from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline import gradio as gr import torch from diffusers import FluxPipeline import os # Load the translation model and tokenizer model_name = "facebook/mbart-large-50-many-to-one-mmt" tokenizer = MBart50Tokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) # Load a smaller text generation model to reduce generation time text_generation_model_name = "EleutherAI/gpt-neo-1.3B" text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name) # Create a pipeline for text generation using the selected model text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer) # Get the Hugging Face API token from environment variables hf_token = os.getenv("HF_TOKEN") # Authenticate and set up the new FluxPipeline for the text-to-image model pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", use_auth_token=hf_token, # Use the token for authentication torch_dtype=torch.bfloat16 ) pipe.enable_model_cpu_offload() # Enable CPU offloading to save GPU memory if needed # Function to generate an image using the new FluxPipeline model def generate_image_from_text(translated_text): try: print(f"Generating image from translated text: {translated_text}") # Use the FluxPipeline to generate an image from the text image = pipe(translated_text).images[0] print("Image generation completed.") return image, None except Exception as e: print(f"Error during image generation: {e}") return None, f"Error during image generation: {e}" # Function to generate a shorter paragraph based on the translated text def generate_short_paragraph_from_text(translated_text): try: print(f"Generating a short paragraph from translated text: {translated_text}") # Generate a shorter paragraph from the translated text using smaller settings paragraph = text_generator(translated_text, max_length=150, num_return_sequences=1, temperature=0.2, top_p=0.8)[0]['generated_text'] print(f"Paragraph generation completed: {paragraph}") return paragraph except Exception as e: print(f"Error during paragraph generation: {e}") return f"Error during paragraph generation: {e}" # Define the function to translate Tamil text, generate a short paragraph, and create an image def translate_generate_paragraph_and_image(tamil_text): # Step 1: Translate Tamil text to English using mbart-large-50 try: print("Translating Tamil text to English...") tokenizer.src_lang = "ta_IN" inputs = tokenizer(tamil_text, return_tensors="pt") translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] print(f"Translation completed: {translated_text}") except Exception as e: return f"Error during translation: {e}", "", None, None # Step 2: Generate a shorter paragraph based on the translated English text paragraph = generate_short_paragraph_from_text(translated_text) if "Error" in paragraph: return translated_text, paragraph, None, None # Step 3: Generate an image using the translated English text image, error_message = generate_image_from_text(translated_text) if error_message: return translated_text, paragraph, None, error_message return translated_text, paragraph, image, None # Gradio interface setup iface = gr.Interface( fn=translate_generate_paragraph_and_image, inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), outputs=[gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated Short Paragraph"), gr.Image(label="Generated Image")], title="Tamil to English Translation, Short Paragraph Generation, and Image Creation", description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a short paragraph, and create an image using the translated text.", ) # Launch the Gradio app iface.launch()