import os import gradio as gr import copy import time import llama_cpp from llama_cpp import Llama from huggingface_hub import hf_hub_download llm = Llama( model_path=hf_hub_download( repo_id="FinancialSupport/saiga-7b-gguf", filename="saiga-7b.Q4_K_M.gguf", ), n_ctx=4086, ) history = [] def generate_text(message, history): temp = "" input_prompt = "Conversazione tra umano ed un assistente AI di nome saiaga-7b\n" for interaction in history: input_prompt += "[|Umano|] " + interaction[0] + "\n" input_prompt += "[|Assistente|]" + interaction[1] input_prompt += "[|Umano|] " + message + "\n[|Assistente|]" print(input_prompt) output = llm( input_prompt, temperature=0.15, top_p=0.1, top_k=40, repeat_penalty=1.1, max_tokens=1024, stop=[ "[|Umano|]", "[|Assistente|]", ], stream=True, ) for out in output: stream = copy.deepcopy(out) temp += stream["choices"][0]["text"] yield temp history = ["init", input_prompt] demo = gr.ChatInterface( generate_text, title="saiga-7b running on CPU (quantized Q4_K)", description="This is a quantized version of saiga-7b running on CPU (very slow). It is less powerful than the original version, but it can even run on the free tier of huggingface.", examples=[ "Dammi 3 idee di ricette che posso fare con i pistacchi", "Prepara un piano di esercizi da poter fare a casa", "Scrivi una poesia sulla nuova AI chiamata cerbero-7b" ], cache_examples=False, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", ) demo.queue(concurrency_count=1, max_size=5) demo.launch()