import spaces import argparse import os import time from os import path import shutil from datetime import datetime from safetensors.torch import load_file from huggingface_hub import hf_hub_download import gradio as gr import torch from diffusers import FluxPipeline from PIL import Image # Setup and initialization code cache_path = path.join(path.dirname(path.abspath(__file__)), "models") # Use PERSISTENT_DIR environment variable for Spaces PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") gallery_path = path.join(PERSISTENT_DIR, "gallery") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path torch.backends.cuda.matmul.allow_tf32 = True # Create gallery directory if it doesn't exist if not path.exists(gallery_path): os.makedirs(gallery_path, exist_ok=True) class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") # Model initialization if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) css = """ footer {display: none !important} .gradio-container { max-width: 1200px; margin: auto; } .contain { background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px; } .generate-btn { background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; border: none !important; color: white !important; } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0,0,0,0.2); } .title { text-align: center; font-size: 2.5em; font-weight: bold; margin-bottom: 1em; background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } /* Gallery specific styles */ #gallery { width: 100% !important; max-width: 100% !important; overflow: visible !important; } #gallery > div { width: 100% !important; max-width: none !important; } #gallery > div > div { width: 100% !important; display: grid !important; grid-template-columns: repeat(5, 1fr) !important; gap: 16px !important; padding: 16px !important; } .gallery-container { background: rgba(255, 255, 255, 0.05); border-radius: 8px; margin-top: 10px; width: 100% !important; box-sizing: border-box !important; } /* Force gallery items to maintain aspect ratio */ .gallery-item { width: 100% !important; aspect-ratio: 1 !important; overflow: hidden !important; border-radius: 4px !important; } .gallery-item img { width: 100% !important; height: 100% !important; object-fit: cover !important; border-radius: 4px !important; transition: transform 0.2s; } .gallery-item img:hover { transform: scale(1.05); } /* Force output image container to full width */ .output-image { width: 100% !important; max-width: 100% !important; } /* Force container widths */ .contain > div { width: 100% !important; max-width: 100% !important; } .fixed-width { width: 100% !important; max-width: 100% !important; } /* Remove any horizontal scrolling */ .gallery-container::-webkit-scrollbar { display: none !important; } .gallery-container { -ms-overflow-style: none !important; scrollbar-width: none !important; } /* Ensure consistent sizing for gallery wrapper */ #gallery > div { width: 100% !important; max-width: 100% !important; } #gallery > div > div { width: 100% !important; max-width: 100% !important; } """ def save_image(image): """Save the generated image and return the path""" try: # Ensure gallery directory exists if not os.path.exists(gallery_path): try: os.makedirs(gallery_path, exist_ok=True) except Exception as e: print(f"Failed to create gallery directory: {str(e)}") return None # Generate unique filename with timestamp and random suffix timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") random_suffix = os.urandom(4).hex() filename = f"generated_{timestamp}_{random_suffix}.png" filepath = os.path.join(gallery_path, filename) try: if isinstance(image, Image.Image): image.save(filepath, "PNG", quality=100) else: image = Image.fromarray(image) image.save(filepath, "PNG", quality=100) if not os.path.exists(filepath): print(f"Warning: Failed to verify saved image at {filepath}") return None return filepath except Exception as e: print(f"Failed to save image: {str(e)}") return None except Exception as e: print(f"Error in save_image: {str(e)}") return None def load_gallery(): """Load all images from the gallery directory""" try: # Ensure gallery directory exists os.makedirs(gallery_path, exist_ok=True) # Get all image files and sort by modification time image_files = [] for f in os.listdir(gallery_path): if f.lower().endswith(('.png', '.jpg', '.jpeg')): full_path = os.path.join(gallery_path, f) image_files.append((full_path, os.path.getmtime(full_path))) # Sort by modification time (newest first) image_files.sort(key=lambda x: x[1], reverse=True) # Return only the file paths return [f[0] for f in image_files] except Exception as e: print(f"Error loading gallery: {str(e)}") return [] # Create Gradio interface with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML('
AI Image Generator
') gr.HTML('
Create stunning images from your descriptions
') with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox( label="Image Description", placeholder="Describe the image you want to create...", lines=3 ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): height = gr.Slider( label="Height", minimum=256, maximum=1152, step=64, value=1024 ) width = gr.Slider( label="Width", minimum=256, maximum=1152, step=64, value=1024 ) with gr.Row(): steps = gr.Slider( label="Inference Steps", minimum=6, maximum=25, step=1, value=8 ) scales = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5 ) def get_random_seed(): return torch.randint(0, 1000000, (1,)).item() seed = gr.Number( label="Seed (random by default, set for reproducibility)", value=get_random_seed(), precision=0 ) randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"]) generate_btn = gr.Button( "✨ Generate Image", elem_classes=["generate-btn"] ) with gr.Column(scale=4, elem_classes=["fixed-width"]): # Current generated image output = gr.Image( label="Generated Image", elem_id="output-image", elem_classes=["output-image", "fixed-width"] ) # Gallery of generated images gallery = gr.Gallery( label="Generated Images Gallery", show_label=True, elem_id="gallery", columns=[4], rows=[2], height="auto", object_fit="cover", elem_classes=["gallery-container", "fixed-width"] ) # Load existing gallery images on startup gallery.value = load_gallery() @spaces.GPU def process_and_save_image(height, width, steps, scales, prompt, seed): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): try: generated_image = pipe( prompt=[prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] # Save the generated image saved_path = save_image(generated_image) if saved_path is None: print("Warning: Failed to save generated image") # Return both the generated image and updated gallery return generated_image, load_gallery() except Exception as e: print(f"Error in image generation: {str(e)}") return None, load_gallery() # Connect the generation button to both the image output and gallery update def update_seed(): return get_random_seed() generate_btn.click( process_and_save_image, inputs=[height, width, steps, scales, prompt, seed], outputs=[output, gallery] ) # Add randomize seed button functionality randomize_seed.click( update_seed, outputs=[seed] ) # Also randomize seed after each generation generate_btn.click( update_seed, outputs=[seed] ) if __name__ == "__main__": demo.launch(allowed_paths=[PERSISTENT_DIR])