Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .gitattributes +1 -0
- Dockerfile +11 -0
- app.py +56 -0
- chunks.pkl +3 -0
- index.faiss +3 -0
- process_pdf.py +53 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
index.faiss filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10
|
| 2 |
+
|
| 3 |
+
# Copy files
|
| 4 |
+
COPY . /app
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install dependencies
|
| 8 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 9 |
+
|
| 10 |
+
# Run FastAPI app on port 7860 (required by Hugging Face Spaces)
|
| 11 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
import faiss
|
| 7 |
+
import pickle
|
| 8 |
+
|
| 9 |
+
app = FastAPI(title="RAG Chatbot API")
|
| 10 |
+
|
| 11 |
+
# === Enable CORS (optional but recommended for browser-based Razor apps) ===
|
| 12 |
+
app.add_middleware(
|
| 13 |
+
CORSMiddleware,
|
| 14 |
+
allow_origins=["*"], # Replace with your domain in production
|
| 15 |
+
allow_methods=["*"],
|
| 16 |
+
allow_headers=["*"],
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# === Load once at startup ===
|
| 20 |
+
chunks_path = "chunks.pkl"
|
| 21 |
+
index_path = "index.faiss"
|
| 22 |
+
|
| 23 |
+
with open(chunks_path, "rb") as f:
|
| 24 |
+
chunks = pickle.load(f)
|
| 25 |
+
|
| 26 |
+
index = faiss.read_index(index_path)
|
| 27 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 28 |
+
generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 29 |
+
|
| 30 |
+
# === Retrieval and Generation ===
|
| 31 |
+
def retrieve(query, top_k=3):
|
| 32 |
+
query_embedding = embedder.encode([query], convert_to_numpy=True)
|
| 33 |
+
distances, indices = index.search(query_embedding, top_k)
|
| 34 |
+
return [chunks[i] for i in indices[0]]
|
| 35 |
+
|
| 36 |
+
def generate_answer(context, query):
|
| 37 |
+
prompt = f"Answer the question based on the context and give meaningfull ending.\n\nContext:\n{context}\n\nQuestion: {query}"
|
| 38 |
+
response = generator(prompt, max_new_tokens=150)[0]["generated_text"]
|
| 39 |
+
return response.strip()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# === API Endpoint ===
|
| 43 |
+
class QueryRequest(BaseModel):
|
| 44 |
+
query: str # Must match Razor payload field
|
| 45 |
+
|
| 46 |
+
@app.post("/query")
|
| 47 |
+
def ask_question(request: QueryRequest):
|
| 48 |
+
print(f"✅ Received query: {request.query}") # Debug log
|
| 49 |
+
retrieved = retrieve(request.query)
|
| 50 |
+
context = "\n".join(retrieved)
|
| 51 |
+
answer = generate_answer(context, request.query)
|
| 52 |
+
return {
|
| 53 |
+
"UserQuery": request.query,
|
| 54 |
+
"RetrievedContext": context,
|
| 55 |
+
"answer": answer
|
| 56 |
+
}
|
chunks.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e74eedc4f1b55a30bc3c2b7f72410d1d4e5bcd41b2f0022077293648bcb140c1
|
| 3 |
+
size 91858
|
index.faiss
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f0ded40a06ffe7b66332c82aa95fb01029c724161d60b2fd09f5ddd7b2b142f
|
| 3 |
+
size 305709
|
process_pdf.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# process_pdf.py
|
| 2 |
+
|
| 3 |
+
import fitz # PyMuPDF
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pickle
|
| 8 |
+
|
| 9 |
+
# === Step 1: Extract text from PDF ===
|
| 10 |
+
def extract_text_from_pdf(pdf_path):
|
| 11 |
+
doc = fitz.open(pdf_path)
|
| 12 |
+
full_text = ""
|
| 13 |
+
for page in doc:
|
| 14 |
+
full_text += page.get_text()
|
| 15 |
+
return full_text
|
| 16 |
+
|
| 17 |
+
# === Step 2: Chunk text ===
|
| 18 |
+
def chunk_text(text, chunk_size=500):
|
| 19 |
+
paragraphs = text.split("\n")
|
| 20 |
+
chunks = []
|
| 21 |
+
current_chunk = ""
|
| 22 |
+
for para in paragraphs:
|
| 23 |
+
if len(current_chunk) + len(para) < chunk_size:
|
| 24 |
+
current_chunk += para + " "
|
| 25 |
+
else:
|
| 26 |
+
chunks.append(current_chunk.strip())
|
| 27 |
+
current_chunk = para + " "
|
| 28 |
+
if current_chunk:
|
| 29 |
+
chunks.append(current_chunk.strip())
|
| 30 |
+
return chunks
|
| 31 |
+
|
| 32 |
+
# === Step 3: Embed and save ===
|
| 33 |
+
def build_and_save_index(chunks, embedder, index_path="index.faiss", chunks_path="chunks.pkl"):
|
| 34 |
+
embeddings = embedder.encode(chunks, convert_to_numpy=True)
|
| 35 |
+
dimension = embeddings.shape[1]
|
| 36 |
+
index = faiss.IndexFlatL2(dimension)
|
| 37 |
+
index.add(embeddings)
|
| 38 |
+
|
| 39 |
+
faiss.write_index(index, index_path)
|
| 40 |
+
with open(chunks_path, "wb") as f:
|
| 41 |
+
pickle.dump(chunks, f)
|
| 42 |
+
|
| 43 |
+
print(f"✅ Saved FAISS index to {index_path}")
|
| 44 |
+
print(f"✅ Saved chunks to {chunks_path}")
|
| 45 |
+
|
| 46 |
+
# === Run Once ===
|
| 47 |
+
if __name__ == "__main__":
|
| 48 |
+
pdf_path = "input.pdf" # Replace with your actual PDF
|
| 49 |
+
raw_text = extract_text_from_pdf(pdf_path)
|
| 50 |
+
chunks = chunk_text(raw_text)
|
| 51 |
+
|
| 52 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 53 |
+
build_and_save_index(chunks, embedder)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
sentence-transformers
|
| 4 |
+
transformers
|
| 5 |
+
faiss-cpu
|
| 6 |
+
pickle5
|