import gradio as gr import cv2 import requests import os from ultralytics import YOLO file_urls = ["https://www.dropbox.com/scl/fi/i582tgw95r0f8i8cssmx0/images.jpg?rlkey=fa3d74yaj0bh941jo67n0elns&dl=0" # 'https://www.dropbox.com/scl/fi/z4tnnills03s1o4evbqpl/download.jpg?rlkey=gmh63kexnnjcva6ahzo2wfmsd&dl=0' ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): if 'mp4' in file_urls[i]: download_file( file_urls[i], f"video.mp4" ) else: download_file( file_urls[i], f"image_{i}.jpg" ) model = YOLO('best.pt') path = [['images.jpg'],['images_1.png'],['image/i1.png'],['image/i2.png'],['image/i3.png']] # ,['image/i4.png'],['image/i5.png'],['image/i6.png'],['image/i7.png'],['image/i8.png'],['image/i9.png'],['image/i10.png'],['image/i11.png'], # ['image/i12.png'],['image/i13.png'],['image/i14.png'],['image/i15.png'],['image/i16.png'],['image/i17.png'],['image/i18.png'],['image/i19.png'], # ['image/i20.png'],['image/i21.png'],['image/i22.png'],['image/i23.png'],['image/i24.png'],['image/i25.png'],['image/i26.png'],['image/i27.png'],['image/i28.png']] # video_path = [['video.mp4']] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Airport Luggage Weapon Detector app", examples=path, cache_examples=False, ) def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while(cap.isOpened()): ret, frame = cap.read() if ret: frame_copy = frame.copy() outputs = model.predict(source=frame) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( frame_copy, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) inputs_video = [ gr.components.Video(), ] outputs_video = [ gr.components.Image(), ] interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title="Airport Luggage Weapon Detector", cache_examples=False, ) MORE = """ ## TRY Other Models ![imagea](image_path 'image/i5.png') ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image """ gr.Markdown(MORE) gr.TabbedInterface( [interface_image, interface_video], tab_names=['Image inference', 'Video inference'] ).queue().launch()