import gradio as gr import torch import os from model import get_input_token_length, run DEFAULT_SYSTEM_PROMPT = """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\ """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = 4000 LICENSE = """

--- As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md). """ is_spaces = True if "SPACE_ID" in os.environ else False if is_spaces : is_shared_ui = True if "gradio-discord-bots/llama-2-13b-chat-transformers" in os.environ['SPACE_ID'] else False else: is_shared_ui = False is_gpu_associated = torch.cuda.is_available() def generate( message: str, history: list[tuple[str, str]], system_prompt=DEFAULT_SYSTEM_PROMPT, max_new_tokens=DEFAULT_MAX_NEW_TOKENS, temperature=1.0, top_p=0.95, top_k=50, ) -> tuple[str, list[tuple[str, str]]]: if is_shared_ui: raise ValueError("Cannot use demo running in shared_ui. Must duplicate your own space.") if max_new_tokens > MAX_MAX_NEW_TOKENS: raise ValueError input_token_length = get_input_token_length(message, history, system_prompt) if input_token_length > MAX_INPUT_TOKEN_LENGTH: response = f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Please create a new thread.' else: response = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k) return response interface = gr.ChatInterface(generate) with gr.Blocks() as demo: gr.Markdown( """ # Llama-2-13b-chat-hf Discord Bot Powered by Gradio and Hugging Face Transformers ### First install the `gradio_client` ```bash pip install gradio_client ``` ### Then deploy to discord in one line! ⚡️ ```python secrets = {"HUGGING_FACE_HUB_TOKEN": "",} client = grc.Client.duplicate("gradio-discord-bots/llama-2-13b-chat-transformers", secrets=secrets, hardware="a10g-small", sleep_timeout=2880) client.deploy_discord(api_names=["chat"], hf_token="") ``` """ ) gr.Markdown(LICENSE) with gr.Row(visible=False): interface.render() demo.queue(max_size=20).launch()