# -*- coding: utf-8 -*- import crepe import spacy import librosa import gradio as gr import pandas as pd from transformers import pipeline asr = pipeline('automatic-speech-recognition', model='facebook/wav2vec2-large-960h-lv60-self') emo = pipeline('sentiment-analysis', model='arpanghoshal/EmoRoBERTa') lang_model = spacy.load("en_core_web_sm") def transcribe_and_describe(audio): audio, sr = librosa.load(audio, sr=16000) text = asr(audio)['text'] doc = lang_model(text) filler_words = [token.text for token in doc if token.pos_ == 'INTJ'] filler_word_pr = len(filler_words) / len(doc) flatness = pd.DataFrame(librosa.feature.spectral_flatness(y=audio).T).describe().T loudness = pd.DataFrame(librosa.feature.rms(audio).T).describe().T time, frequency, confidence, activation = crepe.predict(audio, sr) frequency = pd.DataFrame(frequency.T).describe().T mean_spectral_flatness = flatness.loc[0, 'mean'] spectral_flatness_std = flatness.loc[0, 'std'] mean_pitch = frequency.loc[0, 'mean'] pitch_std = frequency.loc[0, 'std'] mean_volume = loudness.loc[0, 'mean'] volume_std = loudness.loc[0, 'std'] words_per_minute = len(text.split(" ")) / (librosa.get_duration(audio, sr) / 60) emotion = emo(text)[0]['label'] return (text, filler_word_pr, words_per_minute, mean_pitch, pitch_std, mean_volume, volume_std, mean_spectral_flatness, spectral_flatness_std, emotion) gr.Interface( fn=transcribe_and_describe, inputs=gr.Audio(source="microphone", type="filepath"), outputs=[ gr.Text(label="Transcription"), gr.Text(label="Rate of Speech (WPM)"), gr.Text(label="Filler Word Percent"), gr.Text(label="Mean Pitch (Hz)"), gr.Text(label="Pitch Variation (Hz)"), gr.Text(label="Mean Volume (W)"), gr.Text(label="Volume Variation (W)"), gr.Text(label="Mean Spectral Flatness (dB)"), gr.Text(label="Spectral Flatness Variation (dB)"), gr.Text(label="Emotion") ] ).launch()