import gradio as gr import numpy as np import random with gr.Blocks() as demo: section_labels = [ "apple", "banana", "carrot", "donut", "eggplant", "fish", "grapes", "hamburger", "ice cream", "juice", ] with gr.Row(): num_boxes = gr.Slider(0, 5, 2, step=1, label="Number of boxes") num_segments = gr.Slider(0, 5, 1, step=1, label="Number of segments") with gr.Row(): img_input = gr.Image() img_output = gr.AnnotatedImage( color_map={"banana": "#a89a00", "carrot": "#ffae00"} ) section_btn = gr.Button("Identify Sections") selected_section = gr.Textbox(label="Selected Section") def section(img, num_boxes, num_segments): sections = [] for a in range(num_boxes): x = random.randint(0, img.shape[1]) y = random.randint(0, img.shape[0]) w = random.randint(0, img.shape[1] - x) h = random.randint(0, img.shape[0] - y) sections.append(((x, y, x + w, y + h), section_labels[a])) for b in range(num_segments): x = random.randint(0, img.shape[1]) y = random.randint(0, img.shape[0]) r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y)) mask = np.zeros(img.shape[:2]) for i in range(img.shape[0]): for j in range(img.shape[1]): dist_square = (i - y) ** 2 + (j - x) ** 2 if dist_square < r**2: mask[i, j] = round((r**2 - dist_square) / r**2 * 4) / 4 sections.append((mask, section_labels[b + num_boxes])) return (img, sections) section_btn.click(section, [img_input, num_boxes, num_segments], img_output) def select_section(evt: gr.SelectData): return section_labels[evt.index] img_output.select(select_section, None, selected_section) if __name__ == "__main__": demo.launch()