import gradio as gr import torch from src.euler_scheduler import MyEulerAncestralDiscreteScheduler from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image from src.sdxl_inversion_pipeline import SDXLDDIMPipeline from src.config import RunConfig from src.editor import ImageEditorDemo import spaces device = "cuda" if torch.cuda.is_available() else "cpu" scheduler_class = MyEulerAncestralDiscreteScheduler pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config) pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config) pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config) # if torch.cuda.is_available(): # torch.cuda.max_memory_allocated(device=device) # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) # pipe.enable_xformers_memory_efficient_attention() # pipe = pipe.to(device) # else: # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) # pipe = pipe.to(device) @spaces.GPU def infer(input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps=4, num_inversion_steps=4, inversion_max_step=0.6): config = RunConfig(num_inference_steps=num_inference_steps, num_inversion_steps=num_inversion_steps, edit_guidance_scale=edit_guidance_scale, inversion_max_step=inversion_max_step) editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config, device) image = editor.edit(target_prompt) return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] # css = """ # #col-container-1 { # margin: 0 auto; # max-width: 520px; # } # #col-container-2 { # margin: 0 auto; # max-width: 520px; # } # """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" # with gr.Blocks(css=css) as demo: with gr.Blocks(css="style.css") as demo: gr.Markdown(f""" # Real Time Editing with RNRI Inversion 🍎⚡️ This is a demo for our [paper](https://arxiv.org/abs/2312.12540) **RNRI: Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models**. Image editing using our RNRI for inversion demonstrates significant speed-up and improved quality compared to previous state-of-the-art methods. Take a look at our [project page](https://barakmam.github.io/rnri.github.io/). """) with gr.Row(): with gr.Column(elem_id="col-container-1"): with gr.Row(): input_image = gr.Image(label="Input image", sources=['upload', 'webcam'], type="pil") with gr.Row(): description_prompt = gr.Text( label="Image description", info = "Enter your image description ", show_label=False, max_lines=1, placeholder="a cake on a table", container=False, ) with gr.Row(): target_prompt = gr.Text( label="Edit prompt", info = "Enter your edit prompt", show_label=False, max_lines=1, placeholder="an oreo cake on a table", container=False, ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): edit_guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=1.2, ) num_inference_steps = gr.Slider( label="Number of RNRI iterations", minimum=1, maximum=12, step=1, value=4, ) inversion_max_step = gr.Slider( label="Inversion strength", minimum=0.0, maximum=1.0, step=0.01, value=0.6, ) with gr.Row(): run_button = gr.Button("Edit", scale=1) with gr.Column(elem_id="col-container-2"): result = gr.Image(label="Result") # gr.Examples( # examples = examples, # inputs = [prompt] # ) run_button.click( fn=infer, inputs=[input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps, num_inference_steps], outputs=[result] ) demo.queue().launch() # im = infer(input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps=4, num_inversion_steps=4, # inversion_max_step=0.6)