import tensorflow as tf import streamlit as st # import cv2 from PIL import Image from streamlit_image_select import image_select # import os def load_and_prep_image(filename, img_shape=224, scale=True): """ Reads in an image from filename, turns it into a tensor and reshapes into (224, 224, 3). Parameters ---------- filename (str): string filename of target image img_shape (int): size to resize target image to, default 224 scale (bool): whether to scale pixel values to range(0, 1), default True """ # # Read in the image # img = tf.io.read_file(filename) # # Decode it into a tensor # img = tf.io.decode_image(img) img = tf.convert_to_tensor(filename) # Resize the image img = tf.image.resize(img, [img_shape, img_shape]) if scale: # Rescale the image (get all values between 0 and 1) return img/255. else: return img class_names = ['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare', 'beet_salad', 'beignets', 'bibimbap', 'bread_pudding', 'breakfast_burrito', 'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad', 'carrot_cake', 'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla', 'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder', 'club_sandwich', 'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes', 'deviled_eggs', 'donuts', 'dumplings', 'edamame', 'eggs_benedict', 'escargots', 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras', 'french_fries', 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice', 'frozen_yogurt', 'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich', 'grilled_salmon', 'guacamole', 'gyoza', 'hamburger', 'hot_and_sour_soup', 'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream', 'lasagna', 'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', 'macarons', 'miso_soup', 'mussels', 'nachos', 'omelette', 'onion_rings', 'oysters', 'pad_thai', 'paella', 'pancakes', 'panna_cotta', 'peking_duck', 'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib', 'pulled_pork_sandwich', 'ramen', 'ravioli', 'red_velvet_cake', 'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed_salad', 'shrimp_and_grits', 'spaghetti_bolognese', 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake', 'sushi', 'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles'] #load model @st.cache(allow_output_mutation = True) def cache_model(model_name): model = tf.keras.models.load_model(model_name) return (model) model = cache_model("101_food_class_100_percent_saved_big_model") # model = tf.keras.models.load_model("101_food_class_100_percent_saved_big_model") st.write(""" # Food Classification App """ ) st.write("""#### ***Upload food image and this app will classify the uploaded image from one of the mentioned categories.***""") st.write(""" **Some major food categories** ``` pizza, cup_cakes, donuts, samosa, ice_cream, french_fries, waffles etc. ``` for full categories list please visit the [link](https://github.com/gourav300/food_app) """) ### load file uploaded_file = st.file_uploader("Upload an image file for above mentioned Food Categories or select a food image", type=["jpg", "png", "jpeg"]) test_img = image_select( label="Select a sample food image", images=[ "test_images/Cardamom-Saffron-Cupcakes-1.jpg", "test_images/doughnut_1.jpg", "test_images/frenchfries.jpg", "test_images/Punjabi-Samosa-2.jpg", "test_images/dumpling.jpg", "test_images/pizza_1.jpg", "test_images/waffle.jpg", "test_images/pancake.jpg" ], captions=["Cupcake", "Doughnut", "French fries", "Samosa", "Dumpling", "Pizza", "Waffle", "Pancake"], ) # st.set_option('deprecation.showfileUploaderEncoding', False) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image,width = 500)#, use_column_width=True) else: image = Image.open(test_img) st.image(image, width = 500)#,use_column_width=True) # Load the image and make predictions img = load_and_prep_image(image, scale=False) # don't scale images for EfficientNet predictions pred_prob = model.predict(tf.expand_dims(img, axis=0)) # model accepts tensors of shape [None, 224, 224, 3] pred_class = class_names[pred_prob.argmax()] # find the predicted class st.write(f"## Predicted food: {pred_class}, with Probability: {pred_prob.max():.2f}")