import torch import spaces import numpy as np import gradio as gr from gtts import gTTS from transformers import pipeline from huggingface_hub import InferenceClient ASR_MODEL_NAME = "openai/whisper-small" LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2" system_prompt = """"[INST] You are Friday, a helpful and conversational AI assistant and You respond with one to two sentences. [/INST] Hello there! I'm friday how can I help you?""" instruct_history = system_prompt + """""" formatted_history = """""" client = InferenceClient(LLM_MODEL_NAME) device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=ASR_MODEL_NAME, device=device, ) def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) output = client.text_generation( instruct_history, **generate_kwargs, stream=False, details=False, return_full_text=False) return output @spaces.GPU(duration=60) def transcribe(audio, instruct_history=instruct_history, formatted_history=formatted_history): sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"] formatted_history += f"""Human: {transcribed_user_audio}\n\n""" instruct_history += f"""[INST] {transcribed_user_audio} [/INST] """ llm_response = generate(instruct_history) instruct_history += f""" {llm_response}""" formatted_history += f"""Friday: {llm_response}\n\n""" audio_response = gTTS(llm_response) audio_response.save("response.mp3") print(instruct_history) return "response.mp3", formatted_history with gr.Blocks() as demo: gr.HTML("

Friday: AI Virtual Assistant

") with gr.Row(): audio_input = gr.Audio(label="Human", sources="microphone") output_audio = gr.Audio(label="Friday", type="filepath", interactive=False, autoplay=True, elem_classes="audio") transcribe_btn = gr.Button("Transcribe") transcription_box = gr.Textbox(label="Transcription") transcribe_btn.click(fn=transcribe, inputs=[audio_input], outputs=[output_audio, transcription_box]) if __name__ == "__main__": demo.queue() demo.launch()