import torch
import spaces
import numpy as np
import gradio as gr
from gtts import gTTS
from transformers import pipeline
from huggingface_hub import InferenceClient
ASR_MODEL_NAME = "openai/whisper-small"
LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
system_prompt = """"[INST] You are Friday, a helpful and conversational AI assistant and You respond with one to two sentences. [/INST] Hello there! I'm friday how can I help you?"""
instruct_history = system_prompt + """"""
formatted_history = """"""
client = InferenceClient(LLM_MODEL_NAME)
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=ASR_MODEL_NAME,
device=device,
)
def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
output = client.text_generation(
instruct_history, **generate_kwargs, stream=False, details=False, return_full_text=False)
return output
@spaces.GPU(duration=60)
def transcribe(audio, instruct_history=instruct_history, formatted_history=formatted_history):
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
formatted_history += f"""Human: {transcribed_user_audio}\n\n"""
instruct_history += f"""[INST] {transcribed_user_audio} [/INST] """
llm_response = generate(instruct_history)
instruct_history += f""" {llm_response}"""
formatted_history += f"""Friday: {llm_response}\n\n"""
audio_response = gTTS(llm_response)
audio_response.save("response.mp3")
print(instruct_history)
return "response.mp3", formatted_history
with gr.Blocks() as demo:
gr.HTML("