from huggingface_hub import InferenceClient
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from transformers import pipeline
from sentence_transformers.cross_encoder import CrossEncoder
import re
import os
def setupDB(domain, hasLLM):
history = []
history.append("")
history.append("")
crossmodel = CrossEncoder("cross-encoder/stsb-distilroberta-base")
models,allState = nandState()
support_db = nandGetChroma(domain)
insts_db = nandGetChroma("insts")
pdf_dbs = []
if domain == 'en':
pdfs = [] #"pdf_0em", "pdf_1em", "pdf_2em", "pdf_3em","pdf_4em"]
for onepdf in pdfs:
pdfdb = nandGetChroma(onepdf)
pdf_dbs.append(pdfdb)
para = {}
para['history'] = history
para['disnum'] = 10
para['domain'] = domain
para['crossmodel'] = crossmodel
para['insts_db'] = insts_db
para['support_db'] = support_db
para['pdf_dbs'] = pdf_dbs
para['hasLLM'] = hasLLM
return para
def remapScore(domain, inscore):
if domain == 'ch':
xin = 1 - inscore
a = -0.2
b = 1.2
y = a * xin * xin + b * xin
return int(y * 100)
else:
xin = 1 - inscore
a = -1.2
b = 2.2
y = a * xin * xin + b * xin
return int(y * 100)
def process_query(iniquery, para):
query = re.sub("
", "", iniquery)
ch2en, query = toEn(query)
if ch2en:
print(f"Received from connected users : {query}")
else:
print(f"Received from connected users : {query}", end='')
disnum = para['disnum']
domain = para['domain']
history = para['history']
crossmodel = para['crossmodel']
insts_db = para['insts_db']
support_db = para['support_db']
pdf_dbs = para['pdf_dbs']
hasLLM = para['hasLLM']
ret = ""
needScriptScores = crossmodel.predict([["write a perl ECO script", query]])
print(f"THE QUERY SCORE for creating eco script: score={needScriptScores[0]}")
allapis = []
threshold = 0.45
if needScriptScores[0] > threshold:
print(f"THE QUERY REQUIRES CREATING AN ECO SCRIPT score={needScriptScores[0]} > {threshold}")
retinsts = insts_db.similarity_search_with_score(query, k=10)
accu = 0
for inst in retinsts:
instdoc = inst[0]
instscore = inst[1]
instname = instdoc.metadata['source']
otherfile = re.sub("^insts", "src_en", instname)
otherfile = re.sub("\.\d+", "", otherfile)
if not otherfile in allapis:
allapis.append(otherfile)
apisize = os.path.getsize(otherfile)
accu += apisize
print(f"INST: {instname} SCORE: {instscore} API-size: {apisize} Accu: {accu}")
results = []
docs = support_db.similarity_search_with_score(query, k=8)
for doc in docs:
results.append([doc[0], doc[1]])
for onepdfdb in pdf_dbs:
pdocs = onepdfdb.similarity_search_with_score(query, k=8)
for doc in pdocs:
results.append([doc[0], doc[1]+0.2])
results.sort(key=lambda x: x[1])
docnum = len(results)
index = 1
for ii in range(docnum):
doc = results[ii][0]
source = doc.metadata['source']
path = source #source.replace("\\", "/")
#print(f"path={path}")
if path in allapis:
print(f"dont use path={path}, it's in instruction list")
continue
prefix = "Help:"
if re.search("api\.", source):
prefix = "API:"
elif re.search("man\.", source):
prefix = "Manual:"
elif re.search("\.pdf$", source):
prefix = "PDF:";
score = remapScore(domain, results[ii][1])
retcont = doc.page_content
if re.search("\.pdf$", source):
page = doc.metadata['page'] + 1
subpage = doc.metadata['subpage']
retcont += f"\nPDF{page} {subpage}\n"
ret += f"Return {index} ({score}) {prefix} {retcont}\n"
if len(ret) > 6000:
break
index += 1
if index > disnum:
break
if hasLLM:
context = "Context information is below\n---------------------\n"
if len(allapis):
context += scriptExamples()
for oneapi in allapis:
cont = GetContent(oneapi)
cont = re.sub("", " API Detail:", cont)
cont = re.sub('<.*?>', '', cont)
cont = re.sub('Examples:.*', '', cont, flags=re.DOTALL)
context += cont
context += ret
prompt = f"{context}\n"
prompt += "------------------------------------------\n"
if len(allapis):
prompt += "Given the context information and not prior knowledge, creat a Perl ECO script by following the format and sequence in the script examples provided above.\n"
#prompt += "1. Following the format in the script examples provided above.\n"
#prompt += "2. Following the API sequence in the script examples above, for instance, APIs get_spare_cells and map_spare_cells should be after fix_design.\n"
else:
prompt += "Given the context information and not prior knowledge, answer the query.\n"
prompt += f"Query: {query}\n"
llmout = llmGenerate(prompt)
history[0] = query
history[1] = llmout
#return llmout
outlen = len(llmout)
prolen = len(prompt)
print(f"Prompt len: {prolen} LLMOUT len: {outlen}")
allret = "LLM_OUTPUT_START:"+llmout+"\nEND OF LLM OUTPUT\n"+prompt
return allret
return ret
def toEn(intxt):
pattern = re.compile(r'[\u4e00-\u9fff]+')
if pattern.search(intxt):
translator = pipeline(task="translation", model="Helsinki-NLP/opus-mt-zh-en")
ini_text = translator(intxt, max_length=500)[0]['translation_text']
out_text = re.sub("ECO foot", "ECO Script", ini_text)
out_text = re.sub("web-based", "netlist", out_text)
out_text = re.sub(r"\bweb\b", "netlist", out_text)
out_text = re.sub(r"\bwebsheet\b", "netlist", out_text)
out_text = re.sub(r"\bweblists?\b", "netlist", out_text)
print(f"AFTER RESULT: {out_text}")
return 1, out_text
return 0, intxt
def nandGetChroma(domain):
models,allState = nandState()
chdb = allState[domain]['chroma']
print(f"domain: {domain} has chroma dir {chdb}")
model_ind = allState[domain]['model']
model_name = models[model_ind]
embedding_function = SentenceTransformerEmbeddings(model_name=model_name)
chroma_db = Chroma(persist_directory=chdb, embedding_function=embedding_function)
return chroma_db
def nandState():
models = {'em': "all-MiniLM-L6-v2",
'en': "all-mpnet-base-v2",
'ch': "shibing624/text2vec-base-chinese-sentence"}
# chunk is to cut the big PDF page to smaller, 1000byte chunks, and chinese page into smaller chunks
allState = {'insts':{'cstate':{},'pstate':{},'dir':'insts','json':'filestatus.insts.json','chroma':'chroma_db_insts','model':'en','chunk':0},
'en':{'cstate':{},'pstate':{},'dir':'src_en','json':'filestatus.english.json','chroma':'chroma_db_en','model':'en','chunk':0},
'ch':{'cstate':{},'pstate':{},'dir':'src_ch','json':'filestatus.chinese.json','chroma':'chroma_db_ch','model':'ch','chunk':1}
}
for ind in range(12):
name = f"pdf_{ind}em"
allState[name] = {'cstate':{},'pstate':{},'dir':f"pdf_sub{ind}",'json':f"filestatus.{name}.json",'chroma':f"chroma_db_{name}",'model':'em','chunk':1}
return models, allState
def formatPrompt(message, history):
if history[0]:
prompt = "Create a new query based on previous query/answer paire and current query:\n"
prompt += f"Previous query: {history[0]}"
prompt += f"Previous answer: {histroy[1]}"
prompt += f"Current query: {message}"
prompt += "New query:"
return prompt
return message
def llmNewQuery(prompt, history):
newpend = formatPrompt(prompt, history)
newquery = llmGenerate(newpend)
return newquery
def llmGenerate(prompt, temperature=0.001, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
#temperature = float(temperature)
#if temperature < 1e-2:
# temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
llmclient = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
stream = llmclient.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
#yield output
return output
def thoseRemove():
those = ["www.synopsys.com", "sy ?nopsys", "cadence", "mentor", "solvnetplus", "solvnet"]
return those
def GetContent(file):
fcont = ""
with open(file) as f:
fcont = f.read()
return fcont
def scriptExamples():
exp = """
#The first ECO scipt example for manual ECO:
use strict;
setup_eco("eco_example");
read_library("tsmc.5nm.lib");
read_design("-imp", "implementation.gv");
set_top("topmod");
change_pin("u_abc/state_reg_0_/D", "INVX1", "", "-");
change_pin("u_abc/state_reg_1_/D", "INVX1", "", "-");
change_pin("u_abc/state_reg_2_/D", "INVX1", "", "-");
report_eco(); # ECO report
check_design();
write_verilog("eco_verilog.v");# Write out ECO result in Verilog
#End of the manual ECO script example
#The second ECO script example for automatic ECO:
use strict;
setup_eco("eco_example");# Setup ECO name
read_library("tsmc.5nm.lib");# Read in standard library
# SVF files are optional, best to be used when the design involves multibit flops
#read_svf("-ref", "reference.svf.txt");
#read_svf("-imp", "implementation.svf.txt");
read_design("-ref", "reference.gv");
read_design("-imp", "implementation.gv");
set_top("topmod");# Set the top module
# Preserve DFT Test Logic
set_ignore_output("scan_out*");
set_pin_constant("scan_enable", 0);
set_pin_constant("scan_mode", 0);
fix_design();
report_eco(); # ECO report
check_design();
write_verilog("eco_verilog.v");# Write out ECO result in Verilog
run_lec(); # Run GOF LEC to generate Formality help files
#End of automatic ECO script example
#The third ECO script example is for automatic metal only ECO:
use strict;
setup_eco("eco_example");# Setup ECO name
read_library("tsmc.5nm.lib");# Read in standard library
# SVF files are optional, best to be used when the design involves multibit flops
#read_svf("-ref", "reference.svf.txt");
#read_svf("-imp", "implementation.svf.txt");
read_design("-ref", "reference.gv");# Read in Reference Netlist
read_design("-imp", "implementation.gv");
set_top("topmod");# Set the top module
set_ignore_output("scan_out*");
set_pin_constant("scan_enable", 0);
set_pin_constant("scan_mode", 0);
read_lef("tsmc.lef"); # Read LEF
read_def("topmod.def"); # Read Design Exchange Format file
fix_design(); # Must run before get_spare_cells and map_spare_cells
get_spare_cells("*/*_SPARE*");
map_spare_cells();
report_eco(); # ECO report
check_design();# Check if the ECO causes any issue, like floating
write_verilog("eco_verilog.v");# Write out ECO result in Verilog
write_perl("eco_result.pl");# Write out result in Perl script
run_lec(); # Run GOF LEC to generate Formality help files
#End of automatic ECO script example
#The four ECO script example is the same as the third ECO script, except fix_design
# list_file option to load in the ECO points list file converted from RTL-to-RTL LEC result
fix_design("-list_file", "the_eco_points.txt");
#The 5th ECO script example is the same as the 3rd ECO script, except fix_design
# Enable flatten mode ECO. The default mode is hierarchical. The flatten mode is for small fix but the changes go across
# module boundaries
fix_design("-flatten");
#The 6th ECO script is similar to the third ECO script, but it dumps formality help file after LEC
run_lec(); # Run GOF LEC to generate Formality help files
write_compare_points("compare_points.report");
write_formality_help_files("fm_dir/formality_help"); # formality_help files are generated in fm_dir folder
#The 7th ECO script is similar to the third ECO script, but it uses gate array spare cells
fix_design(); # Must run before get_spare_cells and map_spare_cells
# Enable Gate Array Spare Cells Metal Only ECO Flow, map_spare_cells will map to Gate Array Cells only
get_spare_cells("-gate_array", "G*", "-gate_array_filler", "GFILL*|GDCAP*");
map_spare_cells();
#The 8th ECO script is similar to the third ECO script, but it uses only deleted gates or freed up gates in ECO as spare cells
fix_design(); # Must run before get_spare_cells and map_spare_cells
get_spare_cells("-addfreed");
map_spare_cells();
#The 9th ECO script is manual ECO, find all memory hierarchically and tie the pin TEST_SHIFT of memory to net "TEST_EN"
use strict;
setup_eco("eco_example");
read_library("tsmc.3nm.lib");
read_design("-imp", "from_backend.gv");
set_top("topmod");
# Get all memories hierarchically, instance naming, "U_HMEM*"
my @mems = get_cells("-hier", "U_HMEM*");
foreach my $mem (@mems){
change_pin("$mem/TEST_SHIFT", "TEST_EN");
}
report_eco(); # ECO report
check_design();
write_verilog("mem_eco.v");
"""
return exp