from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline import gradio as gr import requests import io from PIL import Image import os # Load the translation model and tokenizer model_name = "facebook/mbart-large-50-many-to-one-mmt" tokenizer = MBart50Tokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) # Use the Hugging Face API key from environment variables for text-to-image model hf_api_key = os.getenv("full_token") if hf_api_key is None: raise ValueError("Hugging Face API key not found! Please set 'full_token' environment variable.") else: headers = {"Authorization": f"Bearer {hf_api_key}"} # Define the text-to-image model URL (using a faster text-to-image model) API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4" # Load a smaller text generation model to reduce generation time text_generation_model_name = "EleutherAI/gpt-neo-1.3B" text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name) # Create a pipeline for text generation using the selected model text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer) # Function to generate an image using Hugging Face's text-to-image model def generate_image_from_text(translated_text): try: print(f"Generating image from translated text: {translated_text}") response = requests.post(API_URL, headers=headers, json={"inputs": translated_text}) # Check if the response is successful if response.status_code != 200: print(f"Error generating image: {response.text}") return None, f"Error generating image: {response.text}" # Read and return the generated image image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print("Image generation completed.") return image, None except Exception as e: print(f"Error during image generation: {e}") return None, f"Error during image generation: {e}" # Function to generate a shorter paragraph based on the translated text def generate_short_paragraph_from_text(translated_text): try: print(f"Generating a short paragraph from translated text: {translated_text}") paragraph = text_generator( translated_text, max_length=80, # Reduced to 80 tokens num_return_sequences=1, temperature=0.6, top_p=0.8, truncation=True # Added truncation to avoid long sequences )[0]['generated_text'] print(f"Paragraph generation completed: {paragraph}") return paragraph except Exception as e: print(f"Error during paragraph generation: {e}") return f"Error during paragraph generation: {e}" # Define the function to translate Tamil text, generate a short paragraph, and create an image def translate_generate_paragraph_and_image(tamil_text): # Step 1: Translate Tamil text to English using mbart-large-50 try: print("Translating Tamil text to English...") tokenizer.src_lang = "ta_IN" inputs = tokenizer(tamil_text, return_tensors="pt") translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] print(f"Translation completed: {translated_text}") except Exception as e: return f"Error during translation: {e}", "", None, None # Step 2: Generate a shorter paragraph based on the translated English text paragraph = generate_short_paragraph_from_text(translated_text) if "Error" in paragraph: return translated_text, paragraph, None, None # Step 3: Generate an image using the translated English text image, error_message = generate_image_from_text(translated_text) if error_message: return translated_text, paragraph, None, error_message return translated_text, paragraph, image, None # Gradio interface setup with share=True to make the app public iface = gr.Interface( fn=translate_generate_paragraph_and_image, inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), outputs=[gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated Short Paragraph"), gr.Image(label="Generated Image")], title="Tamil to English Translation, Short Paragraph Generation, and Image Creation", description="Translate Tamil text to English, generate a short paragraph, and create an image using the translated text.", ) # Launch the app with the share option iface.launch(share=True)