import spaces import torch from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration, AutoModel, AutoTokenizer, AutoModelForCausalLM from qwen_vl_utils import process_vision_info import numpy as np import os from datetime import datetime import subprocess import torch.nn as nn subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) device = "cuda" if torch.cuda.is_available() else "cpu" # Initialize Florence model florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval() florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True) # Initialize Qwen2-VL-2B model qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval() qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) # Add these new imports and constants CLIP_PATH = "google/siglip-so400m-patch14-384" VLM_PROMPT = "A descriptive caption for this image:\n" MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B" CHECKPOINT_PATH = "wpkklhc6" class ImageAdapter(nn.Module): def __init__(self, input_features: int, output_features: int): super().__init__() self.linear1 = nn.Linear(input_features, output_features) self.activation = nn.GELU() self.linear2 = nn.Linear(output_features, output_features) def forward(self, vision_outputs: torch.Tensor): x = self.linear1(vision_outputs) x = self.activation(x) x = self.linear2(x) return x # Load CLIP clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model clip_model.eval() clip_model.requires_grad_(False) clip_model.to(device) # Tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False) # LLM text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16) text_model.eval() # Image Adapter image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) image_adapter.load_state_dict(torch.load(f"{CHECKPOINT_PATH}/image_adapter.pt", map_location="cpu")) image_adapter.eval() image_adapter.to(device) @spaces.GPU def florence_caption(image): if not isinstance(image, Image.Image): image = Image.fromarray(image) inputs = florence_processor(text="", images=image, return_tensors="pt").to(device) generated_ids = florence_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = florence_processor.post_process_generation( generated_text, task="", image_size=(image.width, image.height) ) return parsed_answer[""] def array_to_image_path(image_array): img = Image.fromarray(np.uint8(image_array)) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"image_{timestamp}.png" img.save(filename) full_path = os.path.abspath(filename) return full_path @spaces.GPU def qwen_caption(image): if not isinstance(image, Image.Image): image = Image.fromarray(np.uint8(image)) image_path = array_to_image_path(np.array(image)) messages = [ { "role": "user", "content": [ { "type": "image", "image": image_path, }, {"type": "text", "text": "Describe this image in great detail in one paragraph."}, ], } ] text = qwen_processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = qwen_processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(device) generated_ids = qwen_model.generate(**inputs, max_new_tokens=256) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = qwen_processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] @spaces.GPU @torch.no_grad() def joycaption(image): if not isinstance(image, Image.Image): image = Image.fromarray(np.uint8(image)) # Preprocess image image = clip_processor(images=image, return_tensors='pt').pixel_values image = image.to(device) # Tokenize the prompt prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) # Embed image with torch.amp.autocast_mode.autocast(device_type='cuda', enabled=True): vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) image_features = vision_outputs.hidden_states[-2] embedded_images = image_adapter(image_features) embedded_images = embedded_images.to(device) # Embed prompt prompt_embeds = text_model.model.embed_tokens(prompt.to(device)) embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=device, dtype=torch.int64)) # Construct prompts inputs_embeds = torch.cat([ embedded_bos.expand(embedded_images.shape[0], -1, -1), embedded_images.to(dtype=embedded_bos.dtype), prompt_embeds.expand(embedded_images.shape[0], -1, -1), ], dim=1) input_ids = torch.cat([ torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), prompt, ], dim=1).to(device) attention_mask = torch.ones_like(input_ids) generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) # Trim off the prompt generate_ids = generate_ids[:, input_ids.shape[1]:] if generate_ids[0][-1] == tokenizer.eos_token_id: generate_ids = generate_ids[:, :-1] caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] return caption.strip()