7ez+9Qx8zyB/6Mab9RD7mN3s/9dYeM0IPADKVQ0o+0vR6P/WJHjNjSAMyBH5PPn6wej/AuR4zpH0GMv5qVD50bno/mEYeMwZ5CTL5R1k+qit6P2MeHjO+VwwyzQRePhPpeT9xwR0z0HkPMmimYj6Gpnk/Kc8dM0BKEjKcK2c+LGR5P+3IHTPzIxUyio1rPoYieT+vTx0z3kodMuZ/eD74WHg/VLUcM+o8JjLzX4M+2m13P133GzMBUy4yGgyKPu2Edj9OlhszJzI2Mit2kD5DmXU/t9MaM8SqOzIYZZQ+AAN1P5I0GzPHEToyOr2SPspCdT/+txszseI3Mu8ykT5tfXU/RJQbM9DuNTJ8pY8+27d1PztFGzNAHjMyIxOOPk/ydT8dlRszVsAxMhB8jD6+LHY/o78bM2fuLzLE3oo+V2d2P1lsHDNVAi4yVDyJPuyhdj/UPxwzkX0rMm6Uhz6C3HY/TVkcM8lrKTJW5oU+Kxd3P7nAHDMBGCgy+TGEPuJRdz/skxwzpdEkMg53gj6njHc/PbUcM+ipIjIttIA+ocd3P7DEHDPK1iAyqOJ9PsABeD99DR0zcEgeMqY0ej6OPXg/aSIdM2PnGzKjg3Y+nnh4P84cHTPB1BkyTMNyPrCzeD9yYx0zsRMXMuTybj7D7ng/PNcdM0cRFTKiDms+BCp5Pw8fHjO68hEyJxlnPj1leT9+ax4zgukPMuUQYz55oHk/Y+kdMxDYDDKQ814+ytt5P21mHjN6Fgoy4p5aPv0Yej+8Wx4z7gMLMjM5Wz6LEHo/AgAeM4x6CzJb3Fw+ffl5P/xkHjMHEg0ygHpePojieT87Nx4zOikOMokSYD6+y3k/8NUdM/esDjJopmE+BLV5P64KHjP3hg8yiTVjPmSeeT9ZFx4zlCkRMsDAZD7Uh3k/F/0dM/HCETJlR2Y+XnF5P9/dHTMhtxIyjchnPhFbeT9qmB0zDbQTMrRGaT7KRHk/oEwdM0qhFDJKwGo+oS55P9+GHTNfkBUyUjVsPpgYeT/g4h0zy/wVMvKmbT6eAnk/7pgdM3RrFzKtFG8+u+x4P6dbHTPvxhcyq35wPu/WeD/nUx0zESAZMurkcT47wXg/ujodM+jvGTLaRnM+p6t4PzwWHTNDrxoyZaZ0PhiWeD+zSR0zFIchMs1lfz7m6Hc/H3QcM8J2KTIu5YU+Uxd3P1JAHDNtQjEyG9CLPjZFdj/BZhszH9Q4MsN5kT7xcnU/26QaM+J5PzJTIpc+wJd0PzqpGjMwU0Eyd7aYPvZYdD/+5hozBxw/Mhk7lz7sk3Q/F80aM7RoPTKp5ZU+csh0P/ViGzP1XTwy6o+UPoP8dD/1SRszP6s6Muk3kz5oMHU/hHYbM33JODJfzZE+imZ1P8Z4GzNQGzcy02eQPl+bdT8JkBszbSU1Mnf+jj400HU/SbobM0djMzLHj40+PgV2PwPYGzM7hzEy/HmMPgotdj9BsQQ6bfbCuZvORb+mgSI/TMT7ObwNublAUEW/+xojP8SNAzqgJ8G5rNBEv9W0Iz8ovwU6jhHEucpPRL9NTyQ/6BUJOjT+yLmkzUO/T+okP9+sAzq91MC5G0dDv4eJJT8z1gI6aXLDuUWAQr/7ciY/XU78OTgOwLkopkG/inAnP0XyBTqhwc+5nbVAvyuFKD+9Zv859H7Kuc2iP79rvSk/pyUCOplO07mGZz6/yR4rPwsaAzqyX9W5XMg+v8yyKj9YkPw5i2vNuSWNP7/b1Sk/yCf9OX+EzbkmTUC/VvwoP9TcAjpmHNS54ghBv8IlKD+S5vs5VRnMuWHAQb8yUic/9jEAOhd0z7kXdkK/334mPzOG/jlK2M25BiVDv7SxJT/IxwE6/rLRue7RQ7845SQ/6vP9OfoVzbmMe0S/9xokPzwE/jnnCc25UCJFv31SIz/DIP45MwvNuSfGRb/wiyI/OuP2OTQax7kcZ0a/U8chP46A/zlqd8u5Vj9Hv7m8ID/BgAA6ZULJueEVSL9ZsR8/vBkBOt0ex7nQ2ki/YbkePwSKBjp/T8y5lpVJv+fLHT+r1gQ6+ubHuej0Sb/WUR0/aH3+Oa+pv7knh0m/Vt4dP0u0AjqN/cS5Sh1Jvx1lHj8uWQc6YPXLuZiySL837B4/KJ8DOkyIxrnWRki/73MfPyRLAjransS5C9pHvzX8Hz87TgI6Y7vEufNrR79bhSA/SyD9OX4hv7nC/Ea/Hg8hP6dFAjof1sS5X4xGv5WZIT+e/QM6esjHubQaRr/aJCI/sFwHOgPizLm9p0W/6rAiP1+CAjojhMW5ZDNFv949Iz9UBQU6i6zJuXq9RL/myyM/YugBOksWxbkyR0S/kVkkP+RTAjobAsa5c81Dv4rqJD8fzgQ6igXKuRtTQ79eeyU/6OABOhypxbkt10K/Nw0mPwHWATqA28W5nFlCvx2gJj9oxQE6yv/FuSbaQb9WNCc/VrYBOrwcxrnvWEG/sMknP4pQATq6xMW509VAv05gKD9MDPw56CXBua9QQL9Q+Cg/9rABOjnoxrnqwz+/AZgpP+wRATpqY8a5MwhAv6tKKT9cXPc5u4e+uR94QL9iyyg/eNgDOt6uy7lE50C/UUwoP3CnBTqiq865h1VBv5zNJz/JAQE63O7HuQ3DQb8ZTyc/seEAOhNCyLnQL0K/0dAmP/KVBTouFtC51JtCv8FSJj9MbwA616nIuR8HQ7/l1CU/rAQEOlOzzrmTcUO/YVclP55bADrGVMm5ZttDv/jZJD+nRQA6dd7JuX5ERL/MXCQ/SBYAOpfFybnQrES/6d8jPz2OBDodmtG5gBRFvyhjIz/YjP85U7TKuXh7Rb+k5iI/N7H/Oej5yrnJ4UW/S2oiPxpU/zl5X8u5aEdGvyzuIT/xKf85C6DLuVasRr9IciE/7PT+OY/ey7mtEEe/fvYgP3hPADpFmMq5D7BHv5owID/PBQQ6lI7NudBQSL9mZx8/AGUBOrSMxrnZ5ki/JKoeP7M9AjqQusS5JnNJv9z3HT/A8QI6jt3CufX+Sb/uRB0/9TkDOpwgwrkD9Um/tFEdP5RLAzoy5sG5fHpJv4DuHT9NPwM6VxfCud4ESb8bhB4/dqwDOk94wrnCjki/bxkfPyUn/Tn6nrq51BdIv+iuHz9jYQM6BLbBuaudR7+ERyA/rHwDOulfwbnFI0e/3t4gP4K0Azr0nsG5zahGv6F2IT/8pgg6syXJuYYsRr8QDyI/QbEEOm32wrmbzkW/poEiPzZVcjz6t/I7ex2hPjn1cj+rHHI82F3zO5nVoT6h1nI/V+9xPF4V9Du2j6I+i7dyP+DBcTxW0vQ7+0ujPvCXcj8UaXE87Mn1O1IKpD7Vd3I/5HZzPAhh8zuB9KQ+A1ByP0dKcDzJffo7qgGpPiidcT98Km88O7z+OzxJrT7X2nA/hO5tPJCaATy40bE+BQdwP36VbDzdDQQ8UsO2PuYYbz8cEGs8PbkGPCYsvD7BC24/9xZrPL+xBjy4Frw+/Q9uP1yEazzHBAY8tKq6PpNXbj+i3Ws861AFPM5JuT5hnG4/OmhsPPCFBDxP87c+lt5uPwkIbjz4GQM8+aa2PkIebz92y2w8YF0DPABYtT4IXm8/vjxtPPfBAjx4I7Q+PZhvP3mPbTyLNgI8KO+yPvjRbz9+m288j3AAPOrCsT6yCXA/7TxuPPYDATxTnLA+GkBwP0UNcDy/1/47pnyvPrh0cD+mxm480wIAPMZkrj6pp3A/Br5vPIh+/DsT6qo+NUdxP6q4cDyVnPg7VQunPm/0cT8SsHE8svz0OwZdoz4SlXI/C7tyPJUm8Tuuz58+UCxzP4x1dDy0Lu07o5adPgqJcz+v0nI8oiLwOxB1nj4BZXM/lutyPP2r8DvEQZ8+lUNzP9jVczxIu+87qw6gPukhcz+ACHQ8xRDwO+LdoD6x/3I/8hpyPBNw8zvyrqE+EN1yP7npcTwxFfQ7yoKiPrW5cj9nsnE8bfD0Ox1Zoz67lXI/m7RzPEif8jvxMaQ+CXFyPycpcTw86fY7WQ2lPt5Lcj+cBXE8p5j3O8HrpT7hJXI/8P5yPP5H9TtZzaY+Cf9xPxd7cDwoefk7trKnPnvXcT+HRXI8kDz3O9KUqD4YsHE/iSBwPKgB+ztjhqk+6YVxP67obzxYCfw7s3WqPshbcT8PZnE8kpL6O25oqz65MHE/fXFvPP/O/TucXqw+6gRxP+avcDySqvw7r1mtPtLXcD+q0G48StH/O2hYrj7nqXA/4Y5uPP5eADyHW68+0npwPwJdbzzIPgA82GOwPm5KcD+6wG48yPEAPOl4sT5rF3A/kBhuPEVnATwgYLE+BhxwP7ItbjyOOgE8OQixPj0scD8QFG48AikBPDuxsD5DPHA/9YZwPObW/js8W7A+90twPwJjbjzrswA8BgawPqxbcD9jfG48CI0APJOxrz4da3A/jpJuPMFkADwQXq8+W3pwPxi4bjycSAA8MAuvPnKJcD+BxW48UCEAPG25rj5OmHA/DAxxPBLZ/DuDaK4+5aZwP2SibzzToP474xeuPoy1cD+iYXE8eO/7O1rIrT7Zw3A/qDdxPD3z+ztlea0+GNJwPzQabzzMwf47yCqtPlLgcD8NQW88qWz+OxLdrD5F7nA/6oBvPC7v/TsfkKw+DfxwPwK1cTwLlvo720OsPpwJcT+pxXE8iEn6O873qz4vF3E/4BhwPDul+jtHCqk+qZtxPwgZcTzWOfc7IaKlPnsycj9Q9XE8KQT0O4hZoj6bwHI/Guh0PP2Y7TvDLp8+nUZzP+Nbczy+4O07uP2bPuHKcz/TvHM8LqfsOzwMmz5g8XM/4ZBzPMFo7Tt6y5s+6NJzP7hSczzuOu47m3WcPqu3cz+HKnU8ytXrO5EdnT6SnHM/Wf1yPPE/7zsfxZ0+k4FzP2v2cjwgHfA7jn2ePp1jcz+TxXI83cLwOycunz7MRnM/DZ1yPNN38TtW4J8+lClzPxBycjyrKfI74pSgPtQLcz82VXI8+rfyO3sdoT459XI/1dUbM8riMTKHcYw+Pi52P2X2GzPm8i8ykfqKPmxjdj9XGBwzBdMtMrx+iT6tmHY/pjQcMx01LDLP/Yc+BM52P/NcHDMLSCoyvneGPmwDdz/HjBwzudcnMqCkhD6IQnc/giEdM/unHjK1n3o+zjZ4P6DAHTPuxxQyU/9qPusqeT9QVB4zUQgKMiBBWj4bHno/APAeM8sR/TFQz0c+RRR7P4+MHzP5WeMxk14zPsAKfD8Rih8zN+rjMdIGND5AA3w/oGAfMwAf6zHz1Tk+wL97P8AzHzPQZfIx2nM/Pl98ez/BCR8zXYj5MSfmRD4NOXs/N+geM1UUADI1LUo+8/V6PxS0HjOUOQMyymhPPpexej8iih4zFG4GMhVWVD6Qb3o/SV0eM8OQCTKUM1k+xSx6P1g2HjP1mAwyD/FdPivqeT+7Cx4zHSwPMk6TYj6bp3k/8ecdM29KEjKaGGc+RmV5P2O1HTOMMhUyaHtrPpgjeT/BNB0zol0dMixteD4kWng/Z6McMygmJjKHUYM+xG93PyMNHDMz7i4ynQSKPvqFdj8ddxszofg2MqBukD5fmnU/+CobM6PcOzLKXZQ+GwR1P85CGzMnnDkypLWSPuxDdT8iaxsz+7E3MjArkT6SfnU/l4cbM439NTK9nY8+/bh1P06gGzOs0zMyOQuOPnTzdT/21hszwfAxMvFzjD7mLXY/ffwbM2SaLzKo1oo+e2h2P9sfHDPPzS0yGzSJPhGjdj8ITBwzEF8rMjOMhz6j3XY/h3AcM+BJKTKy3YU+Vhh3Pz2PHDPqSScyRSmEPgtTdz9pwhwz0yolMkdugj7PjXc/xN0cM0mxIjIUq4A+0Mh3P2ECHTOUxCAyldB9PugCeD/KJh0zMVseMuQhej69Png/TkgdM6EDHDJIcHY+0nl4P1Z0HTPBmxkymK9yPuS0eD+fkx0zWBIXMsvebj7373g/Zr8dM7WuFDI/+mo+Nyt5Px7hHTPXPhIyUgRnPnJmeT+4BR4zcpQPMqT7Yj6voXk/PSceM1g9DTJx3V4+Bd15P81OHjOXhQoya4haPjcaej8ZTh4zfl8KMi8jWz7AEXo/lT0eM8/TCzJAxlw+tfp5P1QtHjNOAQ0yrWRePr/jeT8HKh4zDZMNMkP9Xz7vzHk/UBQeM92cDjJdkWE+NLZ5P90GHjPQnw8yDiFjPo6feT/b8R0zT30QMlSsZD7/iHk/N+UdM1/RETJSM2Y+hnJ5P8zaHTPbwRIy4bRnPjVceT/0yR0zk50TMiwzaT7uRXk/LrkdM+N4FDIcrWo+wy95P6OvHTNloRUycyJsPrYZeT+fkx0zzHcWMjGUbT68A3k/t5YdMz9uFzL6AW8+2+14P1uFHTO6bRgyYWxwPgrYeD+kdB0zTS8ZMqrScT5Wwng/rl0dMy3nGTIjNXM+vKx4P9tpHTNGEBsyz5R0Pi2XeD8c7RwzbeEhMg9Vfz766Xc/TmocM4OjKTL+3IU+bxh3P73mGzNd4DAyTMiLPlJGdj/IaxszzRE4MkFykT4OdHU/ftIaM3lcPzIHG5c+4Jh0P9uyGjO6Q0EyH6+YPhxadD+e0xozCIs/Mq0zlz4RlXQ/z/YaM9GZPTIX3pU+m8l0PxYEGzPECTwySoiUPqv9dD8XOhszLHw6Mk4wkz6MMXU/NV0bM/GgODJ+xZE+tmd1P6qAGzNY2TYy6l+QPomcdT8FohszXsQ0MkT2jj5m0XU/8rsbM8A7MzJVh40+dQZ2P9XVGzPK4jEyh3GMPj4udj860l+4Oj2ouBnFRb89jSI/JeJguAr8p7i0RkW/iyYjP1qWYbg2X6e4E8dEv2TAIz+/3GG4m36muClGRL/SWiQ/mi45uPDStbjvw0O/2vUkPxGtQLnDsIc3Vz1DvxCVJT+zeWS4SNWkuGt2Qr+CfiY/pRtmuOl9o7gynEG/E3wnP9EEZrj8XaG4hatAv7mQKD9jnme4N1yguIaYP78KySk/lNdpuI4nn7gEXT6/fyorP5/KaLj6Ip+45r0+v4G+Kj8mYGi4wH+guMuCP7+M4Sk/JnVmuOyroLjmQkC/BAgpPxAeiLizUI+4wf5Av2cxKD/LjA25MRRMt1y2Qb/PXSc/DjFUuFyjqLgsbEK/eIomP8XUYbgbZaO4MBtDv069JT8Q/lm4swanuCjIQ7/Y8CQ/6UgfudqGYDXgcUS/jyYkP6YxZrj1faK4uxhFvxJeIz+5+xS53Lzvtpq8Rb+TlyI/xvxQuOaRq7ilXUa/8tIhP508XLgBL6i44TVHv3bIID+JYVq4pwqpuLULSL8cvh8/OaRZuIUYqrit0Ui/9MQePzxhgrgkGZq4doxJv5TXHT8j8wy5v+6mt9DrSb+HXR0/F8BJuNVssbgCfkm/B+odPwd8grhmSJu4FxRJv89wHj9H8Qm55fqzt2GpSL/f9x4/n+QguR61qraVPUi/k38fP5OqS7hvU7C4u9BHv9sHID9SJ1y41CWpuJ9iR7/2kCA/2KZZuNi4qbhk80a/tRohP22GQbmZE6I3+oJGvyOlIT+udTW4Iee3uDkRRr9zMCI/TZdOuOiWrbg5nkW/frwiP/fYPrnrApk33ClFv2VJIz/9jDq42+e0uN6zRL921yM/iNAyuRMTJTeKPUS/HWUkP0ekYbj5W6W4vMNDvxb2JD9uAly4qsGnuFFJQ7/whiU/vIciucIL3bVYzUK/xRgmP9afa7hEBKG4vU9Cv6WrJj+a3xi56R8NtzTQQb/hPyc/z1lZuMtPp7jrTkG/PtUnP2InYrgBvqO4w8tAv9lrKD+b1u24+SMJuIZGQL/lAyk/KKbLuMu7PLi4uT+/jaMpPzgXaLisi6G4Cf4/vzhWKT8gcWe4WsShuP9tQL/y1ig/8649uEYXsrgz3UC/4FcoP9WWPrnqfbA3gUtBvyzZJz9CY2O4kGSiuBe5Qb+mWic/bMtjuE/GorjnJUK/XtwmP9LlYri9UKO495FCv1BeJj/mXGO4p02kuEv9Qr944CU/XD1fuECwpbjQZ0O/72IlP7xbP7mxgb43r9FDv4jlJD9zD8e4/hBDuM46RL9haCQ/77lKuZ9MBTgvo0S/e+sjP4EgPLnK16s35QpFv8JuIz/XjFK4pLWruORxRb9F8iI/0gJeuJtsprhF2EW/53UiP9vEgrgynZe48D1Gv8j5IT9Wz0S5ETDqN+yiRr/hfSE/p3BEuYZ/6jdLB0e/HQIhPyIOSrjPpK64w6ZHvzQ8ID+slVq406ypuI1HSL8Pcx8/XzpXuN76q7ip3Ui/y7UeP94sQLlhKJY3BGpJv4UDHj/wXi64zcC7uN31Sb+hUB0/fmJYuChArLjl60m/bF0dP9BvWLisW6u4VHFJvzT6HT/Pt0C464y1uK37SL/Hjx4/iM0yuaV1uTaFhUi/GCUfPzoZW7i5WKq4mA5Iv3+6Hz/W+1y4PDGquFmUR78kUyA/yqRcuKOyqLhsGke/deogPxrZXbi/k6i4X59Gvz+CIT++tF+49TGpuAgjRr+wGiI/OtJfuDo9qLgZxUW/PY0iP4B8STOGY6EwPP/MPHrrfz9ffkkzgneXMHRmwDzs7X8/QYBJMxGNjTCOzbM8NvB/P+SBSTPKooMwjjSnPFnyfz92g0kzAHNzMHObmjxU9H8/vIRJMxe0YTDCVo88+PV/PyKDSTN+J3gwrZedPN/zfz9QgUkzQ0iHMGrVqzyV8X8/VX9JM5qAkjAEE7o8F+9/PzZ9STNgtJ0wfFDIPGjsfz/uekkzEOqoMMuN1jyF6X8/hnhJM1YftDDuyuQ8b+Z/P+l1STNkV78w5QfzPCfjfz8zc0kz5ovKMFaiAD2t338/T3BJM0nD1TChwAc9/9t/Pz1tSTPN9eAwz94OPR/Yfz8KakkzCyvsMOT8FT0M1H8/q2ZJMzRf9zDYGh09xs9/Py1jSTMKSwExrTgkPU7Lfz95X0kzeeQGMWNWKz2jxn8/sFtJMzF9DDH2czI9xsF/P6VXSTNhGBIxZpE5PbW8fz98U0kzz7wXMaG6QD1pt38/11RJM7rzFTETeD49G7l/P3hXSTMRYBIxdOw5PXO8fz8LWkkz8MsOMclgNT23v38/h1xJMwc4CzEN1TA95sJ/P/peSTOcowcxQ0ksPQDGfz9gYUkz9w8EMWy9Jz0GyX8/qWNJMzZ7ADGIMSM998t/P+hlSTPXzvkwk6UePdPOfz8daEkzlqXyMJUZGj2a0X8/QGpJM6V96zCJjRU9TdR/P05sSTNnVOQwcgERPevWfz9QbkkzlCvdME51DD112X8/OnBJM8kB1jAd6Qc96tt/PxhySTN+2M4w5FwDPUrefz/rc0kzgazHMD6h/TyV4H8/p3VJM5CFwDChiPQ8zOJ/P1Z3STNNWrkw7m/rPO7kfz/yeEkz9DGyMCpX4jz75n8/fnpJMywJqzBUPtk89Oh/P/p7STM73qMwbCXQPNjqfz9pfUkzorWcMHEMxzyn7H8/x35JMwyMlTBo8708Ye5/PxCASTP0YY4wUNq0PAfwfz9PgUkzkTmHMCjBqzyY8X8/eYJJM28OgDDxp6I8FfN/P5iDSTOtxnEwsI6ZPHz0fz+rhEkz261iMJD2jzzh9X8/lYNJM7nMcTCyjpk8fPR/P+2BSTN3pIMwkDSnPFnyfz8OgEkzSmOOMFDatDwH8H8/GX5JM4QgmTDwf8I8h+1/P/x7STNb36MwbSXQPNjqfz+5eUkzbpyuMMPK3Tz6538/VXdJM35duTDwb+s87uR/P8d0STP3GcQw9RT5PLPhfz8TckkzBdnOMOZcAz1K3n8/RW9JM3CT2TA4Lwo9stp/P0JsSTOjU+QwcgERPevWfz8waUkzXhDvMJLTFz320n8/8WVJM37M+TCVpR49085/P39iSTPhRQIxenclPYHKfz/9XkkzwqMHMURJLD0Axn8/R1tJM78CDTHvGjM9UcF/P3xXSTOUYRIxd+w5PXO8fz9/U0kzOb8XMd+9QD1nt38/rFVJM8zaFDEKEj09Jbp/P0JZSTNo5Q8x2MY2Pbi+fz+3XEkzf/EKMYh7MD0kw38/FmBJM278BTEcMCo9aMd/P1hjSTNmCAExmeQjPYTLfz90Zkkz7yf4MPmYHT15z38/b2lJM5897jBCTRc9RtN/P0JsSTMoVeQwcAERPevWfz8Ob0kzU2naMIu1Cj1p2n8/rnFJMwB/0DCQaQQ9v91/PzV0STPGlcYwATv8PO7gfz+Rdkkz36q8MLii7zz0438/0XhJM4PAsjBOCuM80+Z/P/R6STPQ0qgwv3HWPIvpfz+AfEkzhmOhMDz/zDx6638/OCLZs3bGJ7R9JRe/Dp5OPw1agDNDDBS0fSUXvw6eTj+e9xcymEKzs3wlF78Pnk4/d1kstOfE9LN7JRe/EJ5OP8PvcrL9QICyfSUXvw6eTj9tXZm0rV0YtHwlF78Pnk4/43e+sZtxcLR9JRe/D55OP/PoJ7Lo5kmzfSUXvw+eTj8aU6K0vcIMtHslF78Qnk4/xPZLtCaNe7N9JRe/Dp5OP5aXp7MuWCOzfCUXvw+eTj884Wq0+Bc9s30lF78Onk4/mUxmsmiaRrR8JRe/D55OP49LJbSAeFO0fSUXvw6eTj/HNpa0L00PtH0lF78Onk4/Mq5msysLdbR8JRe/D55OP+niYLQ82bazeyUXvxCeTj8HrhK0hkrys30lF78Onk4/+LM5tKFcLrR9JRe/Dp5OP1EqDbQc9eKzfSUXvw6eTj9ioxG0MRLds30lF78Onk4/bWQ0tOdywrJ9JRe/Dp5OP3vPdbTRps6zeyUXvxCeTj+VIRyziNc5tH0lF78Onk4/oXI7tGA+n7N9JRe/Dp5OPza1dbRplwGzfCUXvw+eTj8TBpq0mdcLtHslF78Qnk4/FsgNtNEB27N8JRe/D55OPyLEcrPzWCy0fSUXvw6eTj8VZ1Szg+YxtH0lF78Onk4/cZ8ftAT0x7N8JRe/D55OPyNtF7NPDT20fCUXvw+eTj+C1SezHw06tH0lF78Onk4/FDIQtB+G3rN8JRe/D55OP7BFV7TYEW2zfCUXvw+eTj/MOmi0VHM7s3wlF78Pnk4/wv9QsoQwT7R9JRe/Dp5OP2EhOLRErZGzeyUXvxCeTj9VZL2094lstHwlF78Pnk4/R+sCtNHZ47N8JRe/D55OP+ULZbS6w0SzfSUXvw6eTj8/hwe0lM3Ts3wlF78Pnk4/Ea++s/UkVrN9JRe/Dp5OP9bsWLSpO2izfCUXvw+eTj9jKgq0nVjns30lF78Onk4/TioNtB714rN8JRe/D55OP04qDbQe9eKzfCUXvw+eTj9QPQG0aELfs3wlF78Pnk4/iU+FsohZvLN9JRe/Dp5OP/oZE7RjzOSzfCUXvw+eTj//zPuzTjnes3wlF78Pnk4/xof6s90G3rN9JRe/D55OP+dNyLJS8r6zfiUXvw6eTj+yEqe0dmYPtH0lF78Onk4/ls+utLzMEbR7JRe/EJ5OPzwsiLRw0QW0eyUXvxCeTj90jG60DtsXs30lF78Onk4/iteLs/E80rN9JRe/Dp5OPydyDLSnjjO0fCUXvw+eTj/63JS0e2UItH4lF78Onk4/EsCQs24KvLN8JRe/D55OP5ojn7T/Po20eyUXvxCeTj84MkqzM+nLsX0lF78Onk4/LdFBM6N3ejJ9JRe/Dp5OP/zRSLRg1C20fSUXvw6eTj/AX/ayJDM1tHwlF78Pnk4/GxIQtClnFrR8JRe/D55OPyGuPLRQzYu0fSUXvw6eTj9y1I20nb2btHslF78Qnk4/5Iers/oNxrN8JRe/D55OP57GbrLroOGyfCUXvw+eTj/3m3y058xds3slF78Qnk4/YIGXtF8qr7R7JRe/EJ5OP6G1LrTtoCW0fSUXvw6eTj/HsLq0XQdztHslF78Qnk4/3IMiM4LLtrN+JRe/Dp5OP0EcRTKcAQi0fiUXvw6eTj/lGEC0+81HtHslF78Qnk4/20Z/s1wmObN9JRe/Dp5OP9u7u7Rg+Vi0eyUXvxCeTj8yApS0iqMGtH0lF78Onk4/N28NNF4z0LN+JRe/Dp5OPzgi2bN2xie0fSUXvw6eTj/PcSi720FnvTePRr0TSn8/y/IYu0X8Ub1Rn0a9clx/P82xCLs0rDu9iq5Gvc5tfz+hiO+6Jm8kvZW8Rr3PfX8/rX/Mup5iDL0ryUa9JYx/PzJQqLpxF+e8D9RGvZSYfz9OVYO6GFK0vALdRr3Jon8/hnQ7uqKwgLza40a9lap/P5mp3rk43Ri8duhGvdGvfz9iYAq5kgU+u7XqRr1msn8/ACEpObItaDuU6ka9Q7J/P/vq7Tn/USM8F+hGvWqvfz/tGEM6k+2FPEfjRr3pqX8/OBSHOoV0uTw13Ea93qF/Px30qzrEFOw8D9NGvXCXfz/kANA6cMkOPf7HRr3Rin8/ZQ/zOsfZJj05u0a9P3x/Pw5eCjsP9z09EK1GvRxsfz8ahBo7GiJUPcGdRr2sWn8/VuQpO2g9aT2gjUa9Rkh/P1hpODuXK309/XxGvUs1fz9D0kU7zcmHPWVsRr1hIn8/GC9SO75FkD0QXEa9ww9/P4lqXTsC+5c9XUxGvd39fj9Wb2c7CduePa09Rr0c7X4/bO1vO+SupD20MEa9U95+PzMEdzsnjKk9hiVGvZLRfj9innw7PWStPXMcRr07x34/WVOAO5AosD3MFUa9pL9+P+BegTuvl7E9TxJGvam7fj9Kg4E7sr+xPU8cRr0yu34/vaOAO+JPsD0mYEa9/b5+P298fTutNq09lvBGvRHHfj85dnc761qoPWjPR71v034/0KVvO4Ekoj2t50i9t+J+P4MlZjv8tZo90zBKvTX0fj/rD1s79TGSPUKiS70yB38/YEdOO3qYiD12N029QRt/PzUtQDtocXw9aeFOvVMvfz/t4zA7uWpmPYuXUL3QQn8/z5EgO3ViTz1eUVK9MFV/P1FEDzvnijc9igRUvRJmfz8CrPo6HFEfPTeoVb0AdX8/9PfVOvf6Bj0aNFe9wIF/P3nfsDrRnN08AKBYvTSMfz+f94s6f1+uPBncWb1UlH8/+KBPOgS1gDzP5Vq9Opp/P1nqCTqDUio8PrVbvRmefz+g1I85HiCxO5lCXL03oH8/er04OI9HYzoheVy9+KB/P9E9OrkzQmW7PmRcvamgfz9AD9e595AEvNUOXL0yn38/m0Erun6pU7xjf1u9V5x/P+0wbbq+JpO8+bNaveaXfz8EF5i6XJa9vHe7Wb24kX8/XsK5uiLJ6Lyim1i9u4l/P7BE27pPMgq9QlpXved/fz9PLPy6EAEgvdj5Vb1NdH8/CB0Ou/OcNb1fhVS9CWd/P9qUHbvP2Eq9zwJTvURYfz9WXiy7kIdfvTB4Ub07SH8/EDc6u+NVc7107E+9Vzd/P4QkR7sgGIO9imZOvd4lfz9WEFO75fSLvZDsTL0wFH8/U+Zdu9MqlL2shEu9ugJ/PxVgZ7tZgJu9MTpKvUDyfj9DnG+74vuhvdQPSb3/4n4/MYt2uxaHp725C0i9b9V+P2wdfLudC6y9BzRHvQjKfj/GAYC77z+vvUuYRr3BwX4/aDOBu346sb3hNka9kbx+P1aZgbvw5bG9JhRGvc26fj8XJIG7iUexvRETRr2JvH4/0Vx/u71Gr73uF0a9E8J+P7/QersBKKy9Yh9GvZTKfj9BuXS77/mnvSspRr271X4/pCttux3Lor32NEa9LeN+PwAGZLtDhJy9vUJGveTyfj/jmlm7Al6VvcZRRr0JBH8/kf9Nu+pmjb2yYUa9MBZ/P1RJQbuZrYS9InJGvesofz+hZTO7jUp2veGCRr0FPH8/z3Eou9tBZ703j0a9E0p/P3qEertkU2e99gqKvaQBfz9QeWO7MwxSvewUir0NFH8/dk1Lu3K6O71XHoq9dCV/P+AgMrufeyS9BCeKvX41fz+GExi7QW0Mvcouir3dQ38/5lX6uu4o57yINYq9UlB/P+ZVw7qzX7S8ETuKvY5afz9zZ4u6S7qAvEs/ir1eYn8/G5YluoboGLwiQoq9nmd/PzXOTbl7Ej67h0OKvTRqfz9MkHs5KkFoO3ZDir0Ran8/m+8wOu9eIzzqQYq9Nmd/P/YWkToM+IU87j6KvbJhfz+w6Mg67oK5PJE6ir2iWX8/fsD/Ogwn7DzqNIq9Lk9/P/6uGjt31A49Ei6KvYhCfz94wDQ7pOYmPSsmir3tM38/ocpNO60FPj1sHYq9wSN/P2HOZTtnMlQ99hOKvUYSfz/Aq3w7UE9pPfwJir3V/34/ciGJO/w+fT2x/4m9z+x+P7EZkzsy1Ic9b/WJvdrZfj+ISpw7xVCQPVjrib0xx34/JqSkO5sGmD2j4Ym9QLV+P8QWrDsm5549jdiJvXWkfj/hZrI7cbukPYnQib2klX4/2qu3OxCZqT2eyYm93Ih+P+XVuztuca09A8SJvX5+fj831b479jWwPea/ib3jdn4/6mLAOzGlsT29vYm95nJ+PyyRwDs4zbE9lL+JvXJyfj+gFL87Wl2wPZnOib1Wdn4/j967OwVErT2R7om9nn5+P5zRtjsRaKg93B+KvU2Lfj+RVrA7XTGiPcJdir39mn4/Bo6oO3/Cmj1Jpoq99ax+P6qYnzsLPpI9d/eKvX3Afj+HcJU7B6SIPTpQi70l1X4/wmeKO0SHfD0prYu92+l+P3RBfTssf2Y9VgyMvQH+fj86fWQ7VHVPPdhrjL0PEX8/+K9KOwGcNz19yYy9niJ/P0pUMDtLYB89TCONvTQyfz/NthU7HAgHPYl3jb2VP38/0Uv2OtSy3TyAxI29nkp/P70dwjoaca48BAeOvUBTfz93e486MMKAPJc+jr2VWX8/Dxc+OiRkKjy1aY69yl1/P67YxTmYMrE75IaOvSRgfz8A8X04U19jOiGSjr37YH8/9g2AuR1aZbvSjY69pGB/P9wGFLq8ngS8HXyOvQlffz9XLGy6T79TvDtejr3yW38/JgGkur01k7y3M469LFd/PwYE07pqqb28gP+NvZdQfz+HWQG7KuDovLjCjb0iSH8/H1IZu8A/Cr2Gfo29yz1/P1IsMbtUECC9czONvaIxfz9tski76a01vbvjjL3HI38/CbNfu1vrSr2jkIy9aRR/P+39dbuMm1+9dTuMvcMDfz9Gm4W7KmtzvcHli71G8n4/1aePu1Ujg70CkYu9NeB+P24OmbubAIy9lj6LvffNfj9HuaG79zaUveLvir34u34/vWypu9iMm710p4q9A6t+Pw40sLusCKK97GWKvVObfj9v+rW7G5SnvbQsir1jjX4/IKu6u9MYrL0z/Ym9roF+Pwz8vbtFTa+949qJvS55fj87B8C75UexvWrFib3bc34/srfAu17zsb3LvYm9CnJ+P2ALwLvrVLG9Nb6JvcZzfj/e3727+FOvvTfBib1UeX4/nX66uwE1rL3TxYm92oF+P2r3tbufBqi93suJvQeNfj8YWrC7bNeivSrTib2Bmn4/ao2puxqQnL2v24m9Qqp+P7fOobtQaZW9++SJvXC7fj/JLZm7oHGNvdPuib2izX4/c7qPu6W3hL37+Im9aOB+P+Bmhbs6XXa9VwOKvY3zfj96hHq7ZFNnvfYKir2kAX8/EbljPfC7L7wZ9no/EKxBPrbGTj2xkR+8Owh7Pw66QT7wzTg98JwOvF0Zez9Ix0E+yeshPSno+bspKXs/eNNBPlU9Cj0eW9W7Tzd7P2TeQT4xj+M8fJqvu5RDez/b50E+b5CxPGkFibunTXs/o+9BPtpxfTwlkkO7WVV7P5P1QT6YhhY80ErouoRaez+Q+UE+YBs7O8JSELoQXXs/hvtBPpKkZLsFhTA67Vx7P237QT710yC8okP4Oh5aez9B+UE+H+KDvG+SSzuvVHs/EPVBPoeftrxq8Yw7v0x7P/DuQT6+eei8SGqzO3RCez/+5kE+IJsMvaoG2Tv/NXs/Yt1BPldNJL2Emf07nSd7P0jSQT4xEDu9dl0QPLEXez/+xUE+g+RQvRY2ITx6Bns/t7hBPj2tZb00QDE8UfR6P7KqQT5vTXm9fGVAPJbhej8+nEE+tbaFvUJiTjzrzno/1o1BPnMRjr1HR1s8i7x6P6h/QT6OqJW9WP5mPOCqej8GckE+q22cvU9xcTxXmno/Q2VBPrgqor21THo8wIt6PwBaQT7x9Ka9p9iAPCp/ej9JUEE++72qvXvEgzz1dHo/aUhBPnl3rb3A3oU8eG16P6JCQT784K69vPWGPIppej+aP0E+aAivvSgUhzwcaXo/RD9BPlierb2+/IU8DG16P09CQT6Gkaq9LKKDPG51ej/HSEE+KcmlvZvifzxGgno/sVJBPoGrn70ccnY8KpJ6P/ReQT6PWpi9UydrPGKkej8DbUE+WPiPvcY2Xjw0uHo/TnxBPuGEhr11oE88Ms16P4GMQT4lnHi9qdw/PEbiej/GnEE+OexivSEgLzzT9no/oaxBPnA+TL2unx08TQp7P6q7QT46xDS9e4ELPE0cez+OyUE+BOkcvdMw8jtXLHs/7tVBPqDxBL00M807Kzp7P5rgQT7jRdq8anSoO6NFez9z6UE+fr+rvOqMhDuqTns/avBBPu+KfbyarkM7V1V7P5H1QT5Wwye86nsBO9ZZez8J+UE+kneuu+ushjpjXHs/AvtBPkDlX7q8ES05T117P7f7QT4SzmE79y8uuvBcez9v+0E+QpICPGR+ybo3W3s/GvpBPgZ6UDw53iC77ld7P5H3QT6L75A8n65fu+NSez+t80E+F7u6PGEYkLv+S3s/Wu5BPoJG5TyE7bC7MEN7P4/nQT5XHAg98xHSu3k4ez9K30E+MJYdPY8387vrK3s/mNVBPrjdMj3CBwq8qh17P5jKQT57xkc9mCoavOYNez9vvkE+EyRcPQniKbzd/Ho/SbFBPnOkbz3B7ji8AOt6P3+jQT43GoE99UFHvJXYej9KlUE+7tOJPZG5VLwCxno/9IZBPk7pkT2HM2G8t7N6P9V4QT6tIZk9ZFhsvH2iej+Ka0E+ZoOfPfExdryQkno/QF9BPnv4pD1Dnn68boR6P1dUQT74aqk9ub2CvI54ej8tS0E+eZKsPeQshbzxb3o/h0RBPhmFrj2xrYa8i2p6P1xAQT7cLa897S+HvLNoej/xPkE+4JGuPY23hrxnano/QUBBPuyYrD3eMYW83296P3lEQT5mhqk95NKCvER4ej/0SkE+sGilPXFLf7xGg3o/clNBPihOoD3iane8i5B6P7BdQT7fH5o9ueBtvA2gej+paUE+mBWTPQIDY7z5sHo/uXZBPqw9iz3n51a848J6P4uEQT59poI9lqVJvGDVej/PkkE+8YZyPaooO7w66Ho/XKFBPhG5Yz3wuy+8GfZ6PxCsQT6X3wU0yDRatJXfBT/GNFo//tS/NnUyDrRGNQU/6JxaP22RQLlbNaQ2UIkEP1MFWz+fmry3x9VaOJLbAz8Ybls/ziOsNdSzJrZ8LAM/79ZbP/t5AjQPQVy0+XkCPxFBXD++xgE02KpctL/GAT/aqlw/8hABNGMVXbTvEAE/YxVdP5bx67VG3GU2fVkAPxWAXT9zCfi3F4hxOAM//z5x610/8TCPNTStCrYiwf0+01heP3nh/jNOBl60feH+Pk8GXj+tSwA0FYhdtK1LAD8ViF0/EiUBNJ8JXbQRJQE/oAldP/r6ATQZjFy0+voBPxqMXD+ozgI00g5ctKjOAj/QDlw/F58DNGOSW7QZnwM/Y5JbP+xsBDSBFlu062wEP38WWz9MOAU0DZtatEw4BT8Qm1o/bQEGNP4fWrRsAQY//x9aP7AoCrYYllw2UcgGP1GlWT8vkNI3bjHCOKqMBz8/K1k/hw8/OKpz2DduTwg/NLFYP74hJTc2Msg2aw8JP/g3WD/nl9Q4GzKHOILNCT8Dv1c/O1titqhexbbFiQo/UEZXPwTkMriS+q04KUYLP57MVj8AJJo1ANERtm2iCz+vkFY/OhULNFHsVrQ7FQs/UOxWP+ebLDcW89M2W4wKP6ZEVz+gmxo5h1LFOGsCCj8unVc/2EEjOCoazjeMdwk/0/VXP/lj4bW+UV020+sIP4ROWD+EREW4JO+/OMBeCD+Qp1g/yrVQtwx1yzc30Ac/BgFZP/VRM7ghf6447EAHP3NaWT/94IS3ib4AOISwBj8NtFk/zfxjt5WD3je7HgY/+w1aP96LBTQOaFq02osFPw9oWj+19wQ0YcJatLX3BD9fwlo/IWIENAcdW7QgYgQ/BR1bP6cvnzQIFRG1NssDP+x3Wz9RwZ63pXoaOJEzAz+10ls/tuJGt26vwTdsmQI/bC5cP6xrZjSM+s60jP4BPwCKXD/YNYy3oF8IOFhhAT9e5lw/sAJit8VE3DcNwwA/yEJdP1VFQLb5LLs2GSMAP5CfXT+ImgG4i7l8OGcD/z6S/F0/d61BNuOovLaIrP0+s15ePzcyL7j7aKo4SHj+PnkkXj9CWJY13m4PtlOz/z71yV0/GXUANBJwXbQadQA/EnBdP2kOATTcFl20ag4BP9sWXT/mpgE0lL1ctOWmAT+TvVw/LT4CNHNkXLQrPgI/c2RcP8rUAjQqC1y0ytQCPysLXD9zaAM0HLNbtHNoAz8cs1s/EPsDNCZbW7QQ+wM/KFtbP9uMBDQtA1u02owEPy4DWz8iHQU0nKtatCAdBT+cq1o/F6wFNFhUWrQVrAU/VlRaPyU6BjQc/Vm0JDoGPx39WT/LxgY0QqZZtMvGBj9Dplk/mVIHNHFPWbSYUgc/c09ZPyPdBzTw+Fi0I90HP+/4WD9UZwg0KqJYtFJnCD8rolg/W+8INEhMWLRb7wg/SExYP312CTR+9le0gHYJP372Vz/SusY0ahk1tQL9CT+loFc/s64JuOgAhjh/ggo//kpXP1YAWTV8A8u1CwcLP371Vj8NlQs0ZJlWtA2VCz9jmVY/53YLNPysVrTndgs//KxWP2rSCjR8F1e0a9IKP34XVz8apRA2fwiKtuMzCj98fVc/qG4huIvVnDjMkwk/1eNXP2o3sTQoYR+1y/IIPxpKWD9Pm6C3/kocOPlPCD/dsFg/Ji5JtxX6wzdTqwc/GBhZP9kIR7nDVVu2sgUHP0J/WT9Ah+M2cXDvsyleBj/r5lk/l98FNMg0WrSV3wU/xjRaP1zOFDIxmI8yj4zrvrpMYz8LVRMyVfqPMr806b4l52M/4ZcRMtJGkDJS1ea+ioFkP+MsEDLyxJAy8m3kvvAbZT96yQ4yRx2RMgoD4r4wtWU/7DQNMhCAkTIThd++C1FmP1qfCzK/4ZEyQQPdvrDrZj87BAoyZEOSMpN42r5Hhmc/92MIMuGkkjLg5Ne+ySBoP9PEBjKJA5MyeUbVvoW7aD9YCgUyc2mTMlCY0r6GV2k/h08GMpUfkzKemtS+0eJoP/tECDImrJIybbTXvgssaD+aMQoyvziSMj3A2r5cdWc/QhYMMj7FkTIZv92+pr5mP3/zDTKbUZEy/rLgvo0HZj/yxw8yXN6QMpCY474BUWU/T5QRMixrkDIDcea+2ZpkP/1ZEzL+948yVT/pvnDkYz8+GRUyxoSPMhsD7L76LWM/ZM0WMvsPjzLIvO6+cndiPxQ6GDJyho4ya2vxvi7BYT8RNRoy/yqOMpAV9L6DCWE/x9YbMp+3jTJZrva+AVRgPzN1HTLXRI0y0T75vk+eXz+mDh8y0dGMMiLI+74r6F4/U8ggMiNbjDJ+T/6+JjBeP3tvITI5JIwyq4v/vmLVXT9bPiAy1XuMMoan/b4hYF4/7hQfMijQjDLQ0Pu+t+VeP77oHTKUJI0yavX5vlVrXz/MuRwy3XiNMsoV+L7T8F8/woUbMuzMjTJ8M/a+vXVgP2gtGjKRHY4yZUr0vi77YD82IhkymHOOMltX8r7zgWE/aukXMuXFjjJSY/C+mAdiP/V5FjKxFI8ylmnuvlqNYj+uQRUy4muPMnJq7L4cE2M/AhQUMlHIjzKkZeq+5ZhjP8DJEjLXHJAy4FrovsAeZD/9exEyWHGQMo5K5r6JpGQ/vSoQMuzFkDI/NOS+TyplPwW4DjIeGZEyDxvivkevZT8laA0yam6RMv70377bNWY/khwMMsTDkTJtyd2+K7xmP8u5CjIeEZIyOJjbvjVCZz8TUwkyHWeSMkdg2b4zyGc/yuYHMgTDkjJXIde+J05oPwZsBjIFJJMyuNrUvi3UaD8w9gQyuW2TMrdy0r4BYGk/XYAFMrpEkzIx4NO+Rg1pPwFCBzI76JIyURfWvpCLaD+toQgymZaSMoJH2L7UCWg/fv8JMp9EkjJwcNq+M4hnPzhYCzLQ8pEyrJLcvpcGZz9VrQwy3KCRMqau3r7yhGY/AwQOMpNNkTJRzeC+HwFmP25NDzKx/JAyYdbivhaBZT9ylRAyNquQMpfd5L4UAGU/W9sRMmNZkDIs4ea+jH5kP2sdEzJ3B5AyNd/ovgL9Yz+wWxQyvrWPMm/X6r6Qe2M/EpcVMu5jjzJ/yuy+FfpiPxDPFjI1Eo8yF7juvq54Yj+rAxgyYMCOMuug8L4092E/2jUZModujjIkhfK+pHVhP2poGjKnG44yqmr0vmvyYD+4kBsywcqNMsI/9r5fcmA/nrccMll5jTK2Evi+rfFfPyXdHTLGJ40yAOP5vntwXz8L8B4y09+MMiKv+745714/NSAgMkeEjDIqd/2+6W1eP3hTITJuLIwyA17/vobiXT8WEiEyOj+MMn32/r5IAF4/aq0fMgaljDIfwvy+ZKFePzBWHjJqBo0yB6D6voc7Xz/M1xwyIWeNMt53+L6i1V8/GZgbMpTIjTKUS/a+IW9gP8E5GjLnNo4y7Rb0viQJYT9nyxgyTZSOMtrW8b5tpGE/sDUXMhv+jjLwk+++nT5iP0voFTJ9To8yFkntvgbZYj9czhQyMZiPMo+M6766TGM/rFSNs6DX1TR4knY/N6uJvsdVg7W/EJi2Xbd2P9GhiL4ODgc4vMA0OXTcdj/RlIe+hseXN2B1zji/AXc/EISGvrzab7X6A4e26yZ3P91xhb7XFoSzEDbWNAJNdz9pVoS++yeCs/9I1jQPc3c/tziDvtwygLPgW9Y0Ppl3P1gXgr4JbZY1wSn8Nqu/dz9s8YC+1o2eN/fs7Thi5nc/4Yx/voSvNLWr2Fi2ig14PyEqfb5tVXezc4bWNFXwdz8+8n6+QiJ8sxlw1jRxwnc/H9yAvuxpgLPPWdY0EZV3PyQ3gr4cuYKzd0PWNO5ndz+HjIO+9f6EsxYt1jQMO3c/Y9yEvnY5h7PCFtY0lg53P54lhr77aImzfADWNIzidj9raIe+aJCLsy3q1TS5tnY/cqaIvkGvjbPf09U0LIt2P3Pfib7OYrY1QoX6NuFfdj+tE4u+grS7N8p/7DjsNHY/r0KMvuoyUrXBrle21wl2P81vjb5Q2pWztHrVNJ/fdT9IlI6+SM+Xs5Zk1TShtXU/urSPvg+imrUT/Za2wot1P+TRkL77CRA4cQkmObhhdT/Q7ZG+ZUVytWV8XbYVTXU/V3iSvq8qrbNJZ+Q0qGx1Pyikkb46xZmzG07VNDOLdT+s1ZC+lFqYs15e1TTjqXU/6gSQvoTslrOibtU0rsh1Pysyj76bBq81laPuNnLndT9JXo6+2uwWOHTOODl+BnY/E4eNvmBXHzeXYUY4ESZ2P9KqjL5NVAY4xMUoOXZFdj9Zzou+TRJBN6PyezgMZXY/Bu+KvqPtKDc/tFk4xYR2PzsNir5Dcoyz7+DVNKekdj+wKIm+8uCKs1Tx1TS3xHY/P0GIvl1LibOrAdY04+R2P1RXh74BsUG0BUyJtDgFdz+Kaoa+8DhZN9XglziDJXc/RHyFvlhQCDd8qD84YUZ3P++HhL5eqAG0OodFM2Zndz+IkIO+Uuc3N74GhzhqiHc/NpeCvjz4FDeho1o4n6l3P2magb5HG/Q1+DlFN/zKdz9TmoC+xIulN9xl+TiT7Hc/uSx/vm6w9bVXECu3rw94P3IIfb4z9ds3haMnOej6dz+ATX6+6pg0tZthY7Zj2nc/ZSOAvpsDfbPza9Y0+Ll3Pzcdgb79LICzF1zWNLCZdz/3E4K+09GBs0NM1jSleXc//AaDvllxg7NtPNY0xVl3P+H2g75AFIWzQizWNGU5dz+v6IS+CaSGs6Yc1jRGGnc/Y8+FvuwyiLPfDNY0Aft2P4y1hr7UvomzB/3VNMDbdj/xmYe+n0aLsy3t1TSdvHY/43uIvq3JjLNa3dU0pJ12PxZbib4/SI6zhs3VNNR+dj+jN4q+psKPs6+91TQmYHY/wxGLvvc4kbPfrdU0nEF2P3fpi77Sq5KzDZ7VNCojdj8hv4y+ICCUs/yN1TRoBHY/mpWNvu+FlbNlftU0quZ1P69jjr6H6pazum7VNNnIdT8FMY++gx+PtKvgBrURq3U/4/yPvtKW2zf9VgA5X411P+3GkL54tiK1Kj8NtspvdT8Oj5G+EHqcs5wu1TQPUHU/YmSSviQrnLM5MtU01VZ1P/c2kr5JfZqzzEXVNI17dT+cP5G+Kmvatc3B7rbmnnU/00+Qvn4g+ze5Jhc5YcJ1P2hdj77u+260sE2+tOnldT/haI6+HQl0NzNPlzjBCXY/ZHCNvjUkGTe98D44Jy52PylyjL6+lAs4whwwOXFSdj+8cou+wgintbGTt7b5dnY/oW+KvqxUjbOg19U0eJJ2Pzerib5y3j65lYrfuKLfBT++NFo/7H/Tt7Cs0bhiNQU/1pxaP5puPzgSXLm4FokEP3YFWz9Wfss3ve5EuITbAz8gbls/JbJJOO1birheLAM/AddbP+SFDblx1Li4KnoCP/NAXD9Hlz04vN22uILGAT/+qlw/+Ng8OALVtrgxEQE/PBVdP60zGrlZR7a4bVkAPx6AXT8f9RI4b+lluPw+/z5z610/JNWGtTQiEDYJwf0+2lhePxG8RTjfaLm44d/+PsUGXj8HDeu3xAe2uOJLAD/2h10/rM8ouXcRt7gwJQE/jgldP4S6STjBSra4KvsBP/6LXD9RcZq4U1ncuNvOAj+yDlw/zL6Ut4vRy7hOnwM/Q5JbP6uXBjghY7i4FW0EP2YWWz9dQDi5pgveuF04BT8Fm1o/YB+6t0yYzrhoAQY/AiBaP2tvQTgwRrm4IMgGP2+lWT+51d23O9i7uJuMBz9IK1k/NztQt8PnvLhrTwg/NrFYP24+F7f43pi2YA8JP/83WD+OlCq5HRjbuG7NCT8Pv1c/mL8juFQy17e0iQo/W0ZXPwDoPLdGGOm2G0YLP6jMVj/m64y4FQjGuGuiCz+wkFY/mmxVOMWJurgnFQs/XexWP0IeCDhy2bq4SIwKP7JEVz+jWhi5GQHEuGUCCj8ynVc/GGwYufE6w7iAdwk/2vVXPz577zYE1Ta23OsIP35OWD9rI384KiHzuL5eCD+Rp1g/jObAuHajvLhL0Ac/+QBZPxfAV7nu8QW52EAHP39aWT/jF464cAvAuFywBj8ltFk/LEDCN3MKtLfDHgY/9g1aP6QaDbld87241YsFPxFoWj/xk1A4czm4uKX3BD9pwlo/Six4OCctuLgUYgQ/DB1bP5LxG7ngzbq4KcsDP/N3Wz8roI+4STq5uIQzAz+90ls/pXI9OF97t7hOmQI/fi5cPyV3GzjXVre4LP4BPziKXD8oXq+4REC3uFBhAT9i5lw/AUtTOHYttrgDwwA/zUJdP+aMUbmGZ/24CiMAP5ifXT82Pok4VeG5uFcC/z7h/F0/WO43N8WIsbdvrP0+ul5ePwApNTi8Rqm4Hnj+PoUkXj+bQJi4YF8RuGWy/z46yl0/qX3ANSNwyLgFdQA/HnBdP+xrhzZbJ9C2wg4BP6gWXT/DORG4V4W3uCmnAT9rvVw/d7IbuReauLgnPgI/dWRcP3BnE7kRYrm4AdUCPwoLXD9Wel84UGW3uGJoAz8ms1s/Ph4Qua0i8rgn+wM/GltbPxfUC7nl37m41owEPzEDWz+XSyS4gGrauDcdBT+Oq1o/GyU6uTPh1bgorAU/SlRaP2fQNTjToau4RDoGPwn9WT8jMcM23e+7NuDGBj82plk/pvEFuZoClrigUgc/bU9ZPzFYQDg4S7m4N90HP+P4WD9qXUk4Cxi5uDtnCD86olg/wUnGuM8xwLhQ7wg/TkxYPytDWDiIZLm4cXYJP4f2Vz+LJNm3/cq9uPf8CT+soFc/SrRIt8RAvriEggo/+0pXP2yXWbfTOPK2DgcLP3z1Vj+3u1e5G/YGuQeVCz9mmVY/p71stjbwurjcdgs/A61WP42/3TfwxcG4cdIKP3oXVz9N2sm4JZ3wuOkzCj94fVc/w07RuKLqsbjZkwk/zONXP0O7vLjG6za5wfIIPyBKWD+jnD843B+5uPlPCD/dsFg//wM/OHMoubhVqwc/FxhZP5YQF7kAQb+4qQUHP0h/WT+gSqC3vNW6uCReBj/u5lk/ct4+uZWK37ii3wU/vjRaP9nTFDJvmY8yh4zrvrxMYz+Y+RIyHOaPMrI06b4o52M/WQUSMn9XkDI91ea+j4FkP8dtEDIcxZAy423kvvQbZT+hjg4yohKRMgUD4r4ytWU/pDgNMgZ9kTIRhd++C1FmP0PACzI5z5EyNgPdvrLrZj/HaQoyx06SMoV42r5Lhmc/LGAIMoikkjLZ5Ne+yyBoP77EBjKHA5MydEbVvoa7aD8wCgUyf2mTMjqY0r6LV2k/4WQGMrMbkzKJmtS+1eJoPzuhCDI6tJIyZ7TXvg0saD/6KwoyMTiSMj7A2r5cdWc/ID4MMqrJkTL9vt2+rb5mP/z9DTLwR5Ey7LLgvpEHZj+g2A8yleCQMomY474DUWU/w5IRMs5pkDL1cOa+3JpkP/1ZEzK6948ySj/pvnLkYz/hHRUy7pWPMhgD7L77LWM/vQcXMsIijzLAvO6+dHdiP3RjGDKDjI4yWWvxvjPBYT8mEhoyKRiOMooV9L6FCWE/U9cbMhO4jTJRrva+A1RgPzN1HTLLRI0yxj75vlKeXz+gDx8yx9GMMhvI+74t6F4/pKcgMp1djDJsT/6+KzBePwuaITIDHYwyn4v/vmXVXT9pmiAyPpqMMnyn/b4kYF4/qCcfMpbRjDLF0Pu+uuVeP8voHTKVJI0yZ/X5vlZrXz+2uRwy73iNMsIV+L7V8F8/6IsbMrnPjTJiM/a+xHVgP4OdGjLtUY4yWUr0vjH7YD9rKhkyaHeOMlFX8r71gWE/VNwXMt7KjjJCY/C+nAdiP7jAFjIgFY8yjGnuvlyNYj+ocxUyl2yPMllq7L4iE2M/oRgUMvrLjzKkZeq+5ZhjP+m3EjKzPJAy0VrovsQeZD80YBEyNnCQMn9K5r6MpGQ/CioQMtLFkDIrNOS+VSplP7kDDzLjIJEy+Rrivk2vZT+umw0ygneRMvL0377eNWY/m30MMmDNkTJOyd2+MrxmP6G6CjKwI5IyI5jbvjpCZz/teQkyMHOSMjlg2b42yGc/uukHMh/CkjJQIde+KU5oP6mfBjLcHpMyptrUvjHUaD/39wQyGnKTMp9y0r4HYGk/rQgGMsAlkzIm4NO+SQ1pPx48BzL45pIyRRfWvpOLaD8p1Qgygr2SMmlH2L7aCWg/CPcJMrpFkjJhcNq+NohnP78XCzLB+5Eym5LcvpsGZz9ZrQwy26CRMoqu3r75hGY/QgcOMkhOkTJLzeC+IAFmP0CDDzK6AZEyVdbivhmBZT/umRAyEqaQMofd5L4YAGU/8toRMt9WkDIe4ea+kH5kP8kbEzKI7Y8yLd/ovgT9Yz9vXBQyZbaPMmfX6r6Se2M/64gVMrl2jzJzyuy+GPpiP13PFjLBEY8yHLjuvq14Yj/v/hcy6MGOMvCg8L4z92E/NXcZMvVcjjIdhfK+pnVhP1t9GjLtJ44yqWr0vmvyYD/6lRsyQ8uNMr0/9r5hcmA/QtUcMrmBjTKtEvi+sPFfP3f7HTJfI40y9+L5vn5wXz+bRh8yIduMMiKv+745714/PB4gMmOEjDIad/2+7m1eP5xVITK8LIwy+13/voniXT908SAyYzmMMnj2/r5JAF4/lnAfMgesjDIfwvy+ZKFePwZYHjJ0AI0y/Z/6voo7Xz9H+BwyXGSNMtx3+L6i1V8/U5sbMp3LjTKMS/a+I29gP6osGjKBHI4y4Rb0vigJYT/JshgyloCOMtLW8b5vpGE/NF0XMqjsjjLjk+++oD5iPywLFjJOOI8yBUntvgrZYj/Z0xQyb5mPMoeM6768TGM/cz7ANRomETd8knY/HauJvuNSxrc4CQG5Ybd2P7WhiL59Bwe4DNoyuW/cdj/2lIe+W1eOt7zAvLjAAXc/B4SGvov41LdaSBK56SZ3P+pxhb55TRG2lCw9twlNdz81VoS+7b76txTtMbkJc3c/4ziDvkuk9rdnzjG5Rpl3PxkXgr4/lNq0Enfetau/dz9w8YC+AkyftzfO67hi5nc/4Yx/vm08NjVReKk2ig14PyEqfb49WPK33OI1uUHwdz9y836+LOSVt4ur3bh4wnc/59uAvkF/5zXZOTo3FJV3Pwg3gr5ukv+3axw0ufdndz9FjIO+MyqIt2TivLgTO3c/LNyEviEGx7eYWQW5nA53P28lhr7QePi3fOYkuZHidj9AaIe+UJm5NDcGOja9tnY/WKaIvjfWy7c1wQG5LIt2P3Pfib69YQ24yUcxudxfdj/PE4u+quWxt1pk3LjsNHY/q0KMvhJLzbfggve41wl2P81vjb4Jj9k0Bn9KNqDfdT9HlI6+vKnfs/5oCTWftXU/x7SPvqcn4rOrWAk1wIt1P+zRkL5aIkk0G8z5NbhhdT/P7ZG+zE6Dt4pMlLgWTXU/TXiSvnshHrhZ/DS5pmx1PzWkkb6ouA24yxAkuTOLdT+s1ZC+bXWas32kMTXjqXU/6gSQvpiF3rNmcAk1rsh1Pysyj77UZQu2yBMZt3bndT8rXo6+9PM/uFSIaLl/BnY/C4eNvtv0H7caGUC4FSZ2P7aqjL69Hxo0Bz/tNXZFdj9azou+tFRtt3WFlbgJZXY/G++KvsfZK7dBvFW4yIR2PyYNir4diRy2qok8t6ekdj+wKIm+Q1gKuNAjNbm3xHY/QEGIvlEED7goCT654+R2P1VXh7786DMziDiqNTkFdz+Gaoa+EsdVtwFukbiEJXc/QXyFvkwXALjAeTG5X0Z3P/2HhL5If/K3+BsquV1ndz/NkIO+KDomt0+5bbhqiHc/NpeCvilE+7cFrja5n6l3P2iagb7tK7K1jNXstvvKdz9cmoC+0dEEuO58R7mG7Hc/eC1/vplB5rZ0kiq4sA94P28Ifb7LQty3iKYmuef6dz+VTX6+fFv1NSgLRzdY2nc/uiOAvtUx0Lf0Qxe597l3Pzcdgb7LZRe24CxIt7uZdz+iE4K+tNaSt+Ab0biueXc/twaDvqBsxbNvCQo1yFl3P872g752ObK1cwXRtm05dz936IS+I6sHuJGuOLlGGnc/ZM+FvguJFbcAKke4Bvt2P2u1hr6JpBa28RI1t8Dbdj/umYe+UZm7t9SH9rihvHY/xXuIvhIZATbClzk3p512PwBbib4j3gG4bsQludh+dj+EN4q+UuQnNduajzYoYHY/tBGLvrkvHzYOGlQ3nUF2P2/pi74vERC4xAAxuS0jdj8Kv4y+Qo4TuEIHM7llBHY/rJWNvl6KHbeR/zq4quZ1P7Bjjr4XVxm4Sic2udnIdT8GMY++sIq7txb727gQq3U/5PyPvmYK1reiKfe4YI11P+bGkL7OzuQ05jFKNstvdT8Bj5G+7J7dNR1oEDcQUHU/XmSSvheh4bf3aQC51VZ1P/c2kr4arA248agiuY97dT+SP5G+I9aFt+w4nLjnnnU/yk+Qvv812rZ2sfO3ZMJ1P1Ndj75xeBO46MswuenldT/haI6+RWcRuB25MLnDCXY/WnCNvnuKD7j1wjC5KC52PyJyjL7HUAK14IDetXJSdj+8cou+R4+6t6/H6rj7dnY/k2+KvnM+wDUaJhE3fJJ2Px2rib59wQI+Gwsyv1HBAr4YCzI/eMECPhsLMr9MwQK+GAsyP3PBAj4cCzK/R8ECvhkLMj9vwQI+HAsyv0PBAr4ZCzI/asECPhwLMr8+wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9mwQI+HAsyvzrBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/aMECPhwLMr88wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9owQI+HAsyvzzBAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9mwQI+HAsyvzrBAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9owQI+HAsyvzzBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9mwQI+HAsyvzrBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9owQI+HAsyvzzBAr4ZCzI/aMECPhwLMr88wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/fcECPhsLMr9RwQK+GAsyP7KZoTlZ+ZQ6bgjKvgc6az/0LjM67ftEO/r3vL6v7G0/uKJkOn+hmjthM6y+XBVxPzvpbDo1AcM7heydvluDcz+qg2g6rRTQO7B2mL6CYXQ/wOoyOhlQljvKB5y+79FzP1lsoTlr/fU6+eagvpMHcz/VJwa4hNgRuQDuor4wsXI/FXWfuVnSxLqj56C+ggdzP7HPELo0HDa7X9Obvsfacz/KQ0a6tMGBuy1jlb7U23Q/8fVsuv8co7tQqY6+s9t1P29/grra2ry7aryIvoWydj8ShYe6GqTKuyg3hb6ALXc/6lKIuj3lv7se0oq+62d2P/pParpBK4G7uOylvp8ucj9JrcC5TwKmunCUxb6dK2w/spmhOVn5lDpuCMq+BzprP1GXq7v8K1Q6fjWaPtQbdD/uGYe8Lj1DO/vilD5I5nQ/g8zmvADuujtXVY0+d/F1P0ICGL0TAAc89k6FPpD6dj/tPCS97LcbPOADfT6H1nc/iJbvvNcb7DvP528+csF4PzagSbz+DEg7nvNkPoF/eT+xPo86KstDuW4PYT59vXk/ODksPLkN+7rbtmQ+joR5P7KvkjzlszG7L1dtPlP8eD/K77c8U8M+uxVUdz5cWng/Trm/PEI2NLtbkYA+Wbl3P5P6szxLnB671zSGPu77dj8EXJo8OcICu8WJjD6NHnY/R8RuPCvgyLrjlZI+U0F1P+pjGjwTPIe63JSXPvKCdD9RsG87xnrpuW/Emj61BXQ/UZeru/wrVDp+NZo+1Bt0Pybl5LsKWAW730cHPxVUWT+OVS68xAGQOGn6hT6aEHc/gnAsvBwR/Tup0fu9Ewl+P1xezLqf8H48+FD/vgjdXT8QHMQ7dhaQPI0RL79WuDo/OykIO+yHczxPmTm/b0cwPwOGObzhTP87mt4Jv76sVz/ui3e8SzVlOps+Zb7oeHk/nRSBvMstQLs1PJC91FR/P3Jde7x0VPi7pjXzPZQmfj8zMX+8QLwfvLN5Dz5Zbn0/mSKAvE7HPrxtQSc+QoN8P+UXgbw7XlO8n8ovPkYlfD/uAny8ynBXvCkuSz5J23o/lmNpvAFBULwL9Io+7ld2P0ruRLz1DlC8/17fPiRPZj9octW736EMvPrkIz+no0Q/JuXkuwpYBbvfRwc/FVRZP+cGIjMvvP8uRHhIO7L/fz+GZiAz1BO3Ldf0Rzuy/38/1ikiM57WSDC6Bhs9C9F/P3OwDzMS36MysRH6PmxjXz+WCdEycQ/zMmsOPD+Psi0/D3LTMk73/TJw80M/ar0kP/ISADO6UsgybxIeP1FeST/MzBgzyjxWMjzeqD7YrHE/3NAZMwMVQDKQ4ps+oNhzP/W2HjM47v0xyLdVPsFcej9otx0zNBYlMv2wgT6rpnc/65QbM2ruOzKGWJA+n511P2GYFTPk22Myiem1Pv5Lbz/y+RIz0mCHMqqT0T4qkmk/GR4SM3h6iDKcptg+pfNnPzrTGTOgglYyV5yoPlm4cT+SlSEzkAhPsEjcjLxQ9n8/5wYiMy+8/y5EeEg7sv9/P9H9YrsF3xm8jSpav/bpBT/hAGe8hw6vvKfkWL8N1Qc/ayPavJex6bwXpVi/4wQIP0cD/7xs9hq9YPZpv7JNzj5Q+we9SlIZvXQxar8OMM0+lKjSvADYzLzIO1e/LUwKP5xDCbxdhw287eYyvxIWNz8Hmu463qyNOgNzBr/i2Vk/4GcaPB8t+zvNehK/u+1RP7ZehTyu13I8yrkTvzUAUT9/B648yW22PO+6G782CEs/rILFPGNc5zzgwyG/my9GPzIwvzxfIgY9GXEuv0YVOz8j0p88wYUDPZeEO79SAy4/pstkPIzS2DwMfUq/fHIcP/61BDx4uJA8aypZv5t2Bz/+lH87nUfDO8DpU7+pnQ8/0f1iuwXfGbyNKlq/9ukFP1Q7ZDzd29c7FcdfPv7HeT8FyYY8F+YhPNa7Rj6gFXs/UzOKPKvNWjw8504+yqh6P0+5iDxWiog8vfxzPr2NeD9NbH48XdWRPLeOmz7Q0nM/gqVoPEi+ejwuKME+9gVtP7dXYDzgAzo8LPHcPoXkZj+AsU88IDgmPEUJCz/D6VY/JUxaPKEX6Tuf7xA/HvxSP4E5djzUgAg71cEyP2I2Nz9fR3A8VCNSusKDbT5z/Xg/E9YnPHm6KLzj35G+k1x1P/cCLzvDxYK85P0RvxtAUj9fZbq68RyNvNmhK7895D0/MeChO3A5YbxJExi/luZNP7aeYTwwoMe7FXiivh29cj8h9YM8ZSWjOtaH2bpb938/VDtkPN3b1zsVx18+/sd5P00FIjPw+7UvKe8SO9b/fz+hgh8zBaHVMf9mMD4/LHw/eusdM8FBOjL6G5E+0oB1P9qqFjPn72Ay49euPk+ccD9taRMzTD5zMhG5tD6khW8/yzkZM8mvVTJSJJw+G85zP72OHjOM5woyk85bPlkIej88EiIzPowxMMo7jzz79X8/Z44iMyaorjG2xw8+w3Z9P1Q8JDNm2rOvgl91PKb4fz/ipxwzRDcmMotggz7GbXc/7CsXMxqxajJyHbY+H0JvP73S8DI5L9MyuqMjP+reRD+SZuAysQnrMko0PD+GiS0/eqvvMiXE1DI3DCk/NT9APyYNCTM/Vacy5DUFP4ecWj/iwhszxtVAMo4Llj6kwnQ/TQUiM/D7tS8p7xI71v9/PzZv6rsex567ylT8vpS9Xj93TpO8QIyNvL1xHL/2iEo/FYjNvEuqAL20izO/yzA2Pxg41bwjcSm9grNDv8CPJD8YeqW8vSQkvVWsT79CQBU/XltNvOxf27yaylO/g5sPP3Agt7vuKiS8y3FPvwL7FT+ayQo6l7flOsgaRL9njiQ/JvuKO7q5TDzzO1e/U48KP35j2DuhquA8swJYv7EyCT8wLFk8qOvwPHNyZL+5eeY+DvOnPFWm9jwtRWi/6HjWPpJx1DxvIg49D6hov79z1D5T8AI93r0IPXHoTL/C/xg/UkDbPA3+vDxxBSm/qA5AP2uwbDwbfVA8CHcev7n/SD9VmaM7nbWIO2/nD78EuFM/Nm/qux7HnrvKVPy+lL1eP3vjijfuVds4YfHePLrnfz9rdHA3v4MdOmPlIj0kzH8/bZ1rt2kbqDrUCks9YK9/P9UkZ7j4gAA74p5nPQKXfz+dtbu4mLkfO/ZRdz06iH8/Nd2puNLnGTsKu3A9iY5/P98SZLdR27U6HZc9PbK5fz/e5KA352SXOTHk4jzb5n8/wTHdt10rNjh8uTQ8A/x/P4vi3ri8PRo6mZzXu5L+fz+bIjO5m2LEOrc607wj6n8/99FOuWjMJjvFHjS9ZMB/PxQZRrm12mU7SZtxvXyNfz/hdTC5l4yGO7eOir1KaX8/tvI0uQppfztUUYK9sHp/P+UlN7mDFhg7FBYSvSHWfz+vi4W4yt3zOdpH9zrg/38/e+OKN+5V2zhh8d48uud/PwT1abjzUMW49ogXvyZVTj+p1KK5hpUGujRGGb87C00/KUcxurvDjrpNrBu/ejpLP6T9ibqc6Ni6dAoev2tkST/nuK26/ykGuzaxH7/BFUg/qgmnuhpgAbuOYh+/dFRIPzdFQLpBTZq6UQocv1DySj9Rdh25T8yDucIvGL892k0/r/9ANyfvpDeTEBe/Wa1OP9p5DLR13uOzfSUXvw6eTj+sPwy0hVLls3wlF78Pnk4/UQYMtEUx4rN9JRe/Dp5OP1RVDbRAtN+zfCUXvw+eTj+eGw207ebhs30lF78Onk4/yuALtC3E5bN9JRe/Dp5OP1sDDbTPweKzfCUXvw+eTj8vEYc1Lef0NXEjF7+On04/BPVpuPNQxbj2iBe/JlVOPzm4u6GSh4egDFpjvlCceT8B9qegc9+EIVOnUr5Lhno/TH46I/JFUqCuXUW+MDN7P8O22aGgV4sh2VlHvhsaez/00FKjAfOHIqFPWL4dOXo/hHOzIjp8NqIEnXG+mMV4Pzlh+SDue6ahSwuFvr40dz+mFhyhEBIoILR2jb7ZCHY/Uhofoc/yRCFvGYG+drp3P98hCqIlStygUWJVvQKnfz/TtpagieYPoknhlT1EUH8/i3mHoY25TyKGZbY9k/t+PxDt0KG0rs8grSS+Pe/kfj8IH8qheq8oItHRrT2IE38/HAWXIWN8BCFsR4o8qvZ/Pxw3GKEYtBKhn53QvRyrfj9sne8hWQ8/IQXGUb4ckno/Obi7oZKHh6AMWmO+UJx5Pwf8oiGYXgKh5xQVvr1FfT9ni62hj7RAILuR2L2MkH4/Epw7IxVCZqKJiZe9Wkx/P0uLCCNeo5eiYDKNvQ9kfz8CsBUjiOdvopcLm73tQ38/wHeWIWtnhCGxya+9Iw5/P4/gWqFs5Dkh5/TDvVHTfj+GlYmeHjFgoEfm0b3kpn4/wGtgoCpyI5/KMKy99Bd/Pzx2KCImkWyfkI5bPcihfz+ZzWwih90NoeKABD4G2X0/+BTYovXEhaEWft89m3h+P937UKIzARehfvl/PeZ/fz9on4aiAxqZoEKSTTzX+n8/nkKKohkVph9OZzK9z8F/P2GigiGfd0AgbvXTvRGgfj+8eBmiv61MIENEF74CMX0/B/yiIZheAqHnFBW+vUV9P6u6OLPASKk0bzVnPwLO2z4fAjyzTzqpNGV5Zz8qr9o+rwhFszcRqTTHMmg/cJfXPml/ZrOkZ6g0gsxqP8IDzD6zv4+zjQenNCvrbj/f47c+0Buxs8YDpTS0O3M/cqufPri9zrOx2KI0Rpd2P8eIiT4wIuKzPjqhNKGJeD+2cHU+Kp7bsxzKoTT353c/THR/PqedhbPzjac0v39tP7gavz7dxOyysTWqNBuRYT/pHvI+C0pJsmi8qjSDP1s/+CgEP/ZSgLEM16o0FN1XP2SeCT/B6z2xadiqNFJxVz/aRgo/i+IhsuLGqjQTSlo/17wFP+bbu7Kpcqo0pltfP3Qt+j6glhWzU9OpNNBIZD9qtec+q7o4s8BIqTRvNWc/As7bPmeQPjpwkeI6PBcJP+AyWD+y0h0784ilO/KFAj/HOFw/ciKJOy3NBjziNPk+4Z1fP+FTozuyoSY8zzr/Ps3nXT9s+Iw707cdPKpwBz9rOFk/rdEyO9k03DsqLw8/ZjRUP+YpijrpRjs7ogAWP6xyTz/mmRW5pG3tuQ96HD9InEo/N9uguh06hrutSCI/mfxFP81+dbtf+xu8VV8RPx+0Uj/5Q9+7wBpXvETJ9T6pimA/TV4evFEccrwqGMc+IM9rP5KPQbyiwWi8Gn6PPvSxdT/VZvC7UEI0vPo7xD46bWw/YFCEu1c/+bvgUfQ+YvZgP3gq8rokp427e7cLPx2CVj/bGSC6U2K3uvZ8Dj8zrlQ/Z5A+OnCR4jo8Fwk/4DJYP6m+vzETupsyMO6YvkBQdD98qcMxapSZMoSvor6ru3I/KWb1MWr4kzI3Gri+tOBuPzzRCjLjno4yfW7UvuLsaD/EDiEyBfqMMuaW877QK2E/lKopMkRrhzLTCwi/rNtYP1DFOTLkmoQy3VETv/BcUT8zdEoy/E59MhvPH78i/kc/CoB2MkafUzLNgkK/CnAmPw4DczJ7Ly4yblNMv+k6Gj9dPloyeL5JMqDOP7/piyk/ZMlaMgK1bDJcOiu/v04+P36gOzIeBowybQwLvwLyVj8WfCgyffqKMkcnC7+h4FY/vA05Mh51iTIkUQe/WlBZP1foHzLBgY4yzGr0vmHyYD+oPOsxF7+XMvqqtr4lJ28/qb6/MRO6mzIw7pi+QFB0P5ofDTw4X8A64ZV/Pw89Zr2rLss8Y4t6O8Sqfz8nyTW96xkgPTDnmzsYhH8/mE5BvdEePj1rdI87hkh/P9x1b73n+Co9pe44Ox0Zfz8a3ZS9yYPhPOuOmzoMBX8/9u2pvQ+CNTyJr5Y5hw1/P+uJrr1TKNG6mQtUOeJ8fj9pP969ynFGvJwyYzsCrnA/z1euvneAurztrE88Z5RXP9vmCb+13wK9CtSePGx2Tz/DrRW//lYfvYw+vjxCcE0/0U0Yv+CJL71hob48pP1PP1a6FL+f7SC9/NV0PGagWz/WFgO/Kg/9vLSY6Ttcnmg/lCfVvj7inrzr0K46TIl1P+6KkL4nOeO7h6A8uhPGfT9MkAa+mh8NPDhfwDrhlX8/Dz1mvR3QCzvmpz475NCrPkYncT8L9SA8Iu44PCJxhD7WQXc/J1bjPOVXAj3o74M+Nh53P93B3zzNXQA9Av+DPgwedz9844M8HTaXPDPcgz77SHc/g0n/O0MQGjzD+5I+UzR1P7quDTuG60k7ewS7PhtPbj+jEz65DV3uuZn73j5XcmY/V/ujuh0HLbu8AgQ/N1ZbPylr7rqlc4K7PJMDP8SYWz84cVK7sqC4u5Nc4z5XXmU/Osqgu83Q7LtJS78+R3NtP3FI2LsUNgq84gSePrN8cz9MZBm8s+xLvOegpz6j23E/HXcevC1RXbzdALY+4j1vPw00j7v3wvS76yfgPrwmZj+GHKq6DSAbu/bH6T4owWM/HdALO+anPjvk0Ks+RidxPzbyOjJ/P4cyM0UUv+OwUD+KWhgyzGmBMj+CA7+so1s/5RjDMQNYmzKYSuC+BCFmPzMvJzKLUosyOFHmvtuiZD9m3j0yFdSVMumc/75r0F0/a9M3MsAajzJx3wO/xGtbP2JmGzI/S4wy/Fb8vsW/Xj+qFRQy3KmPMl4j6r7zqWM/IZn9MYmKlDKjTs2+XYRqP1dEqDHvg5wyyzl1vgSNeD9iiogx45GfMhFYZb4lf3k/GpSMMSuYmDJWooC+8sl3P/FAwjFbHpgy/pecvo+7cz/sfDoyjXWHMsW4Eb97elI/K6tmMmRZYDJX3jG/wh04P4NNXzLAuV8yJN81v7spND9HVVwyEhFuMjqTK7+k/j0/NvI6Mn8/hzIzRRS/47BQP6ncFrzAYZw75r1Sv/5QET85MeO8NX+UPJ8sU79zdhA/iMpFvYjYPj0nRFW/j5AMPyorYr0/XT89sXZWvwCPCj+sgD+9KE7rPGJrWL/7BAg/VQL3vCJVZjxHvV2//k3/PpP6RLyzpXo7XS5mv/H73z47zds66od5t27Ebr8urLg+ZAhGPKetkznBSnq/waxWPkworjyZ6qI7Sul/v033cDxTUPA8SLfNO9/cf78pxFa8kd0OPakqtTvw0X+/wgVOvNiIFz3q90U71tJ/v7u9dLnTbQc9mygQvMqNfL9SvyM+4erQPNpfc7zT13O/pyubPqMYlzyMpRi8JB1lv1kq5D4txuo714xNuzEmWL+1Jwk/qdwWvMBhnDvmvVK//lARP8CwAz5PUjO/W84Bvp3BMD9WeQU+wL41vwb1/71VQy4/Bg4HPtDlN79Tnvy9af0rP7rbBz4P/ji/NeP6vdnPKj9KWgc+fEs4vw4B/L1OkCs/J80FPhAvNr/ySv+9yM0tPwf9Az58uDO/MIMBvp1ZMD8KlQI+dM8xv3nsAr65RjI/bHkBPihMML+GBgS+scUzP5xcAD6HyC6/MhsFvqo+NT8Jyf49vHYtv60IBr4PgjY/SmP9PSGDLL/ZsQa+Y2g3P4a//D3NEyy/Yf4Gvt7QNz+vYP09eYEsv+ayBr70aTc/MBn/PWOtLb9n4gW+D042P++5AD6vRy+/1cAEvrbDND8/AwI+zwgxv2l9A778CzM/wLADPk9SM79bzgG+ncEwPwygmDK30WWxx2k9vhOVez+0Z5gyOvxusbz3RL4xOHs//jCYMkeMd7FiBky+At56P8L4lzL+BICx7AVTvlGBej+trJcyJ4qFsVQfXL7pA3o/k0qXMp5SjLGmTWe+M2J5P7vZljJwuJOxXX9zvjKoeD/fX5YyvkqbsWf6f75S33c/LdqVMmwro7FRe4a+8AJ3PyYxlTIflKyxhzyOvlTsdT9zjZQymzC1sWxVlb583nQ/iSqUMuIuurH1cpm+bzt0P2tulTLAO6mxuHqLvlBRdj+qf5gyEiJrsfbKQb6vX3s/7ouaMqlO9bCdLcq94L9+PzMWmzJoxIOwYjNZvcujfz/MwJoy9VfRsJuJrL0EF38/cTKbMsB2ObAz2xi9WdJ/P7T0mjIPlKawiEqJvZRsfz8reJoy+LkAsTww1L1Nn34/2+qZMhO6JbHglgi+XbZ9P82DmTKNHDyx1gkbvn4MfT8tLpky9tFMsTTPKL5Zf3w/7uGYMgeZWrEnKjS+rAF8PwygmDK30WWxx2k9vhOVez8xhWYnYduupS9Rwb1i234/qsRmJ5x+mKUOmKi9kCF/PykLZydB43WlZeyHvYFvfz/+VWcnvNAgpQHLMb07wn8/SYdnJx20XKTyAHS8u/h/P2l+ZydjJqkk8wG7POzufz+LDWcnZqJzJYOthj0kcn8/PkFmJ1T2wyWFptg9RZB+P81rZSff2/ol36sKPkqkfT8JlmQno9ITJsttIz72t3w/Z99jJ06BJCZS3zU+C+57P0h6YyfuBy0mY0w/PkB+ez++AGQnjZchJtemMj7nEnw/vGVlJ/o9/CWebws+lZ19PwKCZiej5q8lqXjCPd/Xfj8n6mYnBJSJJUwamD0CS38/XYJmJynJryURWMI9Qth+P9yKZyfcBhUkj8IkPLD8fz/rKGcnYh9YJXTwbj1mkH8/HidmJ599yyVN+eA9YnN+P0NrZSc7+/olN70KPrKjfT/Sf2Yn4p2wJTpDwz1z1X4/uYhnJ/sjQyQAvlc8Ufp/P2gbZydUHWaljmh+vXeBfz8xhWYnYduupS9Rwb1i234/vncjvLj2CzzqlsS+a1psP9Dd97tGgj08ZlWjvjWZcj+Qixa7Ud+bPPtsjb65/XU/AGkFO6bV1zyYsHG+26x4P0l9oTrxROI8DoU4vsS1ez/E8rK6APLSPL9h+b1cAn4/Rvl5uwFCwTzFWYC9a2x/Pxs3z7uiSKw8JUUhPAXtfz/TIBC859eQPFPwwz2Ixn4/URtMvNRtQjzHG24+q/F4P/uRcrwyWeQ7lhI3PjfXez8QHU28DEnfO8VEFD6lRn0/iy05vMV3Bzwbwak9CRh/P3qqVrzkPSA8/X+iPmS6cj8C87C8ig+HPHZbID+dbkc/pR8UvUxR0jyjwxw/yxFKPye3KLxgnjA7KdD/Ply9XT/1/W+8973pOqtSYr70o3k/zPg0vLKV+js7aPu+bvxeP1EIurq2P108OXUyvxqDNz+FR4w8TvSdPFHISL+nrR4/uFkYPHp7jzwtrD6/+74qPzj8g7sqGFE8lrgfv5wISD9cYg68xichPEKj8b7Xq2E/vncjvLj2CzzqlsS+a1psP7ma8jLvrdAyZyYoP1cIQT/sm+sy2yvYMnhrKj8aCD8/6RTxMhqy1jL/6C4/0e06Pw9K4jKWR+4yWY4uP3pCOz+YffoybynUMh0IJD9Oi0Q/cg0BM6TawTK0EhM/VIlRP0dfCjPbsKAylO78PsWUXj8DjBQzAq5hMgYjzj7EVWo/7/gXMyL9HDKRg5U+cdd0Pxv7IzPODdAwP31IO7H/fz/FgyIzNneyLhqAkbtb/38/VqUlM836wDEsoQE+wvB9P3sHCzOkbZ4ypuL3Pvv+Xz9I8wszeLGoMjzCAz9PfVs/dgwjM20zzDG9JxI+BmF9PxAGIDNyX/CwPgNIO7L/fz8aTCAzWSHFr2smSDuy/38/DCsZMxmRVDIS06c+WttxP29rAzMtgL8ypScWP9JWTz9HPPAyxvPbMv4MLj+8ujs/kY/7Mj5txjIDYig/WtRAP4oV+zIp4MAyni4hP0PjRj+FLf0yuFTRMuXvIj/ac0U/ttbuMinpzjK5nyc/Vn1BP7ma8jLvrdAyZyYoP1cIQT/ON3a7l0mlu3/fWL9KAwg/+6mXuy0pJLz7GVC/2xEVP9RcqbszjqS8h55EvwzbIz8ojla7G43yvNFQNr9BjTM/zyJnuoRx/7xJxCe/ZzNBP7uzVTkBEu68wzYXvxxvTj/2EB06ZLDbvJcEBb/wnlo/UANOOtFSyLyh3Ou+3SFjP2SfXTn5S7G8gMHZvmugZz8asV677DeOvO4Jr75NiHA/XDCJuwumWby2R8i+BpNrP0/aUrvGQja8Jv8Av60aXT//Ebg5DVdAvHV6Pb9xHiw/lDGiO7NDfLzdF2S/J1DoPm1wEjx4UOS8GTZmv4Jz3z7593Y86sEzvY85Z7/icto+XYD6OL2XH7z6xWW/pLDhPo/bP7kcNi+6FHRzvzhSnj6dg1C793uOuqyTc78QjZ0+nzY5vMtzVLp6PWa/Y8LfPqkd7bxHHSI7SblPv/hvFT9TtbK8y3WFOZPVSb+vYB0/2NgZvNX7S7uK+VG/uGwSP5I8qbuk0pK7rgtav4wfBj/ON3a7l0mlu3/fWL9KAwg/qv61PTiF9jxFQiq/C6k9P7NXsD3MSZ08f288v9zOKz+zA0M9Idi1OjdrRL91uiM/KSxfPPopM7wJ0ke/O/YfPwrdVjwZuEG8G5hSv/d7ET8WVl08AYQevJQ7ML9Fojk/ZmiEPIRGhLs3mr2+88JtP62Qhjx3Oc06sU8xvaO5fz+aSYI80w2+OpJFGz2IyH8/GohjPF6EmLsOxmw9X4t/P1R0QzxFvEy8NaPZPRGDfj9TeDk8op2PvNFAHD4Y8nw//RtDPLKvlbyCOUw+gMt6P4M8XTz/45u8FFyWPp+jdD/GK388n0S5vLuSxT4+EWw/T1eLPAT18ryRhdg+E9FnP/Q3eTzVcQG9LrS7PrkBbj+N0J88QQFOPLcxKz0RtX8/pPvsPJ2otjx1rAy+gGZ9PzaQGj3PTvc80SVpvhP4eD/UqCs97x0TPQUucL4IdXg/htI9PfW/DD1NI6C+EbVyP3bFZT1F2gU9i4rhvsA4ZT8gN5M9bNj+PGj7E79P7k8/qv61PTiF9jxFQiq/C6k9Px2VKDM4lh8zKEs2P2+8Mz8k8eYyF5rQMmmRPz8R0Sk/cyrYMjos7DL5ZDs/UGkuP1LY8TJdGtYyBYspP2rPPz9O9PwyC2vJMvkgID+cvEc/w7IFM3I8tzJcvhA//SZTP9z3DjOUopgyccLwPkfuYT/yExgzCotgMvNrsT5lI3A/m8YZMwCeSDI3tpw+s7ZzPwQ2GzM1dEcyoTeUPuEJdT8Qbx8zFVAFMl6EgT6BrHc/3DMfM3IbHDJtZ3M+qal4P8WwHjNp6EIyJ1aTPt0rdT/swRQzbZFjMr22sj4L5m8/TVkYMyApbTLu0NA+wL1pP7kf8DJheZAyorv1PpCWYD/EHA4zK+BzMtyoAT9rvFw/bhwNMzDbrjIx1AY/9p1ZPy5pBTMEQZ0yiqgNPwI8VT/HSxEzSc5+Movy0z4aCWk/LiAHM0N7EjIJ7YU+QxZ3P2bgCTNrWJIyRtzHPrywaz+qaQQz3nK9MlJvCT8P+1c/AYvWMogVujLgvCc/EWRBPx2VKDM4lh8zKEs2P2+8Mz8tCaw9NvZAvO7lfT+F/cO9+nehPfigDLy6zHg/bxFjvr+sGT0kTi271SVrP4x7yb6Au9Q6Ywm+ufY1VD/FLw+/WI/vOmGCP7qyq0Y/4nIhv93NUThEgSe5iPwpP9hqP78i1Dw5Wa4Uueo4Aj+NZ1y/OWlROA/oobc5S7o+33Nuv4ucXzk3/8O6ExehPqf/cr/Ious5Un0GvIz6nT4BgHO/31yJOjwdi7xHI58+B0hzvyCWDjs/n7m8sECrPlgvcb8j8q474iDAvLyNzD7OmWq/nOM9PLIyvrzu1fQ+Hrxgv13dozxy6sG8YDINP5VkVb9D5u88njTQvEXaHT+8S0m/Yp/YPPkm8bzBpyo/YI0+v9/UvDrrfCQ8io9RP/sDE7/FGXs8qquhPHkJaj+HF8++5Y4RPWQWPjwm13M/6r2avufFOT2DzHu6q3l1PwZuj75dcUQ9p/GluV8nez8+IEC+45ZiPTdbIruuan4/gSDFvVvKjD3hrvC7Ye1+Pz0xdb0tCaw9NvZAvO7lfT+F/cO9bOdCMxJQTTK6Y4I+M493PzcWQzNLhEoyN52APpzKdz/2jkMzMhpDMsnPdz73Y3g/cUREMxtcNzKW5Wg+d0p5P2w5RTNqHiYyjf9SPqeBej8sdEYzRMEMMkPIMj5sEXw/RaVHM9AY3THlaQw+9JR9Pxl4SDPmtqYx7MDTPcCgfj8V4EgzJsKDMdJapz3TJH8/0g1JMyH2YTH2gI89615/PygjSTP+G04xbuWCPQF6fz/cM0kz6Bo9MboxcD05j38/I0dJM/dSJzFAh1Q9uad/P0BXSTOFqxIxfUs6PS68fz/GYUkzQ2kDMX/qJj2QyX8/AGZJM7GR+TCLfx496s5/PwpZSTNkMxAx5Cg3PXK+fz+aLUgzX8S7MdZ97j0fQn4/ezZIM9thuTEHd+s9aE1+P6A/SDND5bYxbk7oPQZZfj9KREgzzZ21Mait5j3zXn4/yJpHM7By3zFG6A0+pod9P7LWRTO0/BkyzpZDPmxJez9vp0MzJ5BBMg/bdT4Pg3g/bOdCMxJQTTK6Y4I+M493P+cZCbSntuyz0c8Pv7zJUz8KTwm0Rjvss/QuEL8DiVM/H4UJtFG967PajxC/10ZTP3i7CbREPuuzT/EQvwcEUz9j8Qm0yb/qsxVSEb9uwVI/BycKtG5B6rN1shG/2X5SP5RcCrTowumzuBISvxc8Uj/OkQq0qkTps4FyEr9p+VE/oMYKtOXG6LOl0RK/7rZRPzX7CrRRSeizbDATv3R0UT9fLwu0Qszns4iOE78zMlE/rmMLtGFO57P+7BO/cu9QP5OJC7Tq8uazejEUv+S+UD9AnQu0V8PmswtVFL+gpVA/AscLtCFe5rOXoBS/1m9QPwkqDLT9bOWz61MVv4LvTz+ZOA20i9His4I/F78Di04/CyUItETp7rOFGg6/HfBUP7ouCLQz0+6zySsOv5fkVD+zQAi0L6rus9NLDr8uz1Q/w1sItFBs7rMefA6/265UPwKFCLTlDe6ztsUOv3t9VD/fuAi0t5bts1MiD78kP1Q/+fAItDwV7bOjhg+/W/tTP+cZCbSntuyz0c8Pv7zJUz+1VleaAwp4G34ZVr6JV3o/yxepGUeKiho9ZU++xrF6P2zpHxp9vsKalK5CvrFUez9PuEuZ16XEmGDpJL6MqHw/UZJhGYL5CRp6Vs29xLV+P6PPA5m/EZ4aeNqCPKT3fz/7UYEaAktPmouGGz61B30/SZoOGhptmhgaRoA+5tV3P3hb45gcRQqbSVaEPgdNdz+mJE+a/aJoGImGXj7d4Xk/S4EOGoGQnprkqyg+0oB8P4edvZm9G4eaD5wEPiPYfT+fOJEZVyGBGW6gJD6Fq3w/UFozGggSPBq5wIQ+wz53P7eMIhqAmIcZWju5Psyobj8TaO6Ym4B5GtG70j6DT2k/+o1lGT3smRqLBsA+LVBtP1MpeZh1whYa0VNHPmcaez/VazoZT9i0GeY1RT3/s38//UH/GJDmORm3A+S9j2h+P2W4eBreqKIaQv9Gvpgeez8th2aZ5ZZImnX0Tr6Zt3o/R9USGiZM9ZgTgVG+tpV6P5qpyRl2AkmaBGZSvrmJej+1VleaAwp4G34ZVr6JV3o/lcVnG+NnthtZdn++1ud3P+HwOxonmY8aBKcHvmi+fT8kUAaagIqdmShtDbyP/X8/jq/+mTlBT5g5Qc89jq9+P/bBAZnqn8yZFeQWPpg0fT95GFiaJo7GmSCQIT4ny3w/UekoGo8kuBoqIiU+O6Z8P0Wng5oHXuUaMN0oPsN+fD/IDHaahuImGmwtNT4O9ns/3sOwmKF13JZ1v0k+ePt6P5dmyxmMEEoaLlxePjjkeT9J3+iZlXcxmPPYaj4uLXk/oX/LmGYrKZrPLlc+rEh6P6/PQZlQzsEYvhcUPgVPfT+BS4gawTyNmVwEaT3elX8/JPODGl192pc9LuO8y+Z/P1I/FhnjNM8a2ozPvZeufj/mzqwZEZ7QmOb2Fb8Wek8/t5FRmrh4PZpQkQG/PspcP6EIB5qGoEcYjLnOvps0aj9KCSOYnOSEF6o5pL5HeXI/aMfKGedWoplBBpO+2jd1P+LZD5roZ9iZTgaNvvoYdj+ec38ao1eFmQNOhL4iTnc/lcVnG+NnthtZdn++1ud3P4bNA7RhoZ00GbZ7P7GmOj5USdKz/o+iND32dj982IY+alWZs/N+pjQNN3A/ZgGxPlwZPbNzNak07o9nP6ZP2j6/xaiynoaqNDB6Xj8OTP0+IAcsMbXYqjTpH1U/zdINP4lJxTIBaKo0lY9LPws9Gz83Yi8zfnCpNO96Qj88eSY/CSxtM45CqDR+qjo/2DAvPw9UkDOO/6Y0F84zP705Nj+cRqMzb+elNCuMLj+CRDs/yt+sM5BLpTTX0Cs/7sY9P8B5rDM6UqU0H+4rP2isPT9asacz4qClNNNLLT8bbTw/2rGdM7o9pjRcHTA/aMs5P9oAjTP7LKc0m7U0PylUNT/5KnAzjjGoNIpGOj8bmy8/7fUrtPijkzSdp38/96hUPW1QMLTmWZI00tJ/PyURGD027jS0ju+QNCfxfz+RXa48Vzc3tFU3kDQi+n8/wz1bPPuVMbRd95E0ydx/P0ZCBj2SuyO09vWVNIwwfz8M06I9gO4QtPS4mjQUc30/cy8QPobNA7RhoZ00GbZ7P7GmOj5ilOG8T/3tvc5YLD9Kzzo/VNThvFNK6r3nois/CIk7P5iUEb0fIda9KLUZPwLCSj/z9yy9pByovRQw8T6dk2A/DM8zvXXFj7243M4+xTZpP7rhMr3TEoS9kfG+PmqxbD/32gu9sM9XvQVSyD44C2s/3v7NvFAiIr2zvsw+I1VqP2x3orx+OQG9phbPPkTuaT8oOGi8yrC+vADG1T54g2g/apHzu86bUrzV/uA++exlPzaufLp13ea6tFDvPkBQYj9WCmQ7O27vO3otAj/Ra1w/ko2OO5ApNzxxthE/W3ZSP1qhbTvb6kY80HsiP5vMRT/00S47xyxJPOUSMT9L2jg//uTdOxW70DxaUCg/h8VAP5wPIrxy8rq8dtgJP/SfVz8b7le87kXivGyyAj/i+1s/EfjHvPnCNb1tXOs+ePpiPwX3Cb1k2mC9JNPTPsF6aD8zehK9EkOIvSHc7D42ImI/L/gOvdsRt728ghA//+BRP/xv97wg9eG9+eMlPyHEQD9ilOG8T/3tvc5YLD9Kzzo/S4QxMv1PmzJVuyS/MPVDP+RfEzLzh3cy8FMVv3/vTz900AAyWSixMlCly74A4Wo/i0OGscIdizKQWWa+UXB5P/OhhjGcYIUycvNlvjV2eT8XOicwOAKxMjhIiL7Bw3Y/3siDMjSQdDLPwOK+aoZlP2vSkTIUHYgycxoQv/yWUz/RUFMypLCLMrqAHb9d0Ek/ZGYkMnY8RDJlZiS/eDxEP0DopTLLlnUyosYpv6iaPz9DU0wyHrZaMtLNML+EIzk/DzBrMqX+WDJ0Jjy/hpgtP3pXSTKY/xwyeE5Kv5/eHD9sVokybn71McwTWL9qSAk/fBSdMiChsDEeE2S/i4joPtCZiTIYiRQyDetrv0/Ixj55iTgyNZ+MMl+MWr9jUAU/f5iYMvfioTEjVEO/LHolP1chkjJAz4Iy0r0av1zwSz8fZC0y2hr9MWjp6r7sdmM/cpgGMqTfajLMb/6+5yZeP1dIezKVLi4y5M4Xv7ghTj/t6e8xN9w/MqMMJb+6sEM/S4QxMv1PmzJVuyS/MPVDP6y/Nr2vQ6m92CddP6dc/b7hW0O9wJaUvbCDbz80Nq++jPc2vXVPj72fVX0/z8vwvd/aJ73uBpG94LJ+P511cD3nyCu9u9aNvQQCfj/huME97YgwvcFog70EKn4/58S6PRzJR70mkma9nT9/P7VTkTz3hVm9BvpOvcI6fz92ss68B8NbvYmZN71ESX8/5cfVvL2bXb1iWS69oVl/Pxg1lbxy6Ga90NM0vbZPfz/8aYC8nNF0vSahP72nMH8/JD7BvOcngL2d/j299fx+Py7aLr1ppH29xegjvXjGfj/3SIO9QIhuvbLyAL0GZH4/9eS4vZ2NVb0escG85Vd9P331Br5TpTe92AXVvOrUdT+ZYYy+mFZgvVjhDr5aNwo/hAlUv2bwxrxIqwu+5JwJPxPvVL8Hxj47ZHUEvuE6Fj8Dn0y/+EKRPHroAL4UgyY/ULQ/v+onrztyufe9bSQvP+ceOL8zZpi8kczevcyaOz/g4Cu/wD8bvT2mvr0EP08/ZRAUv6y/Nr2vQ6m92CddP6dc/b5wlYU9AdoePj5ACj++G1M/3puDPZkzHT6GoAo/UPVSP6EzbD1z7SA+2eQTPyCETD9qnEo9RkQjPiEfHj/RvUQ/klgzPb0MHz7iWyM/w7lAP0PoID0OjBo+/lgnP/SRPT+x8iA9b6wZPtEWJz+a1z0/nn5CPfEAFj5f8hs/jydHP4DjZz3Y8QM+SFIHP7FNVj+h9mg9ybDQPVO55T6S02I/6iFMPbJPoD0EUMs+Pb9pP/yOND0dbYQ9Ugq9Pg4RbT/koyA9fslxPcnUwj5pC2w/efniPFgmOz3+TNc+1NxnPzLQgzxwXew8OGDoPj71Yz99XQk8f5iAPHOw7z5RK2I/BjYrO0mruTuu4wg/KVJYP1R0+Tz1tk0+Koc4P1ylKT+1ELa6lppkPtlwTz9xswo/sqrevFCzgT42xFo/urfnPpCTpLwPj4I+VnZXP1KC8z50Vm08weFjPjEyRT9g8Bg/PYAtPQRTQz6giCw/zmM2P3rPcz0HWik+JfMUP0FJSz9wlYU9AdoePj5ACj++G1M/Fq76MTWhjDIkFgy/NUVWP+8qtjFlrJ4yUhoDv8XhWz+7EgYyfg2MMkjMA79Hd1s/6TaDMqGmVjIVfQW/FnFaP7SjDzLI2p8yxe4Dv41iWz/Z1gwy+hRSMmVSAr9+WFw/O9eBMaPEfzKGkPK+lHJhPwOuxTBHR7Ay8qLDviCTbD98sgAxXsCnMjcbkL6fpnU/HFfCMUApqTKhVo2+dQ12P1gsDDK3W5Yya+e3vnzqbj8gdUoyFmWJMkvB4L4PBGY/vp6JMteRWzJeZAC/xnldPw6zojFJZIoy+0ENvwCAVT+Cz2sy8FmEMtH2Eb94T1I/B9ARMl5qUjIH0BG/XmpSPycnazJwRWIy1s4ovx11QD/MZ1wyEGE5Mn3qQ78PyCQ/q3KMMmCaTjENfEu/pFYbPzygmDKmQiAyseVRv8SOEj/xMAkyvjF7Mg47Ur83FBI/klSeMqbxbzL7IEm/cmAeP/TWLTJUbW4y/Xo2v96LMz8AxiQy4JuKMgkWHb90I0o/Fq76MTWhjDIkFgy/NUVWP1O6F71P2Jq9Z1oxv6dZNz/VyxS9rh2OvVEZPr98SCo/SxAivTTyeb19LEq/4O4bP09pL73jqE69jbtWv+VXCj/2TTO9VtwdvUj2Yr879eo+aGE4vQJ5Er2ug26/HKK3PoUCQL0ptSO9fst4vwTXaD7Sbjq9QnYkvai+fr/77589ElYlvX61Cr2Hd3+/v2UYvRW9HL1eVQW9JC1/v7jQf73XYyq9Ai4gvc17f78LZ+O8HVU0vZhvI70oiX+/PwoevHsAKb1Ef+i8joJ/v0ihFL3Rwi29zrvGvDKcfr/4J7y9KwxDvRoJ4bwwdny/Tw0gvg1RVr0vtAe9HaV6v7t2Rr557Vq9fqgKvS6Xfb+7lPi9KFjvvbCLgb2nh2G/+oHoPmnR/L3DCKe9exVWvxoqBz+LDQC+K8rbvQcgRL9ICB8/IMzgvdE05L29kjG/UQA0P+bArL1G47i97NUkv7xMQT9oNXu90JemvWzxIL+YXUU/QNAzvcBPoL1Mvie/NQRAP1O6F71P2Jq9Z1oxv6dZNz/SbzA+JJAvv5pvML4lkC8/jXoqPjvuL79Ueiq+PO4vP21PJz7fHjC/N08nvt8eMD8nXSU+Rjwwv/ZcJb5GPDA/QPciPgBgML8N9yK+AWAwP/b9Hz6KizC/vv0fvouLMD/0Th0+HLIwv8lOHb4csjA/zIQbPnPLML+hhBu+c8swP726HT4brDC/krodvhusMD8IMSk+GwIwv90wKb4bAjA/KzE4PoQQL78JMTi+hBAvP5pzQT5wcC6/gXNBvnBwLj8uY0I+yl8uvxtjQr7JXy4/4z1CPmNiLr/NPUK+YWIuP1TTQT7MaS6/NdNBvsppLj8FA0E+PHguv+cCQb46eC4/Saw6PnXmLr8rrDq+c+YuPyHhcT7jniq/8eBxvuOeKj/fa24+suwqv69rbr6y7Co/3LloPhtqK7+suWi+G2orP8kNYT63DSy/mQ1hvrcNLD8RXVU+Yvssv9pcVb5i+yw/9qxGPmUSLr+/rEa+ZRIuP5RpOD7ODC+/XWk4vs8MLz/SbzA+JJAvv5pvML4lkC8/UFCuNb5pxEEHPCRCw0CtNb5pxEGamCRCLzGsNbxpxEEt9SRCoyGrNb1pxEG/USVCGBKqNb1pxEFSriVCiQKpNbxpxEHlCiZC9fKnNbtpxEF4ZyZCYuOmNbtpxEEMxCZC2NOlNbtpxEGfICdCRsSkNbtpxEEyfSdCVrKjNbtpxEGV2idCI3+kNbppxEHElCdCE8ClNbppxEFcJydCAAGnNbtpxEH0uSZC80GoNbxpxEGLTCZC5IKpNbxpxEEi3yVC1sOqNbppxEG5cSVCvwSsNb9pxEFVBCVCs0WtNbxpxEHqliRCooauNb5pxEGDKSRCjsevNbxpxEEavCNCgQixNbxpxEGxTiNCdUmyNb5pxEFK4SJCY4qzNb5pxEHicyJCU8u0Nb9pxEF5BiJCPQy2Nb9pxEETmSFCh1C3Nb9pxEGGKiFCfvC3Nb1pxEH98yBC4vu2Nb9pxEFjRyFCgxC2Nb5pxEGdlyFCLyW1Nb9pxEHY5yFC1Tm0Nb5pxEESOCJCeU6zNb1pxEFMiCJCF2OyNb1pxEGM2CJCxHexNbxpxEHEKCNCboywNb5pxEH/eCNCCqGvNb5pxEE+ySNCtLWuNbxpxEF2GSRCWsqtNb1pxEGxaSRC/N6sNb1pxEHtuSRCpPOrNbtpxEEoCiVCSwirNbxpxEFjWiVC9ByqNbxpxEGfqiVClDGpNbtpxEHa+iVCO0aoNbtpxEEUSyZC4lqnNbxpxEFRmyZCiW+mNbxpxEGM6yZCKoSlNbtpxEHHOydC05ikNbtpxEECjCdCYKOjNbtpxEGu3ydCmjSkNbxpxEEtridCYxilNbtpxEGGYCdCJ/ylNbxpxEHiEidC4N+mNb1pxEFAxSZCpcOnNbtpxEGYdyZCZ6eoNbxpxEH1KSZCKYupNb1pxEFT3CVC726qNbxpxEGqjiVCr1KrNbxpxEEHQSVCejasNb9pxEFj8yRCOBqtNbxpxEG8pSRC+P2tNbxpxEEYWCRCvOGuNb1pxEFzCiRCfsWvNb1pxEHQvCNCQKmwNbxpxEEqbyNCAY2xNb5pxEGGISNCzHCyNb5pxEHg0yJCjFSzNb5pxEE7hiJCSTi0Nb5pxEGZOCJCEBy1Nb1pxEHy6iFC0P+1Nb5pxEFPnSFCl+O2Nb1pxEGoTyFCUdm3Nb5pxEHk+yBC66S3Nb1pxEHADSFC5Yi2Nb5pxEGTbiFCV3m1Nb5pxEEmyyFCxGm0NbxpxEG5JyJCO1qzNb5pxEFLhCJCq0qyNb5pxEHg4CJCGTuxNb5pxEFyPSNCjCuwNbtpxEEDmiNC/BuvNb1pxEGY9iNCUFCuNb5pxEEHPCRCE45kPr9pxEGLNCBCIaUmP79pxEEuxSBCeZCEP75pxEFGhCFCF9WdP75pxEHuaiJCobqNP71pxEG2CyRCzKM6P7xpxEGxvydCeSuWPrtpxEF4yidCoRcmvbxpxEElSSVCF9GavrxpxEEsiCRCbe0Pv7xpxEGSZCVCtmxJv7xpxEHFoSZC5J5yv7tpxEGzyCdCu6+Cv7tpxEH5ZShCRuZyv7tpxEGGdydCLyZAv71pxEEDLSVCvlb0vr5pxEG5hSJCS1Izvr5pxEFGiiBCE45kPr9pxEGLNCBCV7LCNUk0uEGsFAdCFvK/NSw2tkHmgQZCpFq/NVeetUESiwZCZ7q9NY5atUH7MwdCQO+1Nfjjs0HvqghC0vqiNVyvr0Ft7gpCUySJNav+qUHQ3Q1C/q5iNeFopUHPQxFCsRRSNeGnpkHGihVC1/N4NanmskFl2RtCjrSiNUhDxUH0RiJC1oLKNYQ91UHv+iVCFVL1Nc4M4UEMsCRCt38WNpOU7UGV5R9CI5ouNtGc90GO4xpCD7Y5NkC3+0EIKhhC0g4oNpMr80HCchtCdDcZNkhjA0KvlzJCI0QfNjGkA0LuTy9CAsIlNsdiA0JTyipCxL4rNtpvAkKXQCVCf6UhNuov9kG1zhxCEKcGNq8720HIgxJC1SLWNZ1rwUHB6QlCV7LCNUk0uEGsFAdC", + "byteLength": 119904 + } + ], + "images": [ + { + "uri": "", + "mimeType": "image/png" + } + ], + "materials": [ + { + "name": "fox_material", + "pbrMetallicRoughness": { + "baseColorTexture": { + "index": 0 + }, + "metallicFactor": 0, + "roughnessFactor": 0.58 + } + } + ], + "meshes": [ + { + "name": "fox1", + "primitives": [ + { + "attributes": { + "POSITION": 0, + "TEXCOORD_0": 1, + "JOINTS_0": 2, + "WEIGHTS_0": 3 + }, + "material": 0 + } + ] + } + ], + "nodes": [ + { + "children": [ + 1, + 2 + ], + "name": "root" + }, + { + "name": "fox", + "mesh": 0, + "skin": 0 + }, + { + "children": [ + 3 + ], + "name": "_rootJoint" + }, + { + "children": [ + 4 + ], + "name": "b_Root_00", + "rotation": [ + -0.7071080924875391, + 0.0, + 0.0, + 0.7071054698831242 + ] + }, + { + "children": [ + 5, + 15, + 18, + 22 + ], + "name": "b_Hip_01", + "rotation": [ + 0.12769094176175547, + -0.6954820192393762, + -0.12769022650601444, + 0.695481840425441 + ], + "translation": [ + 0, + 26.748403549194336, + 42.93817138671875 + ] + }, + { + "children": [ + 6 + ], + "name": "b_Spine01_02", + "rotation": [ + 0.0, + 0.0, + -0.5904157638238317, + 0.8070992664030376 + ], + "translation": [ + 12.850601196289062, + 0, + 0 + ] + }, + { + "children": [ + 7, + 9, + 12 + ], + "name": "b_Spine02_03", + "rotation": [ + 0.0, + 0.0, + 0.017411952404281082, + 0.9998484004655261 + ], + "translation": [ + 21.65575408935547, + -0.000118255615234375, + 0 + ] + }, + { + "children": [ + 8 + ], + "name": "b_Neck_04", + "rotation": [ + 0.0, + 0.0, + 0.30337914028264346, + 0.9528699267168443 + ], + "translation": [ + 25.64914321899414, + 0, + 0 + ] + }, + { + "name": "b_Head_05", + "rotation": [ + 0.0, + 0.0, + -0.4002854151487349, + 0.9163905206947555 + ], + "translation": [ + 13.376960754394531, + 0, + 0 + ] + }, + { + "children": [ + 10 + ], + "name": "b_RightUpperArm_06", + "rotation": [ + 0.0004673273262011562, + -0.0004461484692255928, + -0.7121792881110691, + 0.7019973248825985 + ], + "translation": [ + 18.677913665771484, + -4.297340393066406, + 6.9675750732421875 + ] + }, + { + "children": [ + 11 + ], + "name": "b_RightForeArm_07", + "rotation": [ + 0.0, + 0.0, + 0.03712589977348744, + 0.9993105961441663 + ], + "translation": [ + 23.04512596130371, + 0, + 0 + ] + }, + { + "name": "b_RightHand_08", + "rotation": [ + -0.012037406914797018, + -0.00782221012465276, + 0.4605623277185148, + 0.8875112709988741 + ], + "translation": [ + 19.350055694580078, + -0.14598655700683594, + 0 + ] + }, + { + "children": [ + 13 + ], + "name": "b_LeftUpperArm_09", + "rotation": [ + 0.0004972619220940174, + -0.0008821923166442875, + -0.7120874929914663, + 0.7020900061903927 + ], + "translation": [ + 18.67791748046875, + -4.297344207763672, + -6.967987060546875 + ] + }, + { + "children": [ + 14 + ], + "name": "b_LeftForeArm_010", + "rotation": [ + 0.0, + 0.0, + 0.03712589977348744, + 0.9993105961441663 + ], + "translation": [ + 23.045124053955078, + 0, + 0 + ] + }, + { + "name": "b_LeftHand_011", + "rotation": [ + 0.01651791440721507, + 0.014013739873997781, + 0.46007557521271, + 0.8876154790736099 + ], + "translation": [ + 19.350051879882812, + -0.14599037170410156, + 0 + ] + }, + { + "children": [ + 16 + ], + "name": "b_Tail01_012", + "rotation": [ + 0.0, + 0.0, + 0.9818928940656295, + 0.1894369145214904 + ], + "translation": [ + 4.2603759765625, + 15.958770751953125, + 0 + ] + }, + { + "children": [ + 17 + ], + "name": "b_Tail02_013", + "rotation": [ + 0.0, + 0.0, + -0.0696171663387466, + 0.9975737818081244 + ], + "translation": [ + 12.411918640136719, + 0, + 0 + ] + }, + { + "name": "b_Tail03_014", + "rotation": [ + 0.0, + 0.0, + -0.05383274484207684, + 0.9985499664927979 + ], + "translation": [ + 24.24032211303711, + 0, + 0 + ] + }, + { + "children": [ + 19 + ], + "name": "b_LeftLeg01_015", + "rotation": [ + 0.0, + -0.0001717522536559936, + 0.9700158834020681, + -0.2430414706359161 + ], + "translation": [ + 4.813770294189453, + 5.154018402099609, + -6.968006134033203 + ] + }, + { + "children": [ + 20 + ], + "name": "b_LeftLeg02_016", + "rotation": [ + 0.0, + 0.0, + -0.36804378855511655, + 0.9298084586117706 + ], + "translation": [ + 18.944175720214844, + 0, + 0 + ] + }, + { + "children": [ + 21 + ], + "name": "b_LeftFoot01_017", + "rotation": [ + 0.0002484105929664666, + 0.0, + 0.4584841122585099, + 0.888702569535333 + ], + "translation": [ + 17.942811965942383, + 0, + 0 + ] + }, + { + "name": "b_LeftFoot02_018", + "rotation": [ + 0.0, + 0.0, + 0.5472882949090243, + 0.8369441571906533 + ], + "translation": [ + 15.779938697814941, + 0, + 0 + ] + }, + { + "children": [ + 23 + ], + "name": "b_RightLeg01_019", + "rotation": [ + 0.0, + 0.0, + 0.9699585942054535, + -0.24327006705918533 + ], + "translation": [ + 4.813777923583984, + 5.154026031494141, + 6.967563629150391 + ] + }, + { + "children": [ + 24 + ], + "name": "b_RightLeg02_020", + "rotation": [ + 0.0, + 0.0, + -0.36804381432052885, + 0.9298084484131106 + ], + "translation": [ + 18.944183349609375, + 0, + 0 + ] + }, + { + "children": [ + 25 + ], + "name": "b_RightFoot01_021", + "rotation": [ + -0.00015345455876803163, + 0.0, + 0.4579093746168346, + 0.888998864504178 + ], + "translation": [ + 17.94281005859375, + 0, + 0 + ] + }, + { + "name": "b_RightFoot02_022", + "rotation": [ + 0.0, + 0.0, + 0.5472882949090243, + 0.8369441571906533 + ], + "translation": [ + 15.779935836791992, + 0, + 0 + ] + } + ], + "samplers": [ + { + "magFilter": 9729, + "minFilter": 9987 + } + ], + "scene": 0, + "scenes": [ + { + "nodes": [ + 0 + ] + } + ], + "skins": [ + { + "inverseBindMatrices": 4, + "joints": [ + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25 + ], + "skeleton": 2 + } + ], + "textures": [ + { + "sampler": 0, + "source": 0 + } + ] +} diff --git a/demos/model3D/files/face.obj b/demos/model3D/files/face.obj new file mode 100644 index 0000000000000000000000000000000000000000..a2e82ee9cb6dd5a9fc6cb612dfea0bd5e7eab162 --- /dev/null +++ b/demos/model3D/files/face.obj @@ -0,0 +1,2471 @@ +#### +# +# OBJ File Generated by Meshlab +# +#### +# Object face.obj +# +# Vertices: 845 +# Faces: 1610 +# +#### +v 54.126293 -49.502399 71.230705 0.384314 0.254902 0.200000 +v 51.424591 -54.578999 75.431709 0.337255 0.227451 0.172549 +v 44.556496 -61.237099 65.307907 0.384314 0.254902 0.192157 +v 18.416197 -75.205498 35.343601 0.529412 0.376471 0.298039 +v 13.523697 -77.731102 34.633598 0.513725 0.364706 0.290196 +v 11.454597 -74.201599 29.775103 0.639216 0.454902 0.372549 +v 5.855427 -77.386299 30.315100 0.603922 0.435294 0.356863 +v -0.378855 -77.287903 29.743700 0.611765 0.443137 0.360784 +v 6.812867 -79.041397 33.545300 0.505882 0.368627 0.298039 +v 21.881296 -70.810898 34.982002 0.588235 0.415686 0.329412 +v 17.653797 -69.034798 30.263802 0.674510 0.478431 0.388235 +v 39.436996 -66.435501 64.968597 0.164706 0.109804 0.082353 +v 33.808598 -70.338699 57.717205 0.364706 0.247059 0.184314 +v 31.909595 -68.409302 47.974705 0.439216 0.301961 0.227451 +v 38.451797 -64.744904 55.703503 0.427451 0.294118 0.219608 +v 28.802397 -72.939499 50.408905 0.372549 0.254902 0.192157 +v 22.955397 -75.486603 43.228905 0.400000 0.274510 0.215686 +v 26.511995 -70.622101 41.049904 0.494118 0.341176 0.262745 +v 24.465696 -76.217796 49.972805 0.345098 0.239216 0.184314 +v 15.571197 -78.986099 40.602001 0.396078 0.278431 0.219608 +v 17.437696 -79.466103 47.124001 0.352941 0.247059 0.196078 +v 28.846695 -74.018898 56.477203 0.164706 0.113725 0.086275 +v 9.321696 -81.938202 48.001999 0.172549 0.129412 0.105882 +v -0.898453 -82.647102 47.089699 0.172549 0.129412 0.105882 +v -0.725759 -82.110100 43.572498 0.400000 0.301961 0.254902 +v 18.763496 -79.316498 51.133400 0.172549 0.117647 0.094118 +v 8.731546 -81.557503 44.441002 0.392157 0.286275 0.235294 +v 27.614496 -65.079002 38.432205 0.596078 0.419608 0.321569 +v 33.274998 -61.490501 43.398605 0.568627 0.400000 0.301961 +v 38.784996 -60.440899 50.047802 0.513725 0.356863 0.266667 +v 42.862595 -58.651798 55.019802 0.490196 0.337255 0.250980 +v 7.726847 -80.575996 38.638500 0.415686 0.301961 0.247059 +v -0.490965 -80.930901 37.912300 0.427451 0.317647 0.262745 +v -0.419731 -79.354401 33.152100 0.513725 0.376471 0.305882 +v -0.332592 -73.782600 27.050400 0.705882 0.505882 0.415686 +v -0.212143 -66.515099 24.546000 0.815686 0.584314 0.501961 +v 11.557498 -67.907898 26.621702 0.749020 0.529412 0.443137 +v 23.830296 -66.563599 34.771904 0.631373 0.447059 0.352941 +v 35.915897 105.133003 38.176804 0.219608 0.152941 0.117647 +v 36.548496 101.879997 36.786003 0.454902 0.309804 0.235294 +v 27.391598 102.010002 31.503502 0.278431 0.188235 0.141176 +v 59.787598 -0.163902 47.832703 0.611765 0.403922 0.321569 +v 50.721996 -9.559180 38.382904 0.721569 0.490196 0.403922 +v 52.439697 -0.358719 38.911705 0.741176 0.501961 0.419608 +v 29.889196 -56.737301 37.395603 0.662745 0.470588 0.360784 +v 26.097795 -54.826500 33.666504 0.694118 0.486275 0.372549 +v 26.293499 -49.727501 32.217205 0.717647 0.501961 0.388235 +v 25.434498 -44.035900 30.291403 0.729412 0.509804 0.400000 +v 31.436096 -44.876701 34.064003 0.737255 0.533333 0.411765 +v 32.500095 -51.078300 37.202503 0.690196 0.490196 0.376471 +v 21.003098 -62.278099 31.444601 0.705882 0.501961 0.400000 +v 26.550097 -59.714100 35.467205 0.666667 0.474510 0.364706 +v 44.267796 -52.222500 50.556103 0.552941 0.384314 0.290196 +v 44.155598 -45.754700 45.234005 0.607843 0.423529 0.325490 +v 39.424698 -54.441200 45.685303 0.588235 0.411765 0.309804 +v 42.849094 -40.630600 40.559803 0.662745 0.462745 0.364706 +v 38.941998 -42.900600 37.800304 0.713725 0.505882 0.400000 +v 52.563396 -19.698900 43.829704 0.650980 0.443137 0.356863 +v 46.654697 -16.837099 36.168205 0.749020 0.517647 0.427451 +v 33.321995 -35.720200 31.409004 0.745098 0.541176 0.427451 +v 32.657997 -40.731899 33.174603 0.752941 0.549020 0.427451 +v 35.472797 -44.317001 36.017105 0.737255 0.533333 0.415686 +v 27.102999 -39.309502 30.560902 0.713725 0.494118 0.388235 +v 21.412498 -21.051500 22.568802 0.733333 0.509804 0.415686 +v 23.988897 -17.175900 24.872402 0.803922 0.549020 0.447059 +v 27.558098 -24.650700 25.424603 0.745098 0.533333 0.443137 +v 27.926598 -35.123001 29.129301 0.701961 0.494118 0.384314 +v 24.306997 -32.355598 25.602802 0.674510 0.478431 0.384314 +v 26.352098 -28.906099 25.178001 0.725490 0.537255 0.439216 +v 22.071098 -41.536701 27.588202 0.670588 0.447059 0.368627 +v 20.085999 -45.811401 26.494501 0.701961 0.486275 0.384314 +v 19.001799 -42.619900 24.806602 0.662745 0.431373 0.364706 +v 28.976398 -21.374100 26.378202 0.788235 0.556863 0.454902 +v 26.341497 -16.211300 25.941402 0.839216 0.584314 0.474510 +v 30.814697 -16.946400 27.290703 0.866667 0.611765 0.501961 +v 15.764998 -20.247000 19.382002 0.698039 0.478431 0.392157 +v 16.598598 -15.898800 21.267502 0.737255 0.486275 0.400000 +v 22.444199 -3.466390 25.169203 0.752941 0.505882 0.415686 +v 21.588697 -7.433040 25.304302 0.760784 0.513725 0.423529 +v 18.939598 -4.099130 23.521101 0.556863 0.321569 0.270588 +v 26.227198 -11.129200 26.175901 0.894118 0.639216 0.533333 +v 23.958097 -13.787900 25.571701 0.843137 0.584314 0.474510 +v 3.233079 -28.114599 12.996900 0.807843 0.517647 0.474510 +v 3.691189 -24.150000 13.560400 0.788235 0.545098 0.450980 +v 7.239779 -23.905701 14.043200 0.760784 0.533333 0.439216 +v 3.876879 -20.045601 14.070800 0.803922 0.580392 0.490196 +v 9.195189 -19.025499 15.793001 0.705882 0.498039 0.411765 +v 3.141149 -17.198000 13.771500 0.807843 0.584314 0.498039 +v 4.931409 -13.967200 13.240000 0.737255 0.509804 0.435294 +v 30.555098 -31.658199 28.330402 0.737255 0.537255 0.439216 +v 36.921795 -39.106701 34.709404 0.749020 0.541176 0.427451 +v 37.097694 -31.720600 32.396603 0.737255 0.521569 0.415686 +v 32.560898 -26.616501 28.413202 0.749020 0.533333 0.435294 +v 10.314199 -9.869830 13.888401 0.564706 0.352941 0.301961 +v 3.716749 -10.896600 9.270600 0.549020 0.333333 0.278431 +v 6.998729 -8.745080 9.093191 0.458824 0.274510 0.247059 +v 11.017399 -7.650950 11.325301 0.407843 0.235294 0.196078 +v 13.094099 -8.179750 13.619401 0.596078 0.372549 0.305882 +v 14.387198 -9.345590 16.544502 0.682353 0.423529 0.349020 +v 14.674398 -10.957500 19.197702 0.619608 0.352941 0.286275 +v 12.273198 -13.638600 18.082401 0.670588 0.415686 0.349020 +v 15.706099 -12.324600 21.310001 0.654902 0.400000 0.341176 +v 0.160743 -11.927500 9.164860 0.631373 0.415686 0.345098 +v 16.748499 -0.088195 17.466702 0.486275 0.262745 0.211765 +v 14.135499 2.999720 13.703901 0.498039 0.278431 0.223529 +v 15.227698 3.521270 17.552402 0.509804 0.286275 0.227451 +v 11.515499 5.295930 9.697881 0.517647 0.298039 0.235294 +v 12.664099 6.361880 14.138000 0.529412 0.305882 0.243137 +v 17.526098 -1.031370 20.210901 0.478431 0.250980 0.203922 +v 18.114098 -7.909870 23.033703 0.556863 0.313725 0.266667 +v 10.384699 8.630760 10.439901 0.541176 0.321569 0.250980 +v 17.828499 0.413114 21.808401 0.541176 0.305882 0.250980 +v 17.929298 -3.542410 20.437902 0.482353 0.247059 0.203922 +v 17.031097 -10.684200 22.274002 0.619608 0.368627 0.313725 +v 0.287526 -2.020300 -3.337250 0.925490 0.694118 0.627451 +v 3.060050 -2.048090 -2.924980 0.894118 0.650980 0.584314 +v 3.007730 -4.729930 -2.346410 0.870588 0.611765 0.537255 +v 5.864850 -1.934710 -1.552539 0.835294 0.592157 0.525490 +v 5.417400 -4.893230 -0.945915 0.788235 0.533333 0.458824 +v 8.198860 -5.353820 2.653151 0.627451 0.403922 0.329412 +v 5.432270 -7.772490 2.088590 0.639216 0.411765 0.337255 +v 6.036009 -8.309330 5.213161 0.458824 0.270588 0.223529 +v 8.222100 -6.896640 5.293671 0.498039 0.305882 0.247059 +v 5.315060 7.954630 2.505800 0.662745 0.400000 0.321569 +v 5.391600 3.642640 -0.798212 0.729412 0.454902 0.372549 +v 3.235490 4.316670 -1.382350 0.764706 0.482353 0.396078 +v 5.431940 1.019950 -1.779530 0.788235 0.521569 0.443137 +v 3.012540 0.964488 -2.729010 0.847059 0.572549 0.494118 +v 3.567950 -7.050370 -0.455861 0.772549 0.517647 0.439216 +v 0.254061 -9.470920 1.815530 0.694118 0.466667 0.388235 +v 3.185970 -9.021570 1.994320 0.686275 0.458824 0.380392 +v 3.347260 -9.952950 5.307401 0.568627 0.360784 0.294118 +v 11.644599 -4.814710 6.525851 0.666667 0.439216 0.360784 +v 10.245199 -6.916610 8.546041 0.431373 0.254902 0.207843 +v 14.322199 -5.140650 10.096601 0.682353 0.439216 0.360784 +v 13.032799 -7.158690 11.593801 0.564706 0.352941 0.286275 +v 16.428497 -5.656990 13.658102 0.650980 0.396078 0.321569 +v 15.041399 -7.855270 14.466301 0.674510 0.423529 0.345098 +v 17.493698 -6.043210 17.118502 0.572549 0.313725 0.254902 +v 16.415197 -8.234700 17.133102 0.619608 0.356863 0.290196 +v 0.234891 4.747230 -1.584250 0.788235 0.498039 0.407843 +v 7.301090 1.952910 -0.069825 0.709804 0.443137 0.364706 +v 9.047320 -0.970925 1.557191 0.690196 0.443137 0.368627 +v 9.465290 3.177850 3.547511 0.596078 0.352941 0.282353 +v 17.660997 -6.569220 20.282202 0.505882 0.258824 0.215686 +v 16.557198 -9.033780 19.871101 0.552941 0.290196 0.235294 +v 20.394499 -10.617700 24.778902 0.776471 0.517647 0.427451 +v 19.250498 -13.611500 23.636002 0.780392 0.513725 0.423529 +v 11.990899 1.078080 6.089581 0.576471 0.337255 0.266667 +v 12.157999 -1.685630 5.705281 0.647059 0.403922 0.329412 +v 8.839929 9.251840 7.807421 0.568627 0.341176 0.262745 +v 8.096309 14.803000 11.047301 0.600000 0.368627 0.290196 +v 11.552299 11.023700 14.935801 0.584314 0.360784 0.278431 +v 8.089608 23.007601 17.162300 0.607843 0.376471 0.290196 +v 12.042598 18.267500 20.407701 0.627451 0.396078 0.305882 +v 21.344799 3.444300 24.364801 0.760784 0.525490 0.435294 +v 10.378798 43.596600 19.092800 0.760784 0.545098 0.439216 +v 11.674199 50.650799 15.859901 0.796078 0.596078 0.509804 +v 54.439495 58.174599 40.267605 0.525490 0.352941 0.262745 +v 56.231796 64.326599 44.901005 0.525490 0.349020 0.258824 +v 20.091297 46.555901 20.626602 0.615686 0.435294 0.352941 +v 12.458998 40.488800 23.149502 0.682353 0.470588 0.364706 +v 11.517699 58.712601 14.732701 0.894118 0.666667 0.576471 +v 20.941198 69.476898 17.756903 0.811765 0.568627 0.458824 +v 28.594099 70.756203 20.988201 0.768627 0.537255 0.427451 +v 36.831398 72.183800 26.344303 0.705882 0.490196 0.380392 +v 44.649097 71.571800 32.518906 0.650980 0.447059 0.337255 +v 44.312595 65.052498 30.244703 0.650980 0.450980 0.349020 +v 51.160194 68.888397 38.786102 0.580392 0.392157 0.290196 +v 50.121696 63.216999 35.800903 0.592157 0.400000 0.301961 +v 29.676498 38.193501 27.577202 0.278431 0.203922 0.172549 +v 32.242195 35.520000 28.930403 0.176471 0.149020 0.133333 +v 36.059795 38.007198 28.101904 0.337255 0.254902 0.223529 +v 29.195498 28.762300 30.062502 0.537255 0.407843 0.376471 +v 35.387295 30.454100 30.872303 0.494118 0.427451 0.419608 +v 40.619995 36.623299 30.930103 0.376471 0.290196 0.262745 +v 40.689995 30.856199 33.447403 0.560784 0.435294 0.415686 +v 46.166798 34.721901 35.938004 0.427451 0.274510 0.219608 +v 24.791199 28.750900 30.347101 0.631373 0.439216 0.380392 +v 23.558298 30.911301 30.865202 0.654902 0.525490 0.490196 +v 23.990099 35.138500 30.007702 0.588235 0.525490 0.505882 +v 18.925999 31.543200 29.964102 0.607843 0.411765 0.345098 +v 22.978798 22.609301 29.898302 0.698039 0.478431 0.415686 +v 44.176495 24.024099 36.367702 0.666667 0.462745 0.368627 +v 48.844097 28.759600 40.696102 0.568627 0.372549 0.290196 +v 29.935898 20.776899 30.510502 0.764706 0.541176 0.462745 +v 37.725395 21.069901 32.600403 0.768627 0.552941 0.450980 +v 43.673397 41.639000 29.921003 0.639216 0.447059 0.364706 +v 30.249598 43.423698 24.863802 0.698039 0.498039 0.396078 +v 21.971298 38.089298 28.511002 0.552941 0.376471 0.305882 +v 18.851599 37.250599 29.058102 0.600000 0.403922 0.317647 +v 26.141699 38.694302 27.701101 0.415686 0.305882 0.258824 +v 24.366098 42.716400 25.250301 0.670588 0.470588 0.364706 +v 33.047497 40.919201 25.876904 0.588235 0.415686 0.341176 +v 38.202995 45.220299 25.513803 0.741176 0.541176 0.447059 +v 37.181396 41.326099 26.587204 0.592157 0.415686 0.341176 +v 40.767696 39.773300 28.946104 0.533333 0.368627 0.305882 +v 17.566698 40.536701 25.680403 0.682353 0.478431 0.372549 +v 12.599898 34.387402 26.919203 0.635294 0.439216 0.356863 +v 9.244298 36.241699 22.858601 0.670588 0.454902 0.349020 +v 42.106094 27.525101 34.601604 0.588235 0.396078 0.337255 +v 9.833448 28.316700 23.639999 0.592157 0.392157 0.298039 +v 18.639698 24.671700 29.695803 0.650980 0.447059 0.376471 +v 17.292599 20.688499 27.482101 0.654902 0.439216 0.341176 +v 13.333098 24.688499 26.033302 0.607843 0.407843 0.305882 +v 22.784698 17.533800 28.735502 0.721569 0.498039 0.407843 +v 30.601099 15.688600 30.290201 0.780392 0.560784 0.466667 +v 41.169495 16.181299 33.723103 0.792157 0.564706 0.458824 +v 47.120296 20.681999 37.970406 0.709804 0.501961 0.400000 +v 51.931698 25.841200 43.142902 0.639216 0.443137 0.341176 +v 52.340096 32.697899 43.622303 0.576471 0.384314 0.298039 +v 55.356895 32.597599 46.411205 0.619608 0.439216 0.341176 +v 53.222797 37.287899 42.089905 0.568627 0.392157 0.301961 +v 29.678698 24.733801 30.073902 0.717647 0.501961 0.431373 +v 36.489197 25.085699 31.599504 0.698039 0.498039 0.427451 +v 7.209608 -47.131500 19.961300 0.694118 0.474510 0.392157 +v 14.446698 -46.892300 22.922901 0.701961 0.486275 0.392157 +v 14.611198 -50.406300 25.080801 0.741176 0.521569 0.407843 +v 59.776695 32.152901 51.172405 0.615686 0.435294 0.333333 +v 55.757698 22.840000 45.449802 0.650980 0.447059 0.341176 +v 50.009796 17.205099 38.838005 0.725490 0.501961 0.396078 +v 41.713795 8.508140 32.452805 0.839216 0.580392 0.486275 +v 57.126797 40.041698 45.909004 0.552941 0.380392 0.294118 +v 60.104397 43.092098 50.342705 0.509804 0.345098 0.262745 +v 54.672398 42.407398 40.515404 0.556863 0.380392 0.305882 +v 56.906197 46.631001 42.925304 0.462745 0.305882 0.239216 +v 51.822495 43.786900 36.258904 0.596078 0.415686 0.337255 +v 54.271397 50.864399 37.835804 0.419608 0.282353 0.223529 +v 47.592297 46.765598 30.486204 0.627451 0.454902 0.384314 +v 49.821495 53.293598 31.830803 0.427451 0.298039 0.243137 +v 42.391796 49.445400 25.742804 0.607843 0.454902 0.388235 +v 44.034695 54.943100 26.506004 0.443137 0.317647 0.266667 +v 36.751995 50.112900 22.968603 0.545098 0.407843 0.349020 +v 37.753296 55.541100 22.525805 0.490196 0.364706 0.313725 +v 28.692497 48.042801 21.970001 0.600000 0.435294 0.356863 +v 31.105598 56.180599 19.828001 0.596078 0.450980 0.392157 +v 36.435097 81.925400 28.781404 0.682353 0.470588 0.364706 +v 45.338295 80.322098 35.563904 0.603922 0.411765 0.305882 +v 24.592999 80.095299 21.969002 0.772549 0.541176 0.427451 +v 11.213599 69.043297 15.977401 0.835294 0.588235 0.474510 +v 11.825998 81.413200 18.962801 0.803922 0.564706 0.447059 +v 21.538898 53.003700 17.177603 0.588235 0.439216 0.380392 +v -0.179365 43.542702 17.002100 0.898039 0.666667 0.564706 +v 5.625159 37.419102 18.996799 0.803922 0.576471 0.466667 +v 4.198629 23.955999 12.407200 0.686275 0.435294 0.345098 +v 14.535299 -2.114900 9.443011 0.631373 0.380392 0.309804 +v 15.685598 8.142320 20.454601 0.658824 0.427451 0.337255 +v 30.598497 1.488610 27.147802 0.839216 0.576471 0.490196 +v 29.978397 -6.397050 26.571701 0.894118 0.635294 0.545098 +v 41.297398 -1.405200 31.022003 0.854902 0.596078 0.509804 +v 36.111397 -6.540340 28.005903 0.882353 0.623529 0.537255 +v 44.276794 -9.991890 32.788902 0.811765 0.568627 0.478431 +v 36.580196 -12.147500 28.853804 0.874510 0.623529 0.525490 +v 23.545498 26.550501 30.193302 0.670588 0.454902 0.392157 +v 7.536978 -50.700600 22.940800 0.737255 0.513725 0.407843 +v 0.049966 -50.745201 22.357901 0.713725 0.490196 0.403922 +v -0.059187 -47.707500 19.745001 0.662745 0.450980 0.376471 +v 13.614799 -61.189201 26.770203 0.772549 0.549020 0.447059 +v 7.402448 -54.763500 24.320801 0.792157 0.549020 0.443137 +v 5.676798 -60.044102 24.120001 0.815686 0.568627 0.478431 +v 0.007680 -58.305000 23.528999 0.823529 0.568627 0.478431 +v 14.550098 -55.003899 26.621601 0.780392 0.549020 0.431373 +v 20.750698 -49.841400 28.390602 0.729412 0.505882 0.396078 +v 14.341599 -43.669201 21.142101 0.690196 0.443137 0.392157 +v 9.106318 -44.220402 18.280300 0.749020 0.454902 0.427451 +v 4.624769 -44.514198 17.213200 0.768627 0.458824 0.439216 +v 13.494699 1.203290 9.375581 0.541176 0.305882 0.247059 +v 17.587399 -3.090150 17.170603 0.521569 0.282353 0.231373 +v 15.390899 0.616895 13.529201 0.525490 0.290196 0.239216 +v 16.498499 -2.610490 13.351402 0.580392 0.333333 0.270588 +v 0.114789 -17.205601 13.556900 0.803922 0.576471 0.490196 +v 0.213039 -10.739900 5.333460 0.631373 0.419608 0.345098 +v 0.155695 9.698840 1.605760 0.737255 0.458824 0.372549 +v 63.699497 35.875702 57.276005 0.541176 0.364706 0.274510 +v 62.952995 26.737499 54.915302 0.588235 0.400000 0.301961 +v 62.913197 46.593300 56.027405 0.486275 0.321569 0.239216 +v 66.067696 49.149700 63.298607 0.435294 0.282353 0.207843 +v 67.025894 36.883900 64.329010 0.478431 0.313725 0.235294 +v 66.947090 22.464199 62.047707 0.505882 0.325490 0.243137 +v 62.186794 10.766600 50.973103 0.576471 0.376471 0.290196 +v 68.964989 11.545400 68.556404 0.415686 0.266667 0.200000 +v 64.644791 3.438430 56.958504 0.498039 0.317647 0.243137 +v 7.315678 30.263700 20.278500 0.635294 0.407843 0.309804 +v 16.478199 14.480500 23.730602 0.674510 0.435294 0.341176 +v 22.498598 11.176800 26.488401 0.752941 0.505882 0.411765 +v 30.975899 9.046680 28.818901 0.800000 0.545098 0.447059 +v 59.705097 18.493999 48.250504 0.619608 0.415686 0.317647 +v 53.774796 10.607700 40.580803 0.741176 0.505882 0.411765 +v 4.194539 31.168200 16.627800 0.733333 0.498039 0.388235 +v -0.049233 31.606899 15.159500 0.800000 0.552941 0.435294 +v 60.551994 58.758701 51.876305 0.482353 0.313725 0.231373 +v 64.570694 60.979000 60.018402 0.403922 0.266667 0.196078 +v 58.582897 51.884102 46.769802 0.482353 0.317647 0.239216 +v 58.461395 70.455803 49.594505 0.466667 0.313725 0.231373 +v 52.436497 76.538399 42.343403 0.533333 0.356863 0.262745 +v -0.208444 49.913601 15.256100 0.917647 0.698039 0.611765 +v -0.124523 58.086498 14.326200 0.905882 0.674510 0.584314 +v 0.274219 81.382401 18.191799 0.819608 0.576471 0.458824 +v 0.481933 93.290398 21.740499 0.725490 0.498039 0.384314 +v 12.405998 93.661400 22.874903 0.713725 0.486275 0.376471 +v 24.880598 93.906502 26.578302 0.658824 0.447059 0.341176 +v 36.480595 93.078102 32.634003 0.576471 0.388235 0.294118 +v 46.004696 90.203003 39.649605 0.505882 0.345098 0.258824 +v 53.584496 85.144096 46.494904 0.450980 0.305882 0.223529 +v 62.545998 71.367798 56.403603 0.364706 0.250980 0.188235 +v 59.255596 78.845100 52.443905 0.400000 0.274510 0.203922 +v 61.191795 85.050301 57.241005 0.333333 0.235294 0.180392 +v 65.452393 75.230003 61.807304 0.286275 0.207843 0.160784 +v 68.381790 63.713902 67.643311 0.266667 0.188235 0.149020 +v 69.324196 50.443100 71.447411 0.341176 0.227451 0.172549 +v 70.128990 37.903400 72.923409 0.360784 0.239216 0.180392 +v 70.487595 24.768299 72.393105 0.396078 0.250980 0.192157 +v 10.803699 -24.072800 15.435301 0.713725 0.501961 0.407843 +v 15.684198 -24.840200 18.155502 0.698039 0.494118 0.403922 +v 14.923498 -28.631399 17.459002 0.729412 0.498039 0.431373 +v 19.121199 -30.573601 20.995502 0.694118 0.478431 0.403922 +v 21.119598 -26.506599 21.583101 0.701961 0.509804 0.423529 +v 36.499996 -22.712601 30.213703 0.811765 0.572549 0.466667 +v 40.448395 -36.176701 36.400604 0.725490 0.509804 0.407843 +v 44.144596 -32.603699 38.731205 0.705882 0.490196 0.392157 +v 38.536495 -47.817600 40.317505 0.666667 0.474510 0.364706 +v 46.546295 -37.311100 43.387104 0.635294 0.439216 0.349020 +v 50.373398 -34.235699 47.127705 0.611765 0.423529 0.333333 +v 49.724796 -40.818298 50.185303 0.588235 0.403922 0.317647 +v 49.255295 -27.889099 42.907104 0.658824 0.454902 0.360784 +v 44.257797 -23.479799 35.807602 0.752941 0.525490 0.427451 +v 40.645798 -27.765900 34.063705 0.764706 0.537255 0.431373 +v 40.754898 -19.093399 32.012905 0.815686 0.576471 0.478431 +v 10.416199 -27.973200 14.961201 0.756863 0.498039 0.443137 +v 0.075350 -28.306400 12.898400 0.803922 0.521569 0.466667 +v 0.092755 -24.430799 13.505000 0.772549 0.529412 0.443137 +v 0.110785 -20.513000 13.908800 0.807843 0.588235 0.501961 +v 0.085609 -54.512001 23.610901 0.784314 0.537255 0.443137 +v 20.909399 -54.946800 30.047201 0.729412 0.509804 0.392157 +v 35.645298 -55.715099 42.223003 0.623529 0.439216 0.337255 +v 49.814896 -48.565498 56.933704 0.517647 0.356863 0.274510 +v 47.977795 -55.414200 62.039703 0.443137 0.301961 0.231373 +v 55.688496 -28.994600 53.447903 0.560784 0.380392 0.301961 +v 55.983391 -43.000198 65.692207 0.450980 0.305882 0.239216 +v 56.362797 -36.061699 59.322903 0.517647 0.349020 0.274510 +v 57.892796 -19.573200 52.540302 0.560784 0.376471 0.294118 +v 70.365593 -2.993800 89.379608 0.321569 0.211765 0.164706 +v 71.177193 8.937180 81.271606 0.321569 0.211765 0.164706 +v 72.558990 10.622100 91.867805 0.298039 0.200000 0.156863 +v 66.125992 -21.471800 81.920410 0.341176 0.223529 0.168627 +v 67.528091 -10.306600 77.117210 0.364706 0.239216 0.180392 +v 61.701691 -27.660801 67.740509 0.443137 0.294118 0.227451 +v 68.337189 -0.022244 71.967606 0.380392 0.243137 0.188235 +v 63.424397 -15.896200 64.452606 0.443137 0.290196 0.219608 +v 68.125694 -16.648800 92.619408 0.301961 0.200000 0.156863 +v 63.768192 -32.212200 86.796310 0.305882 0.203922 0.156863 +v 61.167294 -36.372501 75.628105 0.376471 0.250980 0.192157 +v 59.626293 -41.868698 80.668411 0.333333 0.223529 0.172549 +v 64.162796 -6.066620 60.428703 0.454902 0.294118 0.223529 +v 57.393696 -11.239100 47.991703 0.611765 0.411765 0.329412 +v 72.524994 24.387699 82.025009 0.282353 0.188235 0.145098 +v 73.856789 35.723499 88.540108 0.105882 0.074510 0.062745 +v 73.683792 23.761801 91.300209 0.243137 0.164706 0.129412 +v 74.501190 30.125500 94.839706 0.094118 0.062745 0.050980 +v 74.034592 22.480499 96.303810 0.141176 0.098039 0.078431 +v 72.831192 7.859240 98.770004 0.149020 0.101961 0.082353 +v 69.296593 -13.425300 99.241905 0.305882 0.200000 0.160784 +v 71.395790 -3.606020 100.302010 0.325490 0.215686 0.172549 +v 71.129791 -7.143250 103.242004 0.188235 0.125490 0.101961 +v 68.107590 -18.211399 101.004005 0.133333 0.086275 0.070588 +v 72.363594 -0.137348 102.838005 0.176471 0.117647 0.094118 +v 46.213596 99.739601 44.501404 0.388235 0.266667 0.200000 +v 54.685898 92.834099 51.120205 0.376471 0.258824 0.192157 +v 55.596695 97.970802 54.777103 0.294118 0.207843 0.160784 +v 59.781796 92.442200 58.018204 0.125490 0.090196 0.066667 +v 50.586895 101.808998 50.572002 0.172549 0.121569 0.094118 +v 43.422997 104.478996 44.205505 0.184314 0.125490 0.098039 +v 72.007690 49.799099 78.898109 0.250980 0.176471 0.137255 +v 73.057594 49.127201 82.269409 0.094118 0.066667 0.054902 +v 49.949097 58.855202 33.782906 0.564706 0.388235 0.301961 +v 44.336697 60.042801 28.311203 0.603922 0.419608 0.337255 +v 37.959198 59.937000 23.450504 0.674510 0.482353 0.400000 +v 4.464459 16.161301 7.486950 0.682353 0.423529 0.341176 +v 0.094371 16.649401 6.087460 0.745098 0.466667 0.376471 +v 0.014745 24.425800 10.934700 0.745098 0.482353 0.384314 +v 71.478493 58.516998 75.568504 0.105882 0.074510 0.058824 +v 68.260490 72.263603 66.620407 0.137255 0.101961 0.082353 +v 70.731094 66.735497 71.686806 0.109804 0.082353 0.066667 +v 72.507889 38.181301 81.341507 0.254902 0.176471 0.137255 +v 64.500496 82.174896 61.573006 0.149020 0.109804 0.082353 +v 55.767296 99.280998 55.781605 0.145098 0.101961 0.078431 +v 12.876298 100.102997 25.744701 0.317647 0.215686 0.164706 +v 0.286601 -4.793040 -2.721520 0.894118 0.643137 0.568627 +v 64.638489 -29.722000 98.167007 0.121569 0.082353 0.062745 +v 58.149193 -45.228298 86.664307 0.290196 0.196078 0.152941 +v 62.356594 -36.605999 93.365707 0.274510 0.184314 0.141176 +v 60.716892 -40.186600 93.595604 0.113725 0.078431 0.058824 +v 56.109493 -48.650299 86.931511 0.141176 0.098039 0.074510 +v 49.385094 -57.278099 77.067108 0.160784 0.109804 0.082353 +v 66.355392 -24.387800 96.374504 0.270588 0.184314 0.141176 +v 37.257298 34.215500 30.609003 0.415686 0.392157 0.388235 +v 39.520298 33.790501 31.976805 0.529412 0.494118 0.490196 +v 27.428999 33.649700 29.901602 0.372549 0.333333 0.309804 +v 23.755198 -35.746101 28.257301 0.482353 0.278431 0.235294 +v 3.793149 -35.116299 16.927900 0.600000 0.278431 0.294118 +v 3.855958 -38.129200 17.080799 0.756863 0.376471 0.407843 +v -0.023884 -38.223301 16.909401 0.749020 0.368627 0.400000 +v 8.071998 -35.035198 18.102501 0.588235 0.266667 0.286275 +v 8.431998 -37.966801 18.149799 0.717647 0.352941 0.384314 +v 13.239598 -35.231899 20.689901 0.545098 0.262745 0.274510 +v 13.372499 -37.816101 20.728703 0.631373 0.317647 0.337255 +v 17.666399 -35.273201 23.658503 0.447059 0.227451 0.227451 +v 17.640099 -37.751598 24.088802 0.556863 0.282353 0.286275 +v 21.365198 -34.941399 26.083202 0.478431 0.266667 0.231373 +v 21.738897 -38.277302 27.387302 0.564706 0.325490 0.298039 +v 21.377197 -34.903000 26.050001 0.490196 0.278431 0.239216 +v -0.125513 -44.742699 17.141100 0.749020 0.454902 0.419608 +v 14.317698 -31.063400 17.972801 0.662745 0.403922 0.364706 +v 6.533319 -27.864201 13.520501 0.788235 0.505882 0.458824 +v 17.674997 -35.227402 23.629501 0.427451 0.219608 0.211765 +v 18.364597 -33.324001 22.496202 0.580392 0.341176 0.301961 +v 13.245798 -35.168499 20.655602 0.537255 0.258824 0.270588 +v 13.862498 -33.057598 19.452902 0.596078 0.333333 0.313725 +v 8.065038 -34.963299 18.048201 0.580392 0.270588 0.282353 +v 9.277578 -32.971199 17.116100 0.631373 0.349020 0.337255 +v 3.799159 -35.048901 16.841700 0.600000 0.278431 0.294118 +v 5.629269 -33.251099 16.003500 0.643137 0.349020 0.341176 +v 2.758119 -33.165501 15.103900 0.650980 0.345098 0.341176 +v 0.038323 -35.330101 16.649599 0.396078 0.176471 0.192157 +v 0.067189 -33.274799 14.942100 0.662745 0.345098 0.352941 +v 2.880549 -31.155199 13.597900 0.701961 0.388235 0.380392 +v 5.936328 -30.985800 14.264301 0.694118 0.396078 0.380392 +v 4.098669 -41.269699 16.459999 0.811765 0.458824 0.486275 +v 8.892108 -41.014599 17.645000 0.760784 0.427451 0.450980 +v 9.781240 -30.931801 15.664701 0.682353 0.400000 0.376471 +v 13.905798 -40.587799 20.457802 0.658824 0.360784 0.364706 +v 18.077698 -39.992001 24.048601 0.603922 0.341176 0.325490 +v 0.069898 -31.269300 13.405600 0.725490 0.411765 0.407843 +v 37.322296 65.013603 24.625504 0.709804 0.498039 0.396078 +v 29.652199 63.115200 19.714302 0.780392 0.560784 0.466667 +v 21.287199 60.616798 16.368002 0.847059 0.623529 0.533333 +v 0.127883 -14.200400 12.254200 0.741176 0.509804 0.435294 +v 0.278404 1.040420 -3.071150 0.870588 0.596078 0.513725 +v -0.116712 37.803699 17.313200 0.882353 0.650980 0.533333 +v 0.279360 -7.378550 -0.992634 0.819608 0.560784 0.478431 +v 0.046502 68.758400 15.460200 0.854902 0.607843 0.494118 +v 0.599951 99.454498 24.243299 0.349020 0.235294 0.180392 +v 0.031221 -35.395699 16.746401 0.458824 0.203922 0.219608 +v -0.106864 -41.376099 16.290199 0.800000 0.447059 0.474510 +v -53.841106 -48.983299 71.426689 0.407843 0.274510 0.215686 +v -51.275307 -53.996498 75.538391 0.368627 0.247059 0.192157 +v -44.535206 -60.645199 65.560791 0.411765 0.274510 0.211765 +v -18.750103 -74.796997 35.786999 0.529412 0.372549 0.298039 +v -14.085703 -77.391403 34.978100 0.509804 0.364706 0.290196 +v -11.957403 -73.963402 30.096098 0.635294 0.450980 0.368627 +v -6.566503 -77.262100 30.449800 0.596078 0.431373 0.349020 +v -7.564453 -78.871101 33.695099 0.501961 0.360784 0.290196 +v -22.016403 -70.478699 35.529198 0.588235 0.415686 0.329412 +v -17.863401 -68.837303 30.791098 0.674510 0.478431 0.388235 +v -39.540703 -65.852203 65.266602 0.180392 0.121569 0.090196 +v -33.939205 -69.790604 58.118694 0.388235 0.262745 0.200000 +v -31.925804 -67.925903 48.449497 0.458824 0.317647 0.239216 +v -38.444904 -64.204102 56.125298 0.450980 0.305882 0.231373 +v -28.939505 -72.407097 50.816597 0.392157 0.270588 0.203922 +v -23.188004 -74.982597 43.634598 0.415686 0.290196 0.223529 +v -26.559404 -70.188103 41.544697 0.505882 0.352941 0.270588 +v -24.695004 -75.705597 50.416195 0.364706 0.250980 0.192157 +v -16.072004 -78.604698 40.981701 0.403922 0.282353 0.223529 +v -17.844904 -79.063103 47.658199 0.360784 0.250980 0.196078 +v -29.056807 -73.493698 56.917194 0.176471 0.117647 0.090196 +v -10.376904 -81.684601 48.519402 0.168627 0.121569 0.101961 +v -19.158804 -78.889801 51.744801 0.176471 0.121569 0.094118 +v -9.669264 -81.344200 44.934101 0.376471 0.274510 0.223529 +v -27.571703 -64.815102 39.005997 0.603922 0.423529 0.329412 +v -33.198803 -61.133202 43.968197 0.576471 0.403922 0.305882 +v -38.691704 -59.988998 50.588497 0.525490 0.364706 0.274510 +v -42.734406 -58.145699 55.489697 0.501961 0.341176 0.258824 +v -8.533234 -80.387604 38.906601 0.407843 0.294118 0.239216 +v -11.915502 -67.795502 26.995598 0.745098 0.529412 0.443137 +v -23.853804 -66.357597 35.367195 0.635294 0.447059 0.352941 +v -34.301003 104.745003 38.021896 0.207843 0.141176 0.109804 +v -35.090004 101.537003 36.596096 0.427451 0.282353 0.215686 +v -26.006802 101.713997 31.525198 0.270588 0.176471 0.133333 +v -59.540703 -0.172551 48.112595 0.619608 0.403922 0.325490 +v -50.470104 -9.587020 38.842495 0.729412 0.490196 0.411765 +v -52.236305 -0.444375 39.310497 0.745098 0.501961 0.419608 +v -29.805405 -56.547798 37.997498 0.666667 0.474510 0.364706 +v -26.022703 -54.744801 34.242695 0.694118 0.490196 0.376471 +v -26.218403 -49.663700 32.767998 0.717647 0.498039 0.388235 +v -25.394102 -44.041801 30.750198 0.729412 0.505882 0.396078 +v -31.448503 -44.790001 34.639797 0.737255 0.525490 0.403922 +v -32.419804 -50.899601 37.823597 0.690196 0.490196 0.376471 +v -21.044302 -62.170700 31.980398 0.705882 0.498039 0.400000 +v -26.501503 -59.568001 36.049995 0.670588 0.474510 0.368627 +v -44.034306 -51.844898 51.117294 0.560784 0.384314 0.294118 +v -43.882004 -45.489799 45.821396 0.611765 0.419608 0.329412 +v -39.261204 -54.099098 46.284496 0.592157 0.411765 0.309804 +v -42.625404 -40.450100 41.156296 0.662745 0.458824 0.360784 +v -38.801704 -42.761002 38.411594 0.713725 0.501961 0.396078 +v -52.231606 -19.653799 44.279896 0.658824 0.443137 0.356863 +v -46.410305 -16.803400 36.662895 0.756863 0.517647 0.427451 +v -33.261505 -35.711102 31.876297 0.741176 0.537255 0.423529 +v -32.671204 -40.674500 33.693596 0.749020 0.545098 0.423529 +v -35.453705 -44.188400 36.643997 0.733333 0.529412 0.411765 +v -27.096502 -39.330601 30.955198 0.713725 0.498039 0.384314 +v -21.293402 -21.040701 22.753899 0.729412 0.498039 0.407843 +v -23.889301 -17.153200 25.090498 0.796078 0.537255 0.431373 +v -27.442001 -24.677700 25.678598 0.741176 0.529412 0.435294 +v -27.894802 -35.143299 29.500797 0.698039 0.494118 0.384314 +v -24.245901 -32.390999 25.918598 0.666667 0.470588 0.380392 +v -26.250002 -28.942699 25.473698 0.721569 0.529412 0.431373 +v -22.010002 -41.590900 27.971397 0.670588 0.450980 0.364706 +v -20.023802 -45.808498 26.881199 0.705882 0.486275 0.384314 +v -18.923801 -42.662899 25.164799 0.666667 0.435294 0.364706 +v -28.864202 -21.376200 26.642797 0.784314 0.545098 0.443137 +v -26.229301 -16.210501 26.192198 0.827451 0.568627 0.454902 +v -30.681902 -16.933201 27.620897 0.858824 0.603922 0.490196 +v -15.621302 -20.221901 19.470098 0.690196 0.470588 0.380392 +v -16.465702 -15.840100 21.345999 0.729412 0.474510 0.384314 +v -22.337402 -3.399040 25.406399 0.741176 0.494118 0.396078 +v -21.458002 -7.348170 25.506098 0.721569 0.474510 0.380392 +v -18.854101 -4.005630 23.601898 0.533333 0.301961 0.250980 +v -26.091501 -11.087000 26.476297 0.878431 0.623529 0.513725 +v -23.841803 -13.780800 25.798899 0.831373 0.572549 0.458824 +v -3.088731 -28.148701 13.002100 0.811765 0.521569 0.478431 +v -3.510681 -24.156099 13.543200 0.788235 0.541176 0.450980 +v -7.061972 -23.912500 14.032299 0.764706 0.529412 0.435294 +v -3.687661 -20.046000 14.031400 0.807843 0.584314 0.494118 +v -9.043321 -19.022600 15.774699 0.705882 0.494118 0.403922 +v -2.931611 -17.201000 13.721800 0.807843 0.584314 0.494118 +v -4.743171 -14.022100 13.188100 0.737255 0.505882 0.431373 +v -30.459501 -31.690300 28.703999 0.729412 0.537255 0.435294 +v -36.833103 -39.026501 35.269897 0.749020 0.537255 0.423529 +v -36.962105 -31.691099 32.883995 0.741176 0.517647 0.411765 +v -32.433002 -26.637400 28.764599 0.749020 0.529412 0.427451 +v -10.186301 -10.045900 13.821699 0.560784 0.341176 0.290196 +v -3.445531 -10.998200 9.252610 0.556863 0.337255 0.278431 +v -6.762481 -8.908630 9.055569 0.494118 0.294118 0.258824 +v -10.854001 -7.895510 11.215299 0.427451 0.250980 0.211765 +v -12.950301 -8.438200 13.560799 0.588235 0.368627 0.305882 +v -14.310402 -9.532510 16.465097 0.674510 0.411765 0.333333 +v -14.624502 -11.047600 19.142298 0.615686 0.345098 0.282353 +v -12.154902 -13.660100 18.041199 0.662745 0.403922 0.337255 +v -15.637602 -12.306800 21.315199 0.635294 0.376471 0.313725 +v -16.678001 0.018672 17.475899 0.454902 0.239216 0.188235 +v -14.077101 3.077540 13.715799 0.470588 0.254902 0.203922 +v -15.178302 3.616140 17.563799 0.490196 0.270588 0.215686 +v -11.450801 5.402890 9.661229 0.498039 0.278431 0.219608 +v -12.646701 6.457730 14.109399 0.513725 0.294118 0.231373 +v -17.444702 -0.924688 20.193298 0.450980 0.227451 0.184314 +v -18.059002 -7.877630 23.064198 0.529412 0.286275 0.243137 +v -10.368801 8.722010 10.384299 0.521569 0.301961 0.235294 +v -17.744202 0.517129 21.854698 0.521569 0.294118 0.239216 +v -17.907402 -3.455530 20.442198 0.458824 0.231373 0.188235 +v -16.974201 -10.677600 22.292898 0.596078 0.341176 0.286275 +v -2.506120 -2.028510 -3.080180 0.913725 0.674510 0.607843 +v -2.469770 -4.768590 -2.486050 0.886275 0.623529 0.552941 +v -5.439900 -1.886710 -1.785390 0.847059 0.584314 0.517647 +v -4.991440 -4.960640 -1.139691 0.803922 0.541176 0.462745 +v -7.917010 -5.451350 2.487329 0.647059 0.415686 0.341176 +v -5.044560 -7.893640 1.983989 0.650980 0.415686 0.349020 +v -5.685171 -8.434240 5.155859 0.486275 0.290196 0.243137 +v -7.915720 -7.024910 5.173709 0.537255 0.337255 0.282353 +v -5.069190 8.041960 2.428190 0.662745 0.396078 0.317647 +v -5.017550 3.745630 -0.921486 0.737255 0.454902 0.372549 +v -2.789870 4.372350 -1.462200 0.772549 0.486275 0.396078 +v -4.999330 1.117930 -1.968431 0.792157 0.509804 0.427451 +v -2.481880 1.025610 -2.840810 0.854902 0.576471 0.494118 +v -3.088550 -7.134860 -0.568535 0.784314 0.529412 0.447059 +v -2.741080 -9.109190 1.948480 0.694118 0.462745 0.384314 +v -2.959080 -10.054000 5.285800 0.576471 0.360784 0.298039 +v -11.491201 -4.921930 6.367449 0.674510 0.447059 0.372549 +v -10.020901 -7.086960 8.412829 0.474510 0.290196 0.243137 +v -14.259301 -5.239610 9.939149 0.690196 0.443137 0.368627 +v -12.878401 -7.387150 11.456599 0.564706 0.352941 0.290196 +v -16.464901 -5.716880 13.556098 0.647059 0.388235 0.317647 +v -14.983801 -8.065290 14.371499 0.670588 0.415686 0.337255 +v -17.583902 -6.038910 17.100498 0.560784 0.305882 0.247059 +v -16.457602 -8.372230 17.068798 0.623529 0.352941 0.286275 +v -6.973730 2.091660 -0.242824 0.705882 0.435294 0.356863 +v -8.818600 -0.891477 1.383239 0.690196 0.439216 0.364706 +v -9.290710 3.329020 3.458919 0.580392 0.337255 0.266667 +v -17.710503 -6.541460 20.280298 0.498039 0.250980 0.207843 +v -16.597502 -9.103660 19.840698 0.560784 0.290196 0.239216 +v -20.254002 -10.584600 24.919098 0.725490 0.466667 0.380392 +v -19.110601 -13.563800 23.751698 0.756863 0.490196 0.400000 +v -11.853701 1.210450 5.993569 0.552941 0.313725 0.247059 +v -12.033501 -1.648010 5.569239 0.631373 0.388235 0.313725 +v -8.771261 9.366440 7.745239 0.549020 0.317647 0.247059 +v -8.091181 14.909600 10.967199 0.588235 0.352941 0.278431 +v -11.574701 11.120500 14.904899 0.564706 0.341176 0.262745 +v -8.252582 23.095100 17.156300 0.592157 0.356863 0.274510 +v -12.164402 18.366899 20.500298 0.607843 0.372549 0.286275 +v -21.284002 3.497090 24.570698 0.768627 0.525490 0.431373 +v -10.742502 43.732601 19.227800 0.772549 0.552941 0.447059 +v -12.018201 50.872398 15.973799 0.796078 0.596078 0.513725 +v -53.977802 58.171299 39.694695 0.501961 0.325490 0.250980 +v -55.620903 64.281502 44.285595 0.509804 0.329412 0.247059 +v -20.308903 46.723099 20.792599 0.607843 0.427451 0.345098 +v -12.843102 40.605900 23.333698 0.694118 0.474510 0.368627 +v -11.662601 58.885700 14.851099 0.890196 0.662745 0.576471 +v -20.507902 69.580101 17.878298 0.800000 0.549020 0.435294 +v -27.933802 70.843803 20.968597 0.749020 0.509804 0.400000 +v -36.014503 72.235001 26.102497 0.690196 0.466667 0.356863 +v -43.836502 71.610802 32.086895 0.631373 0.423529 0.317647 +v -43.620102 65.109001 29.763796 0.635294 0.427451 0.329412 +v -50.451702 68.894699 38.239597 0.564706 0.372549 0.278431 +v -49.542004 63.241699 35.253395 0.576471 0.380392 0.290196 +v -29.960102 38.037498 27.851099 0.282353 0.203922 0.168627 +v -32.476303 35.348900 29.197298 0.176471 0.149020 0.133333 +v -36.246204 37.764400 28.355696 0.329412 0.254902 0.223529 +v -29.328802 28.733900 30.342098 0.529412 0.392157 0.360784 +v -35.523403 30.304701 31.130497 0.482353 0.411765 0.400000 +v -40.727005 36.324501 31.155497 0.392157 0.313725 0.294118 +v -40.839203 30.600300 33.689297 0.568627 0.435294 0.411765 +v -46.191402 34.452000 36.131695 0.427451 0.274510 0.223529 +v -24.977001 28.765301 30.636297 0.627451 0.431373 0.372549 +v -23.804102 30.909100 31.155798 0.686275 0.556863 0.521569 +v -24.319902 35.130699 30.242397 0.592157 0.521569 0.505882 +v -19.257402 31.576700 30.228998 0.611765 0.411765 0.341176 +v -23.152302 22.654400 30.191898 0.721569 0.498039 0.431373 +v -44.272903 23.796400 36.654297 0.666667 0.454902 0.360784 +v -48.903404 28.476500 40.922897 0.552941 0.352941 0.274510 +v -30.033503 20.755199 30.809198 0.784314 0.556863 0.474510 +v -37.799706 20.942499 32.892296 0.772549 0.545098 0.443137 +v -43.489803 41.473999 30.150797 0.639216 0.439216 0.360784 +v -30.361101 43.423199 25.189299 0.698039 0.494118 0.392157 +v -22.342802 38.114101 28.789198 0.560784 0.376471 0.301961 +v -19.248802 37.309799 29.324799 0.603922 0.396078 0.309804 +v -26.459501 38.629799 27.978798 0.427451 0.305882 0.258824 +v -24.593601 42.781898 25.542498 0.670588 0.466667 0.360784 +v -33.258904 40.763699 26.193096 0.592157 0.419608 0.345098 +v -37.950806 45.187599 25.795197 0.741176 0.533333 0.435294 +v -37.224903 41.155800 26.895596 0.592157 0.411765 0.337255 +v -40.750904 39.547798 29.199097 0.537255 0.368627 0.305882 +v -17.907701 40.627102 25.913097 0.686275 0.478431 0.372549 +v -12.980102 34.449100 27.123398 0.639216 0.439216 0.352941 +v -9.614821 36.339699 23.000999 0.678431 0.458824 0.352941 +v -42.234406 27.275101 34.868195 0.588235 0.388235 0.329412 +v -10.124502 28.367300 23.751200 0.580392 0.372549 0.282353 +v -18.888203 24.715599 29.982798 0.658824 0.454902 0.380392 +v -17.454302 20.764400 27.755598 0.639216 0.419608 0.321569 +v -13.572302 24.756201 26.250998 0.592157 0.388235 0.286275 +v -22.865002 17.581499 29.052998 0.733333 0.505882 0.411765 +v -30.623402 15.645700 30.650799 0.803922 0.576471 0.482353 +v -41.184105 16.006500 34.079998 0.796078 0.560784 0.450980 +v -47.160904 20.448400 38.277298 0.705882 0.490196 0.388235 +v -51.919205 25.598900 43.368195 0.623529 0.423529 0.321569 +v -52.268005 32.498501 43.699497 0.568627 0.372549 0.290196 +v -55.200302 32.461800 46.434196 0.611765 0.419608 0.329412 +v -53.071705 37.138699 42.057297 0.576471 0.388235 0.301961 +v -29.791203 24.710300 30.338198 0.729412 0.513725 0.439216 +v -36.564205 24.958700 31.851896 0.698039 0.490196 0.415686 +v -7.289592 -47.139000 20.103399 0.694118 0.474510 0.392157 +v -14.413102 -46.868698 23.217598 0.705882 0.486275 0.392157 +v -14.603202 -50.371601 25.371597 0.741176 0.517647 0.407843 +v -59.491802 32.046799 51.147495 0.603922 0.415686 0.321569 +v -55.639103 22.632401 45.670296 0.639216 0.431373 0.325490 +v -49.984604 16.973101 39.163597 0.725490 0.494118 0.388235 +v -41.621704 8.346640 32.884995 0.843137 0.576471 0.478431 +v -56.876003 39.973801 45.675396 0.556863 0.372549 0.298039 +v -59.767105 43.045399 49.976097 0.501961 0.329412 0.258824 +v -54.420605 42.338902 40.295395 0.568627 0.384314 0.313725 +v -56.593704 46.599098 42.486496 0.454902 0.294118 0.239216 +v -51.546104 43.681000 36.144497 0.615686 0.423529 0.349020 +v -53.910103 50.838902 37.405296 0.403922 0.266667 0.215686 +v -47.176605 46.687801 30.461897 0.658824 0.470588 0.400000 +v -49.335606 53.263500 31.465897 0.419608 0.286275 0.239216 +v -41.835705 49.451500 25.770996 0.623529 0.458824 0.388235 +v -43.368805 54.963402 26.223997 0.435294 0.305882 0.258824 +v -36.252106 50.171902 23.068497 0.549020 0.400000 0.341176 +v -37.054005 55.634499 22.359797 0.482353 0.352941 0.301961 +v -28.583101 48.147099 22.169699 0.588235 0.423529 0.345098 +v -30.643501 56.322201 19.778698 0.596078 0.443137 0.384314 +v -35.441105 81.907204 28.633097 0.662745 0.443137 0.337255 +v -44.335304 80.277100 35.155895 0.584314 0.388235 0.286275 +v -23.805302 80.078201 22.057999 0.756863 0.517647 0.403922 +v -11.024801 69.106598 16.104898 0.835294 0.584314 0.470588 +v -11.198602 81.384598 19.098099 0.800000 0.556863 0.435294 +v -21.602503 53.225300 17.283098 0.596078 0.443137 0.384314 +v -5.917871 37.487801 19.084600 0.811765 0.580392 0.466667 +v -4.247971 24.037399 12.356400 0.686275 0.435294 0.345098 +v -14.467901 -2.056030 9.347089 0.611765 0.356863 0.290196 +v -15.684502 8.225480 20.506998 0.647059 0.411765 0.325490 +v -30.492302 1.468230 27.575397 0.847059 0.576471 0.486275 +v -29.855103 -6.375450 26.988998 0.890196 0.627451 0.537255 +v -41.125404 -1.490210 31.515596 0.854902 0.580392 0.494118 +v -35.953903 -6.553680 28.526196 0.882353 0.615686 0.525490 +v -44.049503 -10.001100 33.293495 0.819608 0.564706 0.478431 +v -36.408905 -12.117100 29.324495 0.878431 0.615686 0.517647 +v -23.772902 26.589300 30.467398 0.690196 0.466667 0.400000 +v -7.501412 -50.686699 23.065300 0.737255 0.509804 0.403922 +v -13.754702 -61.147598 27.150497 0.772549 0.545098 0.443137 +v -7.330832 -54.754902 24.476400 0.796078 0.552941 0.447059 +v -5.799892 -60.043400 24.272900 0.815686 0.568627 0.478431 +v -14.562901 -54.969002 26.952198 0.784314 0.549020 0.431373 +v -20.703901 -49.802700 28.816797 0.729412 0.501961 0.392157 +v -14.287502 -43.688099 21.461899 0.698039 0.447059 0.392157 +v -9.185982 -44.236801 18.529900 0.749020 0.454902 0.427451 +v -4.844681 -44.535198 17.332600 0.772549 0.458824 0.443137 +v -13.385301 1.321240 9.319969 0.517647 0.282353 0.223529 +v -17.594803 -2.992360 17.184399 0.494118 0.258824 0.207843 +v -15.316101 0.718187 13.531699 0.490196 0.262745 0.211765 +v -16.484503 -2.517690 13.317098 0.556863 0.305882 0.247059 +v -63.277405 35.791199 57.119396 0.525490 0.345098 0.266667 +v -62.593704 26.610701 54.955097 0.576471 0.380392 0.290196 +v -62.468002 46.489700 55.637897 0.466667 0.301961 0.227451 +v -65.474205 48.985901 62.915993 0.419608 0.262745 0.196078 +v -66.472511 36.767601 64.102196 0.454902 0.290196 0.219608 +v -66.524406 22.424500 62.011292 0.490196 0.309804 0.235294 +v -61.938904 10.699000 51.148296 0.568627 0.364706 0.286275 +v -68.543007 11.577000 68.501892 0.411765 0.258824 0.200000 +v -64.340508 3.476640 57.093597 0.498039 0.313725 0.247059 +v -7.594552 30.348700 20.315800 0.627451 0.396078 0.298039 +v -16.549402 14.557100 23.902597 0.662745 0.419608 0.325490 +v -22.511202 11.211700 26.775698 0.764706 0.505882 0.407843 +v -30.923302 8.988230 29.229298 0.815686 0.549020 0.447059 +v -59.490303 18.310400 48.448795 0.607843 0.396078 0.301961 +v -53.647404 10.434700 40.909695 0.737255 0.494118 0.403922 +v -4.381762 31.257401 16.638100 0.737255 0.494118 0.388235 +v -60.029804 58.640598 51.293797 0.462745 0.294118 0.219608 +v -64.019104 60.767300 59.519794 0.392157 0.250980 0.188235 +v -58.184303 51.842499 46.189598 0.458824 0.298039 0.227451 +v -57.762302 70.295197 48.925396 0.447059 0.290196 0.215686 +v -51.554703 76.438698 41.738796 0.513725 0.337255 0.247059 +v -11.345502 93.571404 23.007797 0.709804 0.482353 0.372549 +v -23.729801 93.736099 26.669699 0.647059 0.435294 0.329412 +v -35.271004 92.898697 32.481598 0.556863 0.364706 0.274510 +v -44.764503 89.974899 39.158897 0.482353 0.313725 0.235294 +v -52.434803 84.860397 45.720497 0.427451 0.278431 0.207843 +v -61.925304 71.077103 55.743397 0.360784 0.239216 0.180392 +v -58.381702 78.523102 51.614697 0.380392 0.250980 0.188235 +v -60.005302 84.621002 56.387897 0.313725 0.215686 0.168627 +v -64.720604 74.840401 61.180397 0.278431 0.196078 0.152941 +v -67.735107 63.471001 67.175995 0.274510 0.188235 0.149020 +v -68.669807 50.221901 71.097496 0.333333 0.215686 0.168627 +v -69.477310 37.736198 72.644493 0.352941 0.227451 0.176471 +v -69.931206 24.711700 72.207596 0.388235 0.239216 0.188235 +v -10.646601 -24.065701 15.460499 0.713725 0.498039 0.403922 +v -15.570902 -24.833599 18.256699 0.694118 0.490196 0.400000 +v -14.838702 -28.652700 17.550598 0.725490 0.498039 0.427451 +v -19.051203 -30.614100 21.181898 0.694118 0.478431 0.403922 +v -21.021603 -26.519899 21.785698 0.698039 0.501961 0.415686 +v -36.361103 -22.694599 30.639095 0.811765 0.568627 0.462745 +v -40.278202 -36.076199 36.963898 0.725490 0.509804 0.403922 +v -43.906403 -32.487301 39.282295 0.705882 0.486275 0.392157 +v -38.385506 -47.603401 40.941395 0.666667 0.470588 0.364706 +v -46.264404 -37.117699 43.960796 0.643137 0.439216 0.349020 +v -50.024704 -34.044201 47.640896 0.619608 0.419608 0.337255 +v -49.385105 -40.522999 50.694595 0.596078 0.403922 0.321569 +v -48.941204 -27.787399 43.411995 0.662745 0.450980 0.364706 +v -44.039505 -23.420401 36.323795 0.756863 0.529412 0.431373 +v -40.469105 -27.708000 34.571297 0.768627 0.537255 0.435294 +v -40.584103 -19.038799 32.502396 0.819608 0.576471 0.474510 +v -10.270801 -27.988501 14.987799 0.760784 0.501961 0.447059 +v -20.882402 -54.889301 30.517797 0.729412 0.509804 0.392157 +v -35.545204 -55.400200 42.849697 0.627451 0.439216 0.337255 +v -49.520702 -48.135101 57.375698 0.533333 0.360784 0.282353 +v -47.788506 -54.890400 62.359497 0.466667 0.313725 0.243137 +v -55.262604 -28.814100 53.853397 0.572549 0.380392 0.305882 +v -55.605106 -42.532398 65.974190 0.466667 0.313725 0.247059 +v -55.941505 -35.714100 59.684597 0.529412 0.349020 0.282353 +v -57.457302 -19.495899 52.872997 0.568627 0.376471 0.301961 +v -69.852905 -2.797300 89.256996 0.333333 0.215686 0.168627 +v -70.631210 9.026070 81.100189 0.333333 0.211765 0.164706 +v -72.047607 10.667300 91.656296 0.305882 0.200000 0.160784 +v -65.526306 -21.184401 81.961395 0.352941 0.227451 0.176471 +v -66.953011 -10.110300 77.137192 0.368627 0.235294 0.180392 +v -61.182209 -27.386299 67.969193 0.447059 0.290196 0.227451 +v -67.878204 0.099053 71.940689 0.384314 0.243137 0.188235 +v -62.927803 -15.756000 64.638695 0.447059 0.286275 0.223529 +v -67.671104 -16.365200 92.531090 0.329412 0.215686 0.168627 +v -63.259407 -31.738800 86.818794 0.321569 0.211765 0.164706 +v -60.684906 -35.904400 75.737091 0.392157 0.258824 0.203922 +v -59.222309 -41.333500 80.770195 0.352941 0.235294 0.184314 +v -63.768204 -5.981940 60.569996 0.462745 0.294118 0.231373 +v -57.061104 -11.211700 48.339996 0.615686 0.407843 0.329412 +v -71.885208 24.282400 81.760689 0.294118 0.184314 0.149020 +v -73.277611 35.372601 88.210091 0.105882 0.070588 0.058824 +v -73.102806 23.570700 90.919289 0.247059 0.160784 0.129412 +v -74.068710 29.841700 94.291794 0.094118 0.062745 0.050980 +v -73.606911 22.268999 95.906693 0.137255 0.090196 0.074510 +v -72.477509 7.978640 98.615295 0.152941 0.101961 0.082353 +v -69.024506 -13.136300 99.036591 0.333333 0.215686 0.172549 +v -71.098709 -3.316490 100.109993 0.341176 0.223529 0.180392 +v -70.885109 -6.826520 103.005989 0.192157 0.125490 0.101961 +v -67.819908 -17.923401 100.792992 0.145098 0.094118 0.074510 +v -72.112007 0.218792 102.677994 0.180392 0.117647 0.094118 +v -44.566803 99.373398 43.969296 0.364706 0.243137 0.184314 +v -53.142704 92.472603 50.275696 0.345098 0.231373 0.176471 +v -53.622902 97.571404 53.947998 0.262745 0.176471 0.137255 +v -58.044403 92.007202 57.123795 0.121569 0.086275 0.066667 +v -48.604305 101.376999 49.915794 0.156863 0.105882 0.082353 +v -41.549603 104.077003 43.819798 0.172549 0.113725 0.086275 +v -71.393410 49.452900 78.631592 0.247059 0.168627 0.137255 +v -72.491310 48.692600 82.087189 0.094118 0.066667 0.054902 +v -49.436703 58.866501 33.259895 0.545098 0.364706 0.290196 +v -43.665604 60.113602 27.862896 0.592157 0.403922 0.325490 +v -37.226006 60.068802 23.153795 0.670588 0.474510 0.392157 +v -4.352591 16.224400 7.395720 0.682353 0.419608 0.337255 +v -70.843208 58.216900 75.191589 0.101961 0.074510 0.058824 +v -67.510704 71.916199 66.095291 0.133333 0.098039 0.078431 +v -69.946907 66.516602 71.206192 0.109804 0.078431 0.066667 +v -71.842804 37.894199 81.078789 0.254902 0.168627 0.137255 +v -63.468903 81.661102 60.812897 0.137255 0.094118 0.074510 +v -53.695305 98.844704 54.975895 0.129412 0.086275 0.066667 +v -11.574702 100.000999 25.843098 0.317647 0.211765 0.160784 +v -64.204407 -29.280001 98.039894 0.129412 0.086275 0.066667 +v -57.808506 -44.627602 86.710495 0.313725 0.207843 0.164706 +v -61.904308 -36.036499 93.323090 0.290196 0.192157 0.152941 +v -60.306007 -39.574100 93.578392 0.125490 0.082353 0.066667 +v -55.835407 -48.028099 86.987991 0.156863 0.105882 0.082353 +v -49.323906 -56.665699 77.172592 0.176471 0.117647 0.090196 +v -65.933609 -24.037500 96.256691 0.290196 0.188235 0.149020 +v -37.446705 33.968201 30.858696 0.407843 0.384314 0.380392 +v -39.703102 33.516899 32.215996 0.572549 0.533333 0.541176 +v -27.674603 33.585201 30.179197 0.356863 0.309804 0.290196 +v -23.713802 -35.788601 28.594898 0.482353 0.282353 0.235294 +v -3.734711 -35.148399 16.966900 0.596078 0.274510 0.290196 +v -3.894611 -38.155800 17.165199 0.756863 0.372549 0.407843 +v -8.034562 -35.082500 18.211599 0.584314 0.262745 0.282353 +v -8.452592 -38.003201 18.352200 0.713725 0.349020 0.380392 +v -13.179702 -35.288399 20.849298 0.541176 0.258824 0.270588 +v -13.330002 -37.864399 20.994598 0.635294 0.317647 0.337255 +v -17.577602 -35.332802 23.885798 0.447059 0.223529 0.223529 +v -17.583403 -37.785702 24.382399 0.549020 0.274510 0.278431 +v -21.285702 -34.999901 26.378998 0.474510 0.262745 0.231373 +v -21.699402 -38.312199 27.727598 0.564706 0.325490 0.294118 +v -21.295403 -34.956501 26.346899 0.486275 0.270588 0.239216 +v -14.235902 -31.116699 18.050999 0.666667 0.407843 0.368627 +v -6.377821 -27.889299 13.529899 0.796078 0.509804 0.466667 +v -17.588001 -35.285000 23.855999 0.427451 0.215686 0.211765 +v -18.272202 -33.384800 22.694597 0.576471 0.337255 0.298039 +v -13.185702 -35.228500 20.810898 0.533333 0.254902 0.266667 +v -13.791502 -33.117401 19.544298 0.596078 0.329412 0.313725 +v -8.025412 -35.018002 18.154800 0.576471 0.266667 0.282353 +v -9.206802 -33.017300 17.168400 0.631373 0.345098 0.337255 +v -3.731441 -35.080601 16.883200 0.596078 0.274510 0.290196 +v -5.548481 -33.276402 16.041901 0.643137 0.341176 0.337255 +v -2.653011 -33.159401 15.113800 0.650980 0.341176 0.341176 +v -2.764671 -31.169201 13.618300 0.705882 0.388235 0.384314 +v -5.831661 -30.993200 14.292099 0.698039 0.388235 0.380392 +v -4.266491 -41.302898 16.592800 0.807843 0.458824 0.490196 +v -8.956841 -41.049999 17.898399 0.749020 0.415686 0.439216 +v -9.671581 -30.964100 15.692699 0.686275 0.400000 0.376471 +v -13.864402 -40.635300 20.778898 0.654902 0.360784 0.364706 +v -18.022501 -40.030899 24.391897 0.603922 0.345098 0.325490 +v -36.597202 65.101097 24.312796 0.701961 0.478431 0.380392 +v -29.114101 63.241402 19.640799 0.772549 0.541176 0.447059 +v -21.118702 60.808300 16.469297 0.843137 0.607843 0.517647 +# 845 vertices, 0 vertices normals + +f 1 2 3 +f 4 5 6 +f 7 6 5 +f 8 7 9 +f 10 4 6 +f 3 12 13 +f 14 15 13 +f 14 16 17 +f 4 10 18 +f 17 16 19 +f 19 16 13 +f 5 4 17 +f 20 17 19 +f 21 19 22 +f 22 13 12 +f 23 24 25 +f 26 23 27 +f 10 6 11 +f 18 28 29 +f 14 29 30 +f 3 15 31 +f 32 20 21 +f 32 33 34 +f 27 25 33 +f 9 5 20 +f 35 36 37 +f 7 8 35 +f 31 15 30 +f 18 10 38 +f 39 40 41 +f 42 43 44 +f 45 46 47 +f 47 48 49 +f 45 47 50 +f 28 38 51 +f 46 45 52 +f 29 28 52 +f 53 31 30 +f 54 53 55 +f 56 54 57 +f 61 62 49 +f 61 48 63 +f 64 65 66 +f 67 68 69 +f 48 70 63 +f 71 72 70 +f 73 74 75 +f 64 76 77 +f 78 79 80 +f 79 81 82 +f 83 84 85 +f 84 86 87 +f 86 88 89 +f 91 60 92 +f 60 90 93 +f 94 89 95 +f 94 95 96 +f 94 96 97 +f 94 97 98 +f 94 98 99 +f 94 99 100 +f 94 100 101 +f 94 101 89 +f 101 100 102 +f 103 95 89 +f 104 105 106 +f 107 108 105 +f 112 109 106 +f 113 109 80 +f 115 116 117 +f 116 118 119 +f 119 120 121 +f 122 121 120 +f 124 125 126 +f 125 127 128 +f 127 118 116 +f 129 117 119 +f 130 131 132 +f 131 121 122 +f 120 133 134 +f 133 135 136 +f 135 137 138 +f 137 139 140 +f 141 126 128 +f 125 142 127 +f 144 142 125 +f 96 95 132 +f 139 145 146 +f 145 110 114 +f 110 147 114 +f 147 148 114 +f 147 82 148 +f 104 109 113 +f 144 107 149 +f 96 123 134 +f 120 143 150 +f 143 144 149 +f 151 152 153 +f 152 154 155 +f 100 146 114 +f 145 113 80 +f 78 112 156 +f 161 162 157 +f 166 167 168 +f 167 169 170 +f 169 160 159 +f 172 171 173 +f 190 192 182 +f 193 189 190 +f 189 194 192 +f 195 196 194 +f 188 197 196 +f 162 198 199 +f 198 191 182 +f 178 185 184 +f 202 199 182 +f 203 204 205 +f 203 183 206 +f 183 186 207 +f 186 187 208 +f 187 184 209 +f 184 185 210 +f 185 211 212 +f 213 211 178 +f 179 174 214 +f 174 175 215 +f 201 215 175 +f 216 217 218 +f 210 212 219 +f 209 210 220 +f 221 222 208 +f 223 224 219 +f 225 226 223 +f 227 228 226 +f 229 230 228 +f 229 231 232 +f 231 233 234 +f 233 235 236 +f 166 237 238 +f 165 239 237 +f 164 239 165 +f 240 241 239 +f 161 242 236 +f 243 157 244 +f 245 154 152 +f 246 135 133 +f 153 247 106 +f 106 247 156 +f 156 248 249 +f 248 250 251 +f 250 252 251 +f 250 44 43 +f 253 251 252 +f 82 74 65 +f 202 205 155 +f 214 215 187 +f 183 254 214 +f 182 180 179 +f 193 190 191 +f 189 193 235 +f 195 189 233 +f 188 195 231 +f 178 188 229 +f 178 225 213 +f 196 197 176 +f 194 196 173 +f 192 194 171 +f 182 192 181 +f 255 256 257 +f 258 37 36 +f 259 260 261 +f 262 259 255 +f 71 263 218 +f 264 72 71 +f 265 264 217 +f 266 265 216 +f 266 216 257 +f 150 149 267 +f 143 118 127 +f 144 125 124 +f 80 79 147 +f 109 104 106 +f 104 113 268 +f 105 104 269 +f 107 105 269 +f 106 105 108 +f 151 111 107 +f 267 149 107 +f 151 107 144 +f 268 113 145 +f 109 112 80 +f 270 246 267 +f 268 270 269 +f 270 268 139 +f 246 270 137 +f 119 118 143 +f 131 129 121 +f 136 98 97 +f 138 140 99 +f 100 99 140 +f 102 114 148 +f 101 102 77 +f 87 89 101 +f 89 88 271 +f 103 272 132 +f 129 131 130 +f 128 116 115 +f 126 141 273 +f 153 108 111 +f 211 213 223 +f 219 274 275 +f 220 219 275 +f 274 276 277 +f 275 274 278 +f 275 279 280 +f 281 282 280 +f 154 283 202 +f 155 205 204 +f 284 204 206 +f 285 206 207 +f 286 207 208 +f 221 220 287 +f 288 287 280 +f 286 222 250 +f 285 286 248 +f 284 285 156 +f 155 284 247 +f 182 203 205 +f 289 244 200 +f 244 289 290 +f 202 283 200 +f 276 274 219 +f 291 292 277 +f 293 291 276 +f 291 293 159 +f 294 291 160 +f 169 295 294 +f 158 157 243 +f 163 158 296 +f 240 163 297 +f 298 241 240 +f 241 298 299 +f 239 241 300 +f 237 239 301 +f 238 237 302 +f 295 238 303 +f 295 169 167 +f 294 295 304 +f 305 292 291 +f 305 294 306 +f 305 306 307 +f 292 305 308 +f 277 292 309 +f 278 277 310 +f 279 278 311 +f 312 281 279 +f 42 44 280 +f 313 314 315 +f 313 87 76 +f 87 313 85 +f 69 68 316 +f 66 69 317 +f 64 317 314 +f 77 148 65 +f 92 93 318 +f 319 56 57 +f 56 319 320 +f 57 321 62 +f 57 54 321 +f 54 56 322 +f 323 324 322 +f 325 323 322 +f 326 327 318 +f 253 328 318 +f 66 73 93 +f 93 73 75 +f 82 81 75 +f 82 147 79 +f 249 81 79 +f 253 249 251 +f 249 253 75 +f 85 313 329 +f 314 317 316 +f 76 87 77 +f 84 83 330 +f 86 84 331 +f 88 86 332 +f 36 261 260 +f 259 262 258 +f 259 333 256 +f 47 46 334 +f 55 335 50 +f 262 334 51 +f 334 262 218 +f 46 52 51 +f 11 37 258 +f 38 11 51 +f 335 29 45 +f 55 30 29 +f 53 54 324 +f 336 337 31 +f 91 61 60 +f 327 320 319 +f 326 325 320 +f 59 328 252 +f 325 338 323 +f 1 337 336 +f 339 336 324 +f 340 324 323 +f 338 325 58 +f 342 343 344 +f 345 346 342 +f 346 345 347 +f 348 346 349 +f 350 351 345 +f 345 351 352 +f 352 353 1 +f 347 352 339 +f 349 347 338 +f 354 349 341 +f 43 58 59 +f 355 58 43 +f 282 354 355 +f 281 348 354 +f 344 343 356 +f 343 342 346 +f 343 348 281 +f 356 343 312 +f 356 312 311 +f 357 358 356 +f 358 357 359 +f 344 358 360 +f 342 344 361 +f 362 350 342 +f 48 47 263 +f 49 62 321 +f 61 91 57 +f 61 49 48 +f 363 364 365 +f 366 364 363 +f 326 58 325 +f 326 59 58 +f 326 328 59 +f 183 182 254 +f 184 187 215 +f 303 367 368 +f 302 40 367 +f 369 370 307 +f 371 369 368 +f 372 371 367 +f 373 374 357 +f 301 41 40 +f 226 293 224 +f 228 159 293 +f 230 375 159 +f 232 376 375 +f 234 377 376 +f 234 236 377 +f 161 235 193 +f 162 200 244 +f 162 161 198 +f 242 161 158 +f 378 379 380 +f 245 289 283 +f 380 290 289 +f 378 124 273 +f 152 151 124 +f 381 382 383 +f 384 311 310 +f 381 374 373 +f 385 307 370 +f 308 307 385 +f 309 308 382 +f 373 310 309 +f 306 304 368 +f 352 351 353 +f 65 74 73 +f 82 65 148 +f 44 250 222 +f 288 222 221 +f 371 386 369 +f 387 300 299 +f 301 300 387 +f 386 370 369 +f 39 372 40 +f 388 117 129 +f 390 391 392 +f 390 393 394 +f 2 394 12 +f 391 395 389 +f 390 2 1 +f 390 353 351 +f 391 351 395 +f 395 351 350 +f 395 362 365 +f 397 175 396 +f 173 176 397 +f 397 178 177 +f 175 397 177 +f 180 398 174 +f 398 180 181 +f 178 397 176 +f 172 398 171 +f 172 173 396 +f 172 396 175 +f 399 68 67 +f 400 401 402 +f 403 404 401 +f 405 406 404 +f 407 408 406 +f 409 410 408 +f 399 410 409 +f 410 399 63 +f 413 315 316 +f 411 415 416 +f 415 417 418 +f 417 419 420 +f 419 421 422 +f 421 423 422 +f 421 424 425 +f 426 427 422 +f 426 83 414 +f 399 67 63 +f 266 428 429 +f 427 430 420 +f 70 410 63 +f 264 265 429 +f 72 264 431 +f 410 70 72 +f 406 408 432 +f 404 406 431 +f 401 404 429 +f 428 266 412 +f 402 401 428 +f 413 316 416 +f 430 413 418 +f 329 315 413 +f 414 329 430 +f 433 426 423 +f 330 83 426 +f 159 375 170 +f 375 376 168 +f 376 377 434 +f 435 434 377 +f 165 166 434 +f 164 165 435 +f 436 163 164 +f 436 435 236 +f 436 242 158 +f 1 3 337 +f 7 5 9 +f 8 9 34 +f 11 6 37 +f 3 13 15 +f 14 13 16 +f 14 17 18 +f 4 18 17 +f 19 13 22 +f 5 17 20 +f 20 19 21 +f 21 22 26 +f 23 25 27 +f 26 27 21 +f 10 11 38 +f 18 29 14 +f 14 30 15 +f 3 31 337 +f 32 21 27 +f 32 34 9 +f 27 33 32 +f 9 20 32 +f 35 37 6 +f 35 6 7 +f 18 38 28 +f 47 49 50 +f 45 50 335 +f 28 51 52 +f 29 52 45 +f 53 30 55 +f 54 55 321 +f 60 61 67 +f 61 63 67 +f 67 69 90 +f 71 70 48 +f 64 77 65 +f 78 80 112 +f 83 85 414 +f 84 87 85 +f 86 89 87 +f 67 90 60 +f 91 92 319 +f 60 93 92 +f 103 89 437 +f 115 117 388 +f 116 119 117 +f 119 121 129 +f 122 120 123 +f 123 96 122 +f 124 126 273 +f 125 128 126 +f 127 116 128 +f 130 132 272 +f 131 122 132 +f 120 134 123 +f 133 136 134 +f 135 138 136 +f 137 140 138 +f 141 128 438 +f 143 142 144 +f 96 132 122 +f 139 146 140 +f 145 114 146 +f 96 134 97 +f 120 150 133 +f 143 149 150 +f 151 153 111 +f 152 155 153 +f 108 107 111 +f 100 114 102 +f 145 80 110 +f 157 158 161 +f 164 163 240 +f 167 170 168 +f 169 159 170 +f 182 183 203 +f 188 178 197 +f 190 182 191 +f 189 192 190 +f 195 194 189 +f 188 196 195 +f 162 199 200 +f 198 182 199 +f 178 201 177 +f 178 184 201 +f 202 182 205 +f 203 206 204 +f 183 207 206 +f 186 208 207 +f 187 209 208 +f 184 210 209 +f 185 212 210 +f 179 214 254 +f 174 215 214 +f 201 175 177 +f 216 218 255 +f 210 219 220 +f 209 220 221 +f 221 208 209 +f 178 211 185 +f 223 219 212 +f 225 223 213 +f 227 226 225 +f 229 228 227 +f 229 232 230 +f 231 234 232 +f 233 236 234 +f 166 238 167 +f 165 237 166 +f 240 239 164 +f 161 236 235 +f 243 244 439 +f 245 152 378 +f 246 133 150 +f 153 106 108 +f 106 156 112 +f 156 249 78 +f 248 251 249 +f 250 43 252 +f 253 252 328 +f 214 187 186 +f 183 214 186 +f 182 179 254 +f 193 191 198 +f 189 235 233 +f 195 233 231 +f 188 231 229 +f 178 229 227 +f 178 227 225 +f 197 178 176 +f 196 176 173 +f 194 173 171 +f 192 171 181 +f 182 181 180 +f 255 257 216 +f 258 36 260 +f 259 261 333 +f 262 255 218 +f 71 218 217 +f 264 71 217 +f 265 217 216 +f 266 257 412 +f 150 267 246 +f 143 127 142 +f 144 124 151 +f 80 147 110 +f 107 269 267 +f 268 145 139 +f 270 267 269 +f 268 269 104 +f 270 139 137 +f 246 137 135 +f 119 143 120 +f 136 97 134 +f 98 136 138 +f 138 99 98 +f 100 140 146 +f 102 148 77 +f 101 77 87 +f 89 271 437 +f 103 132 95 +f 129 130 440 +f 128 115 438 +f 211 223 212 +f 220 275 287 +f 274 277 278 +f 275 278 279 +f 275 280 287 +f 281 280 279 +f 154 202 155 +f 155 204 284 +f 284 206 285 +f 285 207 286 +f 286 208 222 +f 221 287 288 +f 288 280 44 +f 286 250 248 +f 285 248 156 +f 284 156 247 +f 155 247 153 +f 289 200 283 +f 244 290 439 +f 202 200 199 +f 276 219 224 +f 291 277 276 +f 293 276 224 +f 291 159 160 +f 169 294 160 +f 158 243 296 +f 163 296 297 +f 240 297 441 +f 298 240 441 +f 241 299 300 +f 239 300 301 +f 237 301 302 +f 238 302 303 +f 295 303 304 +f 295 167 238 +f 294 304 306 +f 305 291 294 +f 305 307 308 +f 292 308 309 +f 277 309 310 +f 278 310 311 +f 279 311 312 +f 42 280 282 +f 313 315 329 +f 313 76 314 +f 69 316 317 +f 66 317 64 +f 64 314 76 +f 92 318 327 +f 319 57 91 +f 56 320 322 +f 54 322 324 +f 325 322 320 +f 326 318 328 +f 253 318 75 +f 90 69 66 +f 66 93 90 +f 93 75 318 +f 82 75 74 +f 249 79 78 +f 249 75 81 +f 85 329 414 +f 314 316 315 +f 84 330 331 +f 86 331 332 +f 88 332 271 +f 259 258 260 +f 259 256 255 +f 47 334 263 +f 55 50 321 +f 262 51 258 +f 334 218 263 +f 46 51 334 +f 11 258 51 +f 55 29 335 +f 53 324 336 +f 336 31 53 +f 327 319 92 +f 326 320 327 +f 1 336 339 +f 339 324 340 +f 340 323 338 +f 338 58 341 +f 341 58 355 +f 345 342 350 +f 346 347 349 +f 348 349 354 +f 345 352 347 +f 352 1 339 +f 347 339 340 +f 347 340 338 +f 349 338 341 +f 354 341 355 +f 43 59 252 +f 355 43 42 +f 282 355 42 +f 281 354 282 +f 344 356 358 +f 343 346 348 +f 343 281 312 +f 356 311 384 +f 357 356 384 +f 358 359 360 +f 344 360 361 +f 342 361 363 +f 362 342 363 +f 48 263 71 +f 49 321 50 +f 61 57 62 +f 363 365 362 +f 184 215 201 +f 303 368 304 +f 302 367 303 +f 369 307 368 +f 371 368 367 +f 372 367 40 +f 373 357 384 +f 301 40 302 +f 226 224 223 +f 228 293 226 +f 230 159 228 +f 232 375 230 +f 234 376 232 +f 161 193 198 +f 162 244 157 +f 378 380 245 +f 245 283 154 +f 380 289 245 +f 378 273 379 +f 152 124 378 +f 384 310 373 +f 308 385 382 +f 309 382 381 +f 373 309 381 +f 306 368 307 +f 65 73 66 +f 44 222 288 +f 387 299 442 +f 301 387 41 +f 388 129 440 +f 390 392 393 +f 390 394 2 +f 2 12 3 +f 391 389 392 +f 390 1 353 +f 390 351 391 +f 395 350 362 +f 395 365 389 +f 173 397 396 +f 180 174 179 +f 398 181 171 +f 172 175 174 +f 172 174 398 +f 400 402 443 +f 403 401 400 +f 405 404 403 +f 407 406 405 +f 409 408 407 +f 411 68 399 +f 411 416 68 +f 415 418 416 +f 417 420 418 +f 419 422 420 +f 421 425 423 +f 426 422 423 +f 426 414 427 +f 266 429 265 +f 427 420 422 +f 264 429 431 +f 72 431 432 +f 410 72 432 +f 408 410 432 +f 406 432 431 +f 404 431 429 +f 401 429 428 +f 428 412 444 +f 402 428 444 +f 413 416 418 +f 430 418 420 +f 316 68 416 +f 329 413 430 +f 414 430 427 +f 433 423 425 +f 330 426 433 +f 375 168 170 +f 376 434 168 +f 435 377 236 +f 166 168 434 +f 165 434 435 +f 164 435 436 +f 436 236 242 +f 436 158 163 +f 363 361 366 +f 445 447 446 +f 448 450 449 +f 451 449 450 +f 8 452 451 +f 453 450 448 +f 447 456 455 +f 457 456 458 +f 457 460 459 +f 448 461 453 +f 460 462 459 +f 462 456 459 +f 449 460 448 +f 463 462 460 +f 464 465 462 +f 465 455 456 +f 466 25 24 +f 467 468 466 +f 453 454 450 +f 461 470 469 +f 457 471 470 +f 447 472 458 +f 473 464 463 +f 473 34 33 +f 468 33 25 +f 452 463 449 +f 35 474 36 +f 451 35 8 +f 472 471 458 +f 461 475 453 +f 476 478 477 +f 479 481 480 +f 482 484 483 +f 484 486 485 +f 482 487 484 +f 469 488 475 +f 483 489 482 +f 470 489 469 +f 490 471 472 +f 491 492 490 +f 493 494 491 +f 498 486 499 +f 498 500 485 +f 501 503 502 +f 504 506 505 +f 485 500 507 +f 508 507 509 +f 510 512 511 +f 501 514 513 +f 515 517 516 +f 516 519 518 +f 520 522 521 +f 521 524 523 +f 523 526 525 +f 528 529 497 +f 497 530 527 +f 531 532 526 +f 531 533 532 +f 531 534 533 +f 531 535 534 +f 531 536 535 +f 531 537 536 +f 531 538 537 +f 531 526 538 +f 538 539 537 +f 103 526 532 +f 540 542 541 +f 543 541 544 +f 548 542 545 +f 549 517 545 +f 115 552 551 +f 551 554 553 +f 554 556 555 +f 557 555 556 +f 559 561 560 +f 560 563 562 +f 562 551 553 +f 564 554 552 +f 130 566 565 +f 565 557 556 +f 555 568 567 +f 567 570 569 +f 569 572 571 +f 571 574 573 +f 141 563 561 +f 560 562 575 +f 577 560 575 +f 533 566 532 +f 573 579 578 +f 578 550 546 +f 546 550 580 +f 580 550 581 +f 580 581 519 +f 540 549 545 +f 577 582 543 +f 533 568 558 +f 555 583 576 +f 576 582 577 +f 584 586 585 +f 585 588 587 +f 537 550 579 +f 578 517 549 +f 515 589 548 +f 594 590 595 +f 599 601 600 +f 600 603 602 +f 602 592 593 +f 605 606 604 +f 623 615 625 +f 626 623 622 +f 622 625 627 +f 628 627 629 +f 621 629 630 +f 595 632 631 +f 631 615 624 +f 611 617 618 +f 635 615 632 +f 636 638 637 +f 636 639 616 +f 616 640 619 +f 619 641 620 +f 620 642 617 +f 617 643 618 +f 618 645 644 +f 646 611 644 +f 612 647 607 +f 607 648 608 +f 634 608 648 +f 649 651 650 +f 643 652 645 +f 642 653 643 +f 654 641 655 +f 656 652 657 +f 658 656 659 +f 660 659 661 +f 662 661 663 +f 662 665 664 +f 664 667 666 +f 666 669 668 +f 599 671 670 +f 598 670 672 +f 597 598 672 +f 673 672 674 +f 594 669 675 +f 243 676 590 +f 677 585 587 +f 678 567 569 +f 586 542 679 +f 542 589 679 +f 589 681 680 +f 680 683 682 +f 682 683 684 +f 682 480 481 +f 685 684 683 +f 519 502 511 +f 635 588 638 +f 647 620 648 +f 616 647 686 +f 615 612 613 +f 626 624 623 +f 622 668 626 +f 628 666 622 +f 621 664 628 +f 611 662 621 +f 611 646 658 +f 629 609 630 +f 627 606 629 +f 625 604 627 +f 615 614 625 +f 687 257 256 +f 688 36 474 +f 689 261 690 +f 691 687 689 +f 508 651 692 +f 693 508 509 +f 694 650 693 +f 695 649 694 +f 695 257 649 +f 583 696 582 +f 576 562 553 +f 577 559 560 +f 517 580 516 +f 545 542 540 +f 540 697 549 +f 541 698 540 +f 543 698 541 +f 542 544 541 +f 584 543 547 +f 696 543 582 +f 584 577 543 +f 697 578 549 +f 545 517 548 +f 699 696 678 +f 697 698 699 +f 699 573 697 +f 678 571 699 +f 554 576 553 +f 565 556 564 +f 570 534 535 +f 572 536 574 +f 537 574 536 +f 539 581 550 +f 538 514 539 +f 524 538 526 +f 526 271 525 +f 103 566 272 +f 564 130 565 +f 563 115 551 +f 561 273 141 +f 586 547 544 +f 644 656 646 +f 652 701 700 +f 653 701 652 +f 700 703 702 +f 701 704 700 +f 701 706 705 +f 707 706 708 +f 587 635 709 +f 588 637 638 +f 710 639 637 +f 711 640 639 +f 712 641 640 +f 654 713 653 +f 714 706 713 +f 712 682 655 +f 711 680 712 +f 710 589 711 +f 588 679 710 +f 615 638 636 +f 715 633 676 +f 676 290 715 +f 635 633 709 +f 702 652 700 +f 716 703 717 +f 718 702 716 +f 716 592 718 +f 719 593 716 +f 602 719 720 +f 591 243 590 +f 596 296 591 +f 673 297 596 +f 298 673 674 +f 674 299 298 +f 672 721 674 +f 670 722 672 +f 671 723 670 +f 720 724 671 +f 720 600 602 +f 719 725 720 +f 726 716 717 +f 726 727 719 +f 726 728 727 +f 717 729 726 +f 703 730 717 +f 704 731 703 +f 705 732 704 +f 733 705 707 +f 479 706 481 +f 734 736 735 +f 734 513 524 +f 524 522 734 +f 506 737 505 +f 503 738 506 +f 501 735 738 +f 514 502 581 +f 529 739 530 +f 740 494 493 +f 493 741 740 +f 494 499 742 +f 494 742 491 +f 491 743 493 +f 744 743 745 +f 746 743 744 +f 747 739 748 +f 685 739 749 +f 503 530 510 +f 530 512 510 +f 519 512 518 +f 519 516 580 +f 681 516 518 +f 685 683 681 +f 681 512 685 +f 522 750 734 +f 735 737 738 +f 513 514 524 +f 521 330 520 +f 523 331 521 +f 525 332 523 +f 36 690 261 +f 689 688 691 +f 689 256 333 +f 484 751 483 +f 492 487 752 +f 691 488 751 +f 751 651 691 +f 483 488 489 +f 454 688 474 +f 475 488 454 +f 752 482 470 +f 492 470 471 +f 490 745 491 +f 753 472 754 +f 528 497 498 +f 748 740 741 +f 747 741 746 +f 496 684 749 +f 746 744 755 +f 445 753 754 +f 756 745 753 +f 757 744 745 +f 755 495 746 +f 759 761 760 +f 762 759 763 +f 763 764 762 +f 765 766 763 +f 767 762 768 +f 762 769 768 +f 769 445 770 +f 764 756 769 +f 766 755 764 +f 771 758 766 +f 480 496 495 +f 772 480 495 +f 708 772 771 +f 707 771 765 +f 761 773 760 +f 760 763 759 +f 760 707 765 +f 773 733 760 +f 773 732 733 +f 774 773 775 +f 775 776 774 +f 761 777 775 +f 759 778 761 +f 779 759 767 +f 485 692 484 +f 486 742 499 +f 498 494 528 +f 498 485 486 +f 780 782 781 +f 783 780 781 +f 747 746 495 +f 747 495 496 +f 747 496 749 +f 616 686 615 +f 617 648 620 +f 724 785 784 +f 723 784 477 +f 786 728 787 +f 788 785 786 +f 789 784 788 +f 790 774 791 +f 722 477 478 +f 659 657 718 +f 661 718 592 +f 663 592 792 +f 665 792 793 +f 667 793 794 +f 667 794 669 +f 594 626 668 +f 595 676 633 +f 595 631 594 +f 675 591 594 +f 795 380 379 +f 677 709 715 +f 380 715 290 +f 795 273 559 +f 585 559 584 +f 796 798 797 +f 799 731 732 +f 796 790 791 +f 800 787 728 +f 729 800 728 +f 730 797 729 +f 790 730 731 +f 727 785 725 +f 769 770 768 +f 502 510 511 +f 519 581 502 +f 481 655 682 +f 714 654 655 +f 788 786 801 +f 802 299 721 +f 722 802 721 +f 801 786 787 +f 476 477 789 +f 388 564 552 +f 804 806 805 +f 804 808 807 +f 446 455 808 +f 805 803 809 +f 804 445 446 +f 804 768 770 +f 805 809 768 +f 809 767 768 +f 809 782 779 +f 811 810 608 +f 606 811 609 +f 811 610 611 +f 608 610 811 +f 613 607 812 +f 812 614 613 +f 611 609 811 +f 605 604 812 +f 605 810 606 +f 605 608 810 +f 813 504 505 +f 814 402 815 +f 816 815 817 +f 818 817 819 +f 820 819 821 +f 822 821 823 +f 813 822 823 +f 823 500 813 +f 825 737 736 +f 824 828 827 +f 827 830 829 +f 829 832 831 +f 831 834 833 +f 833 834 835 +f 833 425 424 +f 836 834 837 +f 836 826 520 +f 813 500 504 +f 695 839 838 +f 837 832 840 +f 507 500 823 +f 693 839 694 +f 509 841 693 +f 823 509 507 +f 819 842 821 +f 817 841 819 +f 815 839 817 +f 838 412 695 +f 402 838 815 +f 825 828 737 +f 840 830 825 +f 750 825 736 +f 826 840 750 +f 433 835 836 +f 330 836 520 +f 592 603 792 +f 792 601 793 +f 793 843 794 +f 844 794 843 +f 598 843 599 +f 597 844 598 +f 845 597 596 +f 845 669 844 +f 845 591 675 +f 445 754 447 +f 451 452 449 +f 8 34 452 +f 454 474 450 +f 447 458 456 +f 457 459 456 +f 457 461 460 +f 448 460 461 +f 462 465 456 +f 449 463 460 +f 463 464 462 +f 464 467 465 +f 466 468 25 +f 467 464 468 +f 453 475 454 +f 461 457 470 +f 457 458 471 +f 447 754 472 +f 473 468 464 +f 473 452 34 +f 468 473 33 +f 452 473 463 +f 35 450 474 +f 35 451 450 +f 461 469 475 +f 484 487 486 +f 482 752 487 +f 469 489 488 +f 470 482 489 +f 490 492 471 +f 491 742 492 +f 497 504 498 +f 498 504 500 +f 504 527 506 +f 508 485 507 +f 501 502 514 +f 515 548 517 +f 520 826 522 +f 521 522 524 +f 523 524 526 +f 504 497 527 +f 528 740 529 +f 497 529 530 +f 103 437 526 +f 115 388 552 +f 551 552 554 +f 554 564 556 +f 557 558 555 +f 558 557 533 +f 559 273 561 +f 560 561 563 +f 562 563 551 +f 130 272 566 +f 565 566 557 +f 555 558 568 +f 567 568 570 +f 569 570 572 +f 571 572 574 +f 141 438 563 +f 576 577 575 +f 533 557 566 +f 573 574 579 +f 578 579 550 +f 533 534 568 +f 555 567 583 +f 576 583 582 +f 584 547 586 +f 585 586 588 +f 544 547 543 +f 537 539 550 +f 578 546 517 +f 590 594 591 +f 597 673 596 +f 600 601 603 +f 602 603 592 +f 615 636 616 +f 621 630 611 +f 623 624 615 +f 622 623 625 +f 628 622 627 +f 621 628 629 +f 595 633 632 +f 631 632 615 +f 611 610 634 +f 611 634 617 +f 635 638 615 +f 636 637 639 +f 616 639 640 +f 619 640 641 +f 620 641 642 +f 617 642 643 +f 618 643 645 +f 612 686 647 +f 607 647 648 +f 634 610 608 +f 649 687 651 +f 643 653 652 +f 642 654 653 +f 654 642 641 +f 611 618 644 +f 656 645 652 +f 658 646 656 +f 660 658 659 +f 662 660 661 +f 662 663 665 +f 664 665 667 +f 666 667 669 +f 599 600 671 +f 598 599 670 +f 673 597 672 +f 594 668 669 +f 243 439 676 +f 677 795 585 +f 678 583 567 +f 586 544 542 +f 542 548 589 +f 589 515 681 +f 680 681 683 +f 682 684 480 +f 685 749 684 +f 647 619 620 +f 616 619 647 +f 615 686 612 +f 626 631 624 +f 622 666 668 +f 628 664 666 +f 621 662 664 +f 611 660 662 +f 611 658 660 +f 630 609 611 +f 629 606 609 +f 627 604 606 +f 625 614 604 +f 615 613 614 +f 687 649 257 +f 688 690 36 +f 689 333 261 +f 691 651 687 +f 508 650 651 +f 693 650 508 +f 694 649 650 +f 695 412 257 +f 583 678 696 +f 576 575 562 +f 577 584 559 +f 517 546 580 +f 543 696 698 +f 697 573 578 +f 699 698 696 +f 697 540 698 +f 699 571 573 +f 678 569 571 +f 554 555 576 +f 570 568 534 +f 535 572 570 +f 572 535 536 +f 537 579 574 +f 539 514 581 +f 538 524 514 +f 526 437 271 +f 103 532 566 +f 564 440 130 +f 563 438 115 +f 644 645 656 +f 653 713 701 +f 700 704 703 +f 701 705 704 +f 701 713 706 +f 707 705 706 +f 587 588 635 +f 588 710 637 +f 710 711 639 +f 711 712 640 +f 712 655 641 +f 654 714 713 +f 714 481 706 +f 712 680 682 +f 711 589 680 +f 710 679 589 +f 588 586 679 +f 715 709 633 +f 676 439 290 +f 635 632 633 +f 702 657 652 +f 716 702 703 +f 718 657 702 +f 716 593 592 +f 602 593 719 +f 591 296 243 +f 596 297 296 +f 673 441 297 +f 298 441 673 +f 674 721 299 +f 672 722 721 +f 670 723 722 +f 671 724 723 +f 720 725 724 +f 720 671 600 +f 719 727 725 +f 726 719 716 +f 726 729 728 +f 717 730 729 +f 703 731 730 +f 704 732 731 +f 705 733 732 +f 479 708 706 +f 734 750 736 +f 734 735 513 +f 506 738 737 +f 503 501 738 +f 501 513 735 +f 529 748 739 +f 740 528 494 +f 493 743 741 +f 491 745 743 +f 746 741 743 +f 747 749 739 +f 685 512 739 +f 527 503 506 +f 503 527 530 +f 530 739 512 +f 519 511 512 +f 681 515 516 +f 681 518 512 +f 522 826 750 +f 735 736 737 +f 521 331 330 +f 523 332 331 +f 525 271 332 +f 689 690 688 +f 689 687 256 +f 484 692 751 +f 492 742 487 +f 691 688 488 +f 751 692 651 +f 483 751 488 +f 454 488 688 +f 492 752 470 +f 490 753 745 +f 753 490 472 +f 748 529 740 +f 747 748 741 +f 445 756 753 +f 756 757 745 +f 757 755 744 +f 755 758 495 +f 758 772 495 +f 762 767 759 +f 763 766 764 +f 765 771 766 +f 762 764 769 +f 769 756 445 +f 764 757 756 +f 764 755 757 +f 766 758 755 +f 771 772 758 +f 480 684 496 +f 772 479 480 +f 708 479 772 +f 707 708 771 +f 761 775 773 +f 760 765 763 +f 760 733 707 +f 773 799 732 +f 774 799 773 +f 775 777 776 +f 761 778 777 +f 759 780 778 +f 779 780 759 +f 485 508 692 +f 486 487 742 +f 498 499 494 +f 780 779 782 +f 617 634 648 +f 724 725 785 +f 723 724 784 +f 786 785 728 +f 788 784 785 +f 789 477 784 +f 790 799 774 +f 722 723 477 +f 659 656 657 +f 661 659 718 +f 663 661 592 +f 665 663 792 +f 667 665 793 +f 594 631 626 +f 595 590 676 +f 795 677 380 +f 677 587 709 +f 380 677 715 +f 795 379 273 +f 585 795 559 +f 799 790 731 +f 729 797 800 +f 730 796 797 +f 790 796 730 +f 727 728 785 +f 502 503 510 +f 481 714 655 +f 802 442 299 +f 722 478 802 +f 388 440 564 +f 804 807 806 +f 804 446 808 +f 446 447 455 +f 805 806 803 +f 804 770 445 +f 804 805 768 +f 809 779 767 +f 809 803 782 +f 606 810 811 +f 613 612 607 +f 812 604 614 +f 605 607 608 +f 605 812 607 +f 814 443 402 +f 816 814 815 +f 818 816 817 +f 820 818 819 +f 822 820 821 +f 824 813 505 +f 824 505 828 +f 827 828 830 +f 829 830 832 +f 831 832 834 +f 833 835 425 +f 836 835 834 +f 836 837 826 +f 695 694 839 +f 837 834 832 +f 693 841 839 +f 509 842 841 +f 823 842 509 +f 821 842 823 +f 819 841 842 +f 817 839 841 +f 815 838 839 +f 838 444 412 +f 402 444 838 +f 825 830 828 +f 840 832 830 +f 737 828 505 +f 750 840 825 +f 826 837 840 +f 433 425 835 +f 330 433 836 +f 792 603 601 +f 793 601 843 +f 844 669 794 +f 599 843 601 +f 598 844 843 +f 597 845 844 +f 845 675 669 +f 845 596 591 +f 780 783 778 +# 1610 faces, 0 coords texture + +# End of File diff --git a/demos/model3D/files/sofia.stl b/demos/model3D/files/sofia.stl new file mode 100644 index 0000000000000000000000000000000000000000..8a811c851675350bc5f9ab0d1f0eff69651104ae Binary files /dev/null and b/demos/model3D/files/sofia.stl differ diff --git a/demos/model3D/files/source.txt b/demos/model3D/files/source.txt new file mode 100644 index 0000000000000000000000000000000000000000..95f4bcc925f0bf5cf6a00913e13532fd0616f77a --- /dev/null +++ b/demos/model3D/files/source.txt @@ -0,0 +1,13 @@ +Stanford Bunny: +https://graphics.stanford.edu/data/3Dscanrep/ +https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj + +Duck & Fox: +https://github.com/KhronosGroup/glTF-Sample-Models + +Face: +https://github.com/mikedh/trimesh/tree/main/models + +NASA SOFIA: +https://nasa3d.arc.nasa.gov/detail/sofia +https://github.com/nasa/NASA-3D-Resources/blob/master/3D%20Models/SOFIA/Fuselage_top.stl \ No newline at end of file diff --git a/demos/model3D/run.ipynb b/demos/model3D/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..e4098c306b6619f0a9adf0c1ceb8f260e07e6f78 --- /dev/null +++ b/demos/model3D/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: model3D"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/Bunny.obj https://github.com/gradio-app/gradio/raw/main/demo/model3D/files/Bunny.obj\n", "!wget -q -O files/Duck.glb https://github.com/gradio-app/gradio/raw/main/demo/model3D/files/Duck.glb\n", "!wget -q -O files/Fox.gltf https://github.com/gradio-app/gradio/raw/main/demo/model3D/files/Fox.gltf\n", "!wget -q -O files/face.obj https://github.com/gradio-app/gradio/raw/main/demo/model3D/files/face.obj\n", "!wget -q -O files/sofia.stl https://github.com/gradio-app/gradio/raw/main/demo/model3D/files/sofia.stl\n", "!wget -q -O files/source.txt https://github.com/gradio-app/gradio/raw/main/demo/model3D/files/source.txt"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "\n", "\n", "def load_mesh(mesh_file_name):\n", " return mesh_file_name\n", "\n", "demo = gr.Interface(\n", " fn=load_mesh,\n", " inputs=gr.Model3D(),\n", " outputs=gr.Model3D(\n", " clear_color=(0.0, 0.0, 0.0, 0.0), label=\"3D Model\", display_mode=\"wireframe\"),\n", " examples=[\n", " [os.path.join(os.path.abspath(''), \"files/Bunny.obj\")],\n", " [os.path.join(os.path.abspath(''), \"files/Duck.glb\")],\n", " [os.path.join(os.path.abspath(''), \"files/Fox.gltf\")],\n", " [os.path.join(os.path.abspath(''), \"files/face.obj\")],\n", " [os.path.join(os.path.abspath(''), \"files/sofia.stl\")],\n", " [\"https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat\"],\n", " [\"https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/luigi/luigi.ply\"],\n", " ],\n", " cache_examples=True\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/model3D/run.py b/demos/model3D/run.py new file mode 100644 index 0000000000000000000000000000000000000000..dfc11012d17756b2111f305683e977e3f75de5a1 --- /dev/null +++ b/demos/model3D/run.py @@ -0,0 +1,26 @@ +import gradio as gr +import os + + +def load_mesh(mesh_file_name): + return mesh_file_name + +demo = gr.Interface( + fn=load_mesh, + inputs=gr.Model3D(), + outputs=gr.Model3D( + clear_color=(0.0, 0.0, 0.0, 0.0), label="3D Model", display_mode="wireframe"), + examples=[ + [os.path.join(os.path.dirname(__file__), "files/Bunny.obj")], + [os.path.join(os.path.dirname(__file__), "files/Duck.glb")], + [os.path.join(os.path.dirname(__file__), "files/Fox.gltf")], + [os.path.join(os.path.dirname(__file__), "files/face.obj")], + [os.path.join(os.path.dirname(__file__), "files/sofia.stl")], + ["https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat"], + ["https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/luigi/luigi.ply"], + ], + cache_examples=True +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/native_plots/bar_plot_demo.py b/demos/native_plots/bar_plot_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..0b538a3cd0a2de0c785e3b3d4e8e74a64f3d79ab --- /dev/null +++ b/demos/native_plots/bar_plot_demo.py @@ -0,0 +1,77 @@ +import gradio as gr +import numpy as np +from data import temp_sensor_data, food_rating_data + +with gr.Blocks() as bar_plots: + with gr.Row(): + start = gr.DateTime("2021-01-01 00:00:00", label="Start") + end = gr.DateTime("2021-01-05 00:00:00", label="End") + apply_btn = gr.Button("Apply", scale=0) + with gr.Row(): + group_by = gr.Radio(["None", "30m", "1h", "4h", "1d"], value="None", label="Group by") + aggregate = gr.Radio(["sum", "mean", "median", "min", "max"], value="sum", label="Aggregation") + + temp_by_time = gr.BarPlot( + temp_sensor_data, + x="time", + y="temperature", + ) + temp_by_time_location = gr.BarPlot( + temp_sensor_data, + x="time", + y="temperature", + color="location", + ) + + time_graphs = [temp_by_time, temp_by_time_location] + group_by.change( + lambda group: [gr.BarPlot(x_bin=None if group == "None" else group)] * len(time_graphs), + group_by, + time_graphs + ) + aggregate.change( + lambda aggregate: [gr.BarPlot(y_aggregate=aggregate)] * len(time_graphs), + aggregate, + time_graphs + ) + + + def rescale(select: gr.SelectData): + return select.index + rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end]) + + for trigger in [apply_btn.click, rescale_evt.then]: + trigger( + lambda start, end: [gr.BarPlot(x_lim=[start, end])] * len(time_graphs), [start, end], time_graphs + ) + + with gr.Row(): + price_by_cuisine = gr.BarPlot( + food_rating_data, + x="cuisine", + y="price", + ) + with gr.Column(scale=0): + gr.Button("Sort $ > $$$").click(lambda: gr.BarPlot(sort="y"), None, price_by_cuisine) + gr.Button("Sort $$$ > $").click(lambda: gr.BarPlot(sort="-y"), None, price_by_cuisine) + gr.Button("Sort A > Z").click(lambda: gr.BarPlot(sort=["Chinese", "Italian", "Mexican"]), None, price_by_cuisine) + + with gr.Row(): + price_by_rating = gr.BarPlot( + food_rating_data, + x="rating", + y="price", + x_bin=1, + ) + price_by_rating_color = gr.BarPlot( + food_rating_data, + x="rating", + y="price", + color="cuisine", + x_bin=1, + color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"}, + ) + + +if __name__ == "__main__": + bar_plots.launch() diff --git a/demos/native_plots/data.py b/demos/native_plots/data.py new file mode 100644 index 0000000000000000000000000000000000000000..cafc6046cc7dc7e37c973965f11f304640db9216 --- /dev/null +++ b/demos/native_plots/data.py @@ -0,0 +1,20 @@ +import pandas as pd +from random import randint, choice, random + +temp_sensor_data = pd.DataFrame( + { + "time": pd.date_range("2021-01-01", end="2021-01-05", periods=200), + "temperature": [randint(50 + 10 * (i % 2), 65 + 15 * (i % 2)) for i in range(200)], + "humidity": [randint(50 + 10 * (i % 2), 65 + 15 * (i % 2)) for i in range(200)], + "location": ["indoor", "outdoor"] * 100, + } +) + +food_rating_data = pd.DataFrame( + { + "cuisine": [["Italian", "Mexican", "Chinese"][i % 3] for i in range(100)], + "rating": [random() * 4 + 0.5 * (i % 3) for i in range(100)], + "price": [randint(10, 50) + 4 * (i % 3) for i in range(100)], + "wait": [random() for i in range(100)], + } +) \ No newline at end of file diff --git a/demos/native_plots/line_plot_demo.py b/demos/native_plots/line_plot_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..a08d6fcee9997ebeb7b2d6f84e19402d94f31290 --- /dev/null +++ b/demos/native_plots/line_plot_demo.py @@ -0,0 +1,69 @@ +import gradio as gr +import numpy as np +from data import temp_sensor_data, food_rating_data + +with gr.Blocks() as line_plots: + with gr.Row(): + start = gr.DateTime("2021-01-01 00:00:00", label="Start") + end = gr.DateTime("2021-01-05 00:00:00", label="End") + apply_btn = gr.Button("Apply", scale=0) + with gr.Row(): + group_by = gr.Radio(["None", "30m", "1h", "4h", "1d"], value="None", label="Group by") + aggregate = gr.Radio(["sum", "mean", "median", "min", "max"], value="sum", label="Aggregation") + + temp_by_time = gr.LinePlot( + temp_sensor_data, + x="time", + y="temperature", + ) + temp_by_time_location = gr.LinePlot( + temp_sensor_data, + x="time", + y="temperature", + color="location", + ) + + time_graphs = [temp_by_time, temp_by_time_location] + group_by.change( + lambda group: [gr.LinePlot(x_bin=None if group == "None" else group)] * len(time_graphs), + group_by, + time_graphs + ) + aggregate.change( + lambda aggregate: [gr.LinePlot(y_aggregate=aggregate)] * len(time_graphs), + aggregate, + time_graphs + ) + + + def rescale(select: gr.SelectData): + return select.index + rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end]) + + for trigger in [apply_btn.click, rescale_evt.then]: + trigger( + lambda start, end: [gr.LinePlot(x_lim=[start, end])] * len(time_graphs), [start, end], time_graphs + ) + + price_by_cuisine = gr.LinePlot( + food_rating_data, + x="cuisine", + y="price", + ) + with gr.Row(): + price_by_rating = gr.LinePlot( + food_rating_data, + x="rating", + y="price", + ) + price_by_rating_color = gr.LinePlot( + food_rating_data, + x="rating", + y="price", + color="cuisine", + color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"}, + ) + + +if __name__ == "__main__": + line_plots.launch() diff --git a/demos/native_plots/requirements.txt b/demos/native_plots/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..d1c8a7ae0396d12417907feb8ef43fb4bcc8e89c --- /dev/null +++ b/demos/native_plots/requirements.txt @@ -0,0 +1 @@ +vega_datasets \ No newline at end of file diff --git a/demos/native_plots/run.ipynb b/demos/native_plots/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..a96c6b0b7fac7ad57ba94fd24bace7f5edc751db --- /dev/null +++ b/demos/native_plots/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: native_plots"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/bar_plot_demo.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/data.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/line_plot_demo.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/scatter_plot_demo.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "from scatter_plot_demo import scatter_plots\n", "from line_plot_demo import line_plots\n", "from bar_plot_demo import bar_plots\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Tabs():\n", " with gr.TabItem(\"Line Plot\"):\n", " line_plots.render()\n", " with gr.TabItem(\"Scatter Plot\"):\n", " scatter_plots.render()\n", " with gr.TabItem(\"Bar Plot\"):\n", " bar_plots.render()\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/native_plots/run.py b/demos/native_plots/run.py new file mode 100644 index 0000000000000000000000000000000000000000..d4e771ab046766dd01899f0a46acb0aac632c6b8 --- /dev/null +++ b/demos/native_plots/run.py @@ -0,0 +1,18 @@ +import gradio as gr + +from scatter_plot_demo import scatter_plots +from line_plot_demo import line_plots +from bar_plot_demo import bar_plots + + +with gr.Blocks() as demo: + with gr.Tabs(): + with gr.TabItem("Line Plot"): + line_plots.render() + with gr.TabItem("Scatter Plot"): + scatter_plots.render() + with gr.TabItem("Bar Plot"): + bar_plots.render() + +if __name__ == "__main__": + demo.launch() diff --git a/demos/native_plots/scatter_plot_demo.py b/demos/native_plots/scatter_plot_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..342de33b573d30ef94f458f3a32b2228425e501a --- /dev/null +++ b/demos/native_plots/scatter_plot_demo.py @@ -0,0 +1,71 @@ +import gradio as gr +import numpy as np +from data import temp_sensor_data, food_rating_data + +with gr.Blocks() as scatter_plots: + with gr.Row(): + start = gr.DateTime("2021-01-01 00:00:00", label="Start") + end = gr.DateTime("2021-01-05 00:00:00", label="End") + apply_btn = gr.Button("Apply", scale=0) + with gr.Row(): + group_by = gr.Radio(["None", "30m", "1h", "4h", "1d"], value="None", label="Group by") + aggregate = gr.Radio(["sum", "mean", "median", "min", "max"], value="sum", label="Aggregation") + + temp_by_time = gr.ScatterPlot( + temp_sensor_data, + x="time", + y="temperature", + ) + temp_by_time_location = gr.ScatterPlot( + temp_sensor_data, + x="time", + y="temperature", + color="location", + ) + + time_graphs = [temp_by_time, temp_by_time_location] + group_by.change( + lambda group: [gr.ScatterPlot(x_bin=None if group == "None" else group)] * len(time_graphs), + group_by, + time_graphs + ) + aggregate.change( + lambda aggregate: [gr.ScatterPlot(y_aggregate=aggregate)] * len(time_graphs), + aggregate, + time_graphs + ) + + + # def rescale(select: gr.SelectData): + # return select.index + # rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end]) + + # for trigger in [apply_btn.click, rescale_evt.then]: + # trigger( + # lambda start, end: [gr.ScatterPlot(x_lim=[start, end])] * len(time_graphs), [start, end], time_graphs + # ) + + price_by_cuisine = gr.ScatterPlot( + food_rating_data, + x="cuisine", + y="price", + ) + with gr.Row(): + price_by_rating = gr.ScatterPlot( + food_rating_data, + x="rating", + y="price", + color="wait", + show_actions_button=True, + ) + price_by_rating_color = gr.ScatterPlot( + food_rating_data, + x="rating", + y="price", + color="cuisine", + # color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"}, + ) + + +if __name__ == "__main__": + scatter_plots.launch() diff --git a/demos/reverse_audio/audio/cantina.wav b/demos/reverse_audio/audio/cantina.wav new file mode 100644 index 0000000000000000000000000000000000000000..41f020438468229763ec4a2321325e5916e09106 Binary files /dev/null and b/demos/reverse_audio/audio/cantina.wav differ diff --git a/demos/reverse_audio/audio/recording1.wav b/demos/reverse_audio/audio/recording1.wav new file mode 100644 index 0000000000000000000000000000000000000000..a58ba5006d4afbfce2b13764e0fc8768286a340d Binary files /dev/null and b/demos/reverse_audio/audio/recording1.wav differ diff --git a/demos/reverse_audio/run.ipynb b/demos/reverse_audio/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..fb38bf537cdcef5a13c5229b5136064759f0c023 --- /dev/null +++ b/demos/reverse_audio/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: reverse_audio"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('audio')\n", "!wget -q -O audio/cantina.wav https://github.com/gradio-app/gradio/raw/main/demo/reverse_audio/audio/cantina.wav\n", "!wget -q -O audio/recording1.wav https://github.com/gradio-app/gradio/raw/main/demo/reverse_audio/audio/recording1.wav"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import os\n", "\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "\n", "def reverse_audio(audio):\n", " sr, data = audio\n", " return (sr, np.flipud(data))\n", "\n", "\n", "input_audio = gr.Audio(\n", " sources=[\"microphone\"],\n", " waveform_options=gr.WaveformOptions(\n", " waveform_color=\"#01C6FF\",\n", " waveform_progress_color=\"#0066B4\",\n", " skip_length=2,\n", " show_controls=False,\n", " ),\n", ")\n", "demo = gr.Interface(\n", " fn=reverse_audio,\n", " inputs=input_audio,\n", " outputs=\"audio\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/reverse_audio/run.py b/demos/reverse_audio/run.py new file mode 100644 index 0000000000000000000000000000000000000000..ac3227aeec62c4fce04875a576de31f11ee6a3fe --- /dev/null +++ b/demos/reverse_audio/run.py @@ -0,0 +1,29 @@ +import os + +import numpy as np + +import gradio as gr + + +def reverse_audio(audio): + sr, data = audio + return (sr, np.flipud(data)) + + +input_audio = gr.Audio( + sources=["microphone"], + waveform_options=gr.WaveformOptions( + waveform_color="#01C6FF", + waveform_progress_color="#0066B4", + skip_length=2, + show_controls=False, + ), +) +demo = gr.Interface( + fn=reverse_audio, + inputs=input_audio, + outputs="audio" +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/reverse_audio/screenshot.png b/demos/reverse_audio/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..796151630ac2bb931d09cfa511c0084a6fc391a1 Binary files /dev/null and b/demos/reverse_audio/screenshot.png differ diff --git a/demos/stream_audio/run.ipynb b/demos/stream_audio/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..980bdde941e7dffade21978f45600ed42382f8cb --- /dev/null +++ b/demos/stream_audio/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_audio"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import time\n", "\n", "def add_to_stream(audio, instream):\n", " time.sleep(1)\n", " if audio is None:\n", " return gr.Audio(), instream\n", " if instream is None:\n", " ret = audio\n", " else:\n", " ret = (audio[0], np.concatenate((instream[1], audio[1])))\n", " return ret, ret\n", "\n", "\n", "with gr.Blocks() as demo:\n", " inp = gr.Audio(sources=[\"microphone\"])\n", " out = gr.Audio()\n", " stream = gr.State()\n", " clear = gr.Button(\"Clear\")\n", "\n", " inp.stream(add_to_stream, [inp, stream], [out, stream])\n", " clear.click(lambda: [None, None, None], None, [inp, out, stream])\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/stream_audio/run.py b/demos/stream_audio/run.py new file mode 100644 index 0000000000000000000000000000000000000000..8b0af573d4500f0dc29dd1539781cb4ff0b49889 --- /dev/null +++ b/demos/stream_audio/run.py @@ -0,0 +1,27 @@ +import gradio as gr +import numpy as np +import time + +def add_to_stream(audio, instream): + time.sleep(1) + if audio is None: + return gr.Audio(), instream + if instream is None: + ret = audio + else: + ret = (audio[0], np.concatenate((instream[1], audio[1]))) + return ret, ret + + +with gr.Blocks() as demo: + inp = gr.Audio(sources=["microphone"]) + out = gr.Audio() + stream = gr.State() + clear = gr.Button("Clear") + + inp.stream(add_to_stream, [inp, stream], [out, stream]) + clear.click(lambda: [None, None, None], None, [inp, out, stream]) + + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/stream_frames/run.ipynb b/demos/stream_frames/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..9543887421138fcdd81040fe581d38e582c1edee --- /dev/null +++ b/demos/stream_frames/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_frames"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "\n", "def flip(im):\n", " return np.flipud(im)\n", "\n", "demo = gr.Interface(\n", " flip, \n", " gr.Image(sources=[\"webcam\"], streaming=True), \n", " \"image\",\n", " live=True\n", ")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n", " "]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/stream_frames/run.py b/demos/stream_frames/run.py new file mode 100644 index 0000000000000000000000000000000000000000..547fc11eec2f626fd4aa0baa13189abdd951d5cc --- /dev/null +++ b/demos/stream_frames/run.py @@ -0,0 +1,15 @@ +import gradio as gr +import numpy as np + +def flip(im): + return np.flipud(im) + +demo = gr.Interface( + flip, + gr.Image(sources=["webcam"], streaming=True), + "image", + live=True +) +if __name__ == "__main__": + demo.launch() + \ No newline at end of file diff --git a/demos/stt_or_tts/run.ipynb b/demos/stt_or_tts/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f1608fcaf52e70947e91c19182896debceb85979 --- /dev/null +++ b/demos/stt_or_tts/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stt_or_tts"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "tts_examples = [\n", " \"I love learning machine learning\",\n", " \"How do you do?\",\n", "]\n", "\n", "tts_demo = gr.load(\n", " \"huggingface/facebook/fastspeech2-en-ljspeech\",\n", " title=None,\n", " examples=tts_examples,\n", " description=\"Give me something to say!\",\n", ")\n", "\n", "stt_demo = gr.load(\n", " \"huggingface/facebook/wav2vec2-base-960h\",\n", " title=None,\n", " inputs=gr.Microphone(type=\"filepath\"),\n", " description=\"Let me try to guess what you're saying!\",\n", ")\n", "\n", "demo = gr.TabbedInterface([tts_demo, stt_demo], [\"Text-to-speech\", \"Speech-to-text\"])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/stt_or_tts/run.py b/demos/stt_or_tts/run.py new file mode 100644 index 0000000000000000000000000000000000000000..e364cba3e7b42c0965d751e2aa3bf3999445c041 --- /dev/null +++ b/demos/stt_or_tts/run.py @@ -0,0 +1,25 @@ +import gradio as gr + +tts_examples = [ + "I love learning machine learning", + "How do you do?", +] + +tts_demo = gr.load( + "huggingface/facebook/fastspeech2-en-ljspeech", + title=None, + examples=tts_examples, + description="Give me something to say!", +) + +stt_demo = gr.load( + "huggingface/facebook/wav2vec2-base-960h", + title=None, + inputs=gr.Microphone(type="filepath"), + description="Let me try to guess what you're saying!", +) + +demo = gr.TabbedInterface([tts_demo, stt_demo], ["Text-to-speech", "Speech-to-text"]) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/video_component/files/a.mp4 b/demos/video_component/files/a.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..95a61f6b4a753497d97f51c6a8f18727cef7d628 Binary files /dev/null and b/demos/video_component/files/a.mp4 differ diff --git a/demos/video_component/files/b.mp4 b/demos/video_component/files/b.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..7b2d7c723ea53ce763eb49f551bd955858850673 Binary files /dev/null and b/demos/video_component/files/b.mp4 differ diff --git a/demos/video_component/files/world.mp4 b/demos/video_component/files/world.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..9bce44c33e275d6107240a1101032a7835fd8eed --- /dev/null +++ b/demos/video_component/files/world.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:71944d7430c461f0cd6e7fd10cee7eb72786352a3678fc7bc0ae3d410f72aece +size 1570024 diff --git a/demos/video_component/run.ipynb b/demos/video_component/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..4387ae475020ca1e702948345ee0ebd37d640315 --- /dev/null +++ b/demos/video_component/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: video_component"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/a.mp4 https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/a.mp4\n", "!wget -q -O files/b.mp4 https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/b.mp4\n", "!wget -q -O files/world.mp4 https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/world.mp4"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "\n", "\n", "a = os.path.join(os.path.abspath(''), \"files/world.mp4\") # Video\n", "b = os.path.join(os.path.abspath(''), \"files/a.mp4\") # Video\n", "c = os.path.join(os.path.abspath(''), \"files/b.mp4\") # Video\n", "\n", "\n", "demo = gr.Interface(\n", " fn=lambda x: x,\n", " inputs=gr.Video(),\n", " outputs=gr.Video(),\n", " examples=[\n", " [a],\n", " [b],\n", " [c],\n", " ],\n", " cache_examples=True\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/video_component/run.py b/demos/video_component/run.py new file mode 100644 index 0000000000000000000000000000000000000000..d522aa49cdcff3e53341f0b5d8d7122ad90779ba --- /dev/null +++ b/demos/video_component/run.py @@ -0,0 +1,23 @@ +import gradio as gr +import os + + +a = os.path.join(os.path.dirname(__file__), "files/world.mp4") # Video +b = os.path.join(os.path.dirname(__file__), "files/a.mp4") # Video +c = os.path.join(os.path.dirname(__file__), "files/b.mp4") # Video + + +demo = gr.Interface( + fn=lambda x: x, + inputs=gr.Video(), + outputs=gr.Video(), + examples=[ + [a], + [b], + [c], + ], + cache_examples=True +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/zip_files/.gitignore b/demos/zip_files/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..8e9b8f2027a5cfe97c8c9c96709fc2453c0df220 --- /dev/null +++ b/demos/zip_files/.gitignore @@ -0,0 +1 @@ +tmp.zip \ No newline at end of file diff --git a/demos/zip_files/files/titanic.csv b/demos/zip_files/files/titanic.csv new file mode 100644 index 0000000000000000000000000000000000000000..63b68ab0ba98c667f515c52f08c0bbd5573d5330 --- /dev/null +++ b/demos/zip_files/files/titanic.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/demos/zip_files/run.ipynb b/demos/zip_files/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..a2732e7f190d2ae4a542cf615a6105d59f904aa9 --- /dev/null +++ b/demos/zip_files/run.ipynb @@ -0,0 +1 @@ +{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: zip_files"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/titanic.csv https://github.com/gradio-app/gradio/raw/main/demo/zip_files/files/titanic.csv"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import os\n", "from zipfile import ZipFile\n", "\n", "import gradio as gr\n", "\n", "\n", "def zip_files(files):\n", " with ZipFile(\"tmp.zip\", \"w\") as zipObj:\n", " for idx, file in enumerate(files):\n", " zipObj.write(file.name, file.name.split(\"/\")[-1])\n", " return \"tmp.zip\"\n", "\n", "demo = gr.Interface(\n", " zip_files,\n", " gr.File(file_count=\"multiple\", file_types=[\"text\", \".json\", \".csv\"]),\n", " \"file\",\n", " examples=[[[os.path.join(os.path.abspath(''),\"files/titanic.csv\"), \n", " os.path.join(os.path.abspath(''),\"files/titanic.csv\"), \n", " os.path.join(os.path.abspath(''),\"files/titanic.csv\")]]], \n", " cache_examples=True\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} \ No newline at end of file diff --git a/demos/zip_files/run.py b/demos/zip_files/run.py new file mode 100644 index 0000000000000000000000000000000000000000..1ae6436c67542f82a94ca7c6d9675974b2503710 --- /dev/null +++ b/demos/zip_files/run.py @@ -0,0 +1,24 @@ +import os +from zipfile import ZipFile + +import gradio as gr + + +def zip_files(files): + with ZipFile("tmp.zip", "w") as zipObj: + for idx, file in enumerate(files): + zipObj.write(file.name, file.name.split("/")[-1]) + return "tmp.zip" + +demo = gr.Interface( + zip_files, + gr.File(file_count="multiple", file_types=["text", ".json", ".csv"]), + "file", + examples=[[[os.path.join(os.path.dirname(__file__),"files/titanic.csv"), + os.path.join(os.path.dirname(__file__),"files/titanic.csv"), + os.path.join(os.path.dirname(__file__),"files/titanic.csv")]]], + cache_examples=True +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/zip_files/screenshot.png b/demos/zip_files/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..64591ff8a23e8c77759f60f7caddc61fb84f3324 Binary files /dev/null and b/demos/zip_files/screenshot.png differ diff --git a/image.png b/image.png new file mode 100644 index 0000000000000000000000000000000000000000..dc392ea95476974e07a68ad98a9659c240e1089b Binary files /dev/null and b/image.png differ diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..4d79710df1453cccbde88a73ec16c7db04645577 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,7 @@ + +gradio-client @ git+https://github.com/gradio-app/gradio@596e74fdf5a548e52aef463bab8efa66aeed75fe#subdirectory=client/python +https://gradio-builds.s3.amazonaws.com/596e74fdf5a548e52aef463bab8efa66aeed75fe/gradio-4.39.0-py3-none-any.whl +pypistats==1.1.0 +plotly +altair +vega_datasets diff --git a/templates/index.html b/templates/index.html new file mode 100644 index 0000000000000000000000000000000000000000..3eef8da37e6796a02af89cf666bbbe0b733a6079 --- /dev/null +++ b/templates/index.html @@ -0,0 +1,118 @@ + + + + {%if is_space %} + + {% endif %} + + + + +