import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments, pipeline from accelerate import Accelerator accelerator = Accelerator(cpu=True) # def greet(name): # return "Hello " + name + "!!" tokenizer = accelerator.prepare(AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125m")) model = accelerator.prepare(AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125m")) def plex(input_text): mnputs = tokenizer(input_text, return_tensors='pt') prediction = model.generate(mnputs['input_ids'], min_length=20, max_length=150, num_return_sequences=1) lines = tokenizer.decode(prediction[0]).splitlines() return lines[0] iface=gr.Interface( fn=plex, inputs=gr.Textbox(label="Prompt", value="Once upon a"), outputs=gr.Textbox(label="Generated_Text"), title="GPT-Neo-125M", description="Prompt" ) iface.queue(max_size=1,api_open=False) iface.launch(max_threads=1) # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch()