import spaces import gradio as gr from PIL import Image from transparent_background import Remover import numpy as np # Initialize the model globally remover = Remover(jit=False) @spaces.GPU def process_image(input_image, output_type): global remover if output_type == "Mask only": # Process the image and get only the mask output = remover.process(input_image, type='map') if isinstance(output, Image.Image): # If output is already a PIL Image, convert to grayscale mask = output.convert('L') else: # If output is a numpy array, convert to PIL Image mask = Image.fromarray((output * 255).astype(np.uint8), mode='L') return mask else: # Process the image and return the RGBA result output = remover.process(input_image, type='rgba') return output description = """

InSPyReNet Background Remover

[Github]

""" iface = gr.Interface( fn=process_image, inputs=[ gr.Image(type="pil", label="Input Image", height=512), gr.Radio(["Default", "Mask only"], label="Output Type", value="Default") ], outputs=gr.Image(type="pil", label="Output Image", height=512), description=description, theme='bethecloud/storj_theme', examples=[ ["1.png", "Default"], ["2.png", "Default"], ["3.jfif", "Default"], ["4.webp", "Default"] ], cache_examples=True ) if __name__ == "__main__": iface.launch()