import os import json import logging from scripts.get_prediction_result import get_prediction_result from scripts.helper import ensure_directory_exists # Set up logging configuration logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Improved function to evaluate noise robustness def evaluate_information_integration(config): result_path = config['result_path'] + 'Information Integration/' noise_rate = config['noise_rate'] model_name = config['model_name'] # Iterate over each model specified in the config filename = os.path.join(result_path, f"prediction_{config['output_file_extension']}.json") ensure_directory_exists(filename) results = get_prediction_result(config, config['integration_file_name'], filename) # Store results for this model # Save results to a file with open(filename, 'w', encoding='utf-8') as f: for result in results: f.write(json.dumps(result, ensure_ascii=False) + '\n') # Compute per-model noise robustness correct_count = sum(1 for res in results if 0 not in res['label'] and 1 in res['label']) accuracy = correct_count / len(results) if results else 0 # Calculate tt and all_rate metrics tt = sum(1 for i in results if (noise_rate == 1 and i['label'][0] == -1) or (0 not in i['label'] and 1 in i['label'])) all_rate = tt / len(results) if results else 0 # Save the final score file with tt and all_rate scores = { 'model': model_name, 'accuracy': accuracy, 'noise_rate': noise_rate, 'correct_count': correct_count, 'total': len(results), 'all_rate': all_rate, 'tt': tt } logging.info(f"Information IntegrationScore: {scores}") logging.info(f"Accuracy: {accuracy:.2%}") score_filename = os.path.join(result_path, f"scores_{config['output_file_extension']}.json") with open(score_filename, 'w') as f: json.dump(scores, f, ensure_ascii=False, indent=4) return results