import os import requests import torch from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler from diffusers.models import AutoencoderKL from PIL import Image from RealESRGAN import RealESRGAN import cv2 import numpy as np import spaces # Constants SD15_WEIGHTS = "weights" CONTROLNET_CACHE = "controlnet-cache" SCHEDULERS = { "DDIM": DDIMScheduler, "DPMSolverMultistep": DPMSolverMultistepScheduler, "K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler, "K_EULER": EulerDiscreteScheduler, } # Function to download files def download_file(url, folder_path, filename): if not os.path.exists(folder_path): os.makedirs(folder_path) file_path = os.path.join(folder_path, filename) if os.path.isfile(file_path): print(f"File already exists: {file_path}") else: response = requests.get(url, stream=True) if response.status_code == 200: with open(file_path, 'wb') as file: for chunk in response.iter_content(chunk_size=1024): file.write(chunk) print(f"File successfully downloaded and saved: {file_path}") else: print(f"Error downloading the file. Status code: {response.status_code}") # Download necessary models and files # MODEL download_file( "https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors" ) # UPSCALER download_file( "https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth" ) download_file( "https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth" ) # NEGATIVE download_file( "https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt" ) download_file( "https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt" ) # LORA download_file( "https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors" ) download_file( "https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors" ) # CONTROLNET download_file( "https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth" ) # VAE download_file( "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors" ) # Set up the device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load ControlNet model controlnet = ControlNetModel.from_pretrained( "lllyasviel/control_v11f1e_sd15_tile", torch_dtype=torch.float16 ) # Load the Stable Diffusion pipeline with Juggernaut Reborn model model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors" pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file( model_path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True ) # Load and set VAE vae = AutoencoderKL.from_single_file( "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors", torch_dtype=torch.float16 ) pipe.vae = vae # Load embeddings and LoRA models pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt") pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt") pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors") pipe.fuse_lora(lora_scale=0.5) pipe.load_lora_weights("models/Lora/more_details.safetensors") # Set up the scheduler pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) # Move the pipeline to the device and enable memory efficient attention pipe = pipe.to(device) pipe.enable_xformers_memory_efficient_attention() # Enable FreeU pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4) def resize_and_upscale(input_image, resolution): scale = 2 if resolution == 2048: init_w = 1024 elif resolution == 2560: init_w = 1280 elif resolution == 3072: init_w = 1536 else: init_w = 1024 scale = 4 input_image = input_image.convert("RGB") W, H = input_image.size k = float(init_w) / min(H, W) H *= k W *= k H = int(round(H / 64.0)) * 64 W = int(round(W / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) model = RealESRGAN(device, scale=scale) model.load_weights(f'models/upscalers/RealESRGAN_x{scale}.pth', download=False) img = model.predict(img) return img def calculate_brightness_factors(hdr_intensity): factors = [1.0] * 9 if hdr_intensity > 0: factors = [1.0 - 0.9 * hdr_intensity, 1.0 - 0.7 * hdr_intensity, 1.0 - 0.45 * hdr_intensity, 1.0 - 0.25 * hdr_intensity, 1.0, 1.0 + 0.2 * hdr_intensity, 1.0 + 0.4 * hdr_intensity, 1.0 + 0.6 * hdr_intensity, 1.0 + 0.8 * hdr_intensity] return factors def pil_to_cv(pil_image): return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) def adjust_brightness(cv_image, factor): hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv_image) v = np.clip(v * factor, 0, 255).astype('uint8') adjusted_hsv = cv2.merge([h, s, v]) return cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) def create_hdr_effect(original_image, hdr): cv_original = pil_to_cv(original_image) brightness_factors = calculate_brightness_factors(hdr) images = [adjust_brightness(cv_original, factor) for factor in brightness_factors] merge_mertens = cv2.createMergeMertens() hdr_image = merge_mertens.process(images) hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8') hdr_image_pil = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB)) return hdr_image_pil def process_image(input_image, prompt, negative_prompt, resolution=2048, num_inference_steps=50, guidance_scale=3, strength=0.35, hdr=0): condition_image = resize_and_upscale(input_image, resolution) condition_image = create_hdr_effect(condition_image, hdr) result = pipe( prompt=prompt, negative_prompt=negative_prompt, image=condition_image, control_image=condition_image, width=condition_image.size[0], height=condition_image.size[1], strength=strength, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.manual_seed(0), ).images[0] return result @spaces.GPU def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale): prompt = "masterpiece, best quality, highres" negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg" result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr) return result # Simple options simple_options = [ gr.inputs.Image(type="pil", label="Input Image"), gr.inputs.Slider(minimum=2048, maximum=3072, step=512, default=2048, label="Resolution"), gr.inputs.Slider(minimum=10, maximum=100, step=10, default=20, label="Inference Steps"), gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.05, default=0.35, label="Strength"), gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.1, default=0, label="HDR"), gr.inputs.Slider(minimum=1, maximum=10, step=0.1, default=3, label="Guidance Scale") ] # Create the Gradio interface iface = gr.Interface( fn=gradio_process_image, inputs=simple_options, outputs=gr.outputs.Image(type="pil", label="Output Image"), title="Image Processing with Stable Diffusion", description="Upload an image and adjust the settings to process it using Stable Diffusion." ) iface.launch()