#安装一下 Python 的 Gradio 的包:conda install -c conda-forge gradio #依赖tiktoken:pip install tiktoken,使用不同的 GPT 模型,对应着不同的 Tiktoken 的编码器模型:https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb。 import gradio as gr import openai import os #import tiktoken openai.api_key = os.environ.get("OPENAI_API_KEY") #encoding = tiktoken.get_encoding("p50k_base") class Conversation: def __init__(self, prompt, num_of_round): self.prompt = prompt self.num_of_round = num_of_round self.messages = [] self.messages.append(self.prompt) def ask(self, question): #if len(encoding.encode(question)) > 512: if len(question) > 512: return "输入的文字过长,请精简后再提问" try: self.messages.append(question) response = openai.Completion.create( engine="text-davinci-003", prompt=question, max_tokens=3580, n=1, stop=None, temperature=0.5, ) except Exception as e: print(e) return e message = response.choices[0].text.strip() if len(self.messages) > self.num_of_round*2 + 1: del self.messages[1:3] #Remove the first round conversation left. return message prompt = """你是一个聊天机器人,请尽可能回答用户的所有问题""" conv = Conversation(prompt, 10) def answer(question, history=[]): history.append(question) response = conv.ask(question) history.append(response) responses = [(u,b) for u,b in zip(history[::2], history[1::2])] return responses, history with gr.Blocks(css="#chatbot{height:300px} .overflow-y-auto{height:500px}") as demo: chatbot = gr.Chatbot(elem_id="chatbot") state = gr.State([]) with gr.Row(): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) txt.submit(answer, [txt, state], [chatbot, state]) demo.launch()