from diffusers import UNet2DConditionModel, AutoencoderKL, DDIMScheduler, AutoencoderTiny from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection from accelerate import Accelerator from huggingface_hub import hf_hub_download import spaces import gradio as gr import numpy as np import torch import time import PIL base = "stabilityai/stable-diffusion-xl-base-1.0" repo_id = "tianweiy/DMD2" subfolder = "model/sdxl/sdxl_cond999_8node_lr5e-7_denoising4step_diffusion1000_gan5e-3_guidance8_noinit_noode_backsim_scratch_checkpoint_model_019000" filename = "pytorch_model.bin" class ModelWrapper: def __init__(self, model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator): super().__init__() torch.set_grad_enabled(False) self.DTYPE = torch.float16 self.device = 0 self.tokenizer_one = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False) self.tokenizer_two = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False) self.text_encoder = SDXLTextEncoder(model_id, revision, accelerator, dtype=self.DTYPE) self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").float().to(self.device) self.vae_dtype = torch.float32 self.tiny_vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=self.DTYPE).to(self.device) self.tiny_vae_dtype = self.DTYPE self.model = self.create_generator(model_id, checkpoint_path).to(dtype=self.DTYPE).to(self.device) self.accelerator = accelerator self.image_resolution = image_resolution self.latent_resolution = latent_resolution self.num_train_timesteps = num_train_timesteps self.vae_downsample_ratio = image_resolution // latent_resolution self.conditioning_timestep = conditioning_timestep self.scheduler = DDIMScheduler.from_pretrained(model_id,subfolder="scheduler") self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device) self.num_step = num_step def create_generator(self, model_id, checkpoint_path): generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE) state_dict = torch.load(checkpoint_path) generator.load_state_dict(state_dict, strict=True) generator.requires_grad_(False) return generator def build_condition_input(self, height, width): original_size = (height, width) target_size = (height, width) crop_top_left = (0, 0) add_time_ids = list(original_size + crop_top_left + target_size) add_time_ids = torch.tensor([add_time_ids], device="cuda", dtype=self.DTYPE) return add_time_ids def _encode_prompt(self, prompt): text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids prompt_dict = { 'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device), 'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device) } return prompt_dict @staticmethod def _get_time(): return time.time() def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode): #alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device) print("sampling...") if self.num_step == 1: all_timesteps = [self.conditioning_timestep] step_interval = 0 elif self.num_step == 4: all_timesteps = [999, 749, 499, 249] step_interval = 250 else: raise NotImplementedError() noise = noise.to(torch.float16) print(f'noise: {noise.dtype}') #prompt_embed = prompt_embed.to(torch.float32) DTYPE = prompt_embed.dtype print(f'prompt_embed: {DTYPE}') for constant in all_timesteps: current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant #current_timesteps = current_timesteps.to(torch.float32) print(f'current_timestpes: {current_timesteps.dtype}') eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions) print(eval_images.dtype) eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE) print(eval_images.dtype) next_timestep = current_timesteps - step_interval noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE) print(noise.dtype) if fast_vae_decode: eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0] else: eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0] eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1) return eval_images @torch.no_grad() def inference(self, prompt, seed, height, width, num_images, fast_vae_decode): print("Running model inference...") if seed == -1: seed = np.random.randint(0, 1000000) generator = torch.manual_seed(seed) add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1) noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator) prompt_inputs = self._encode_prompt(prompt) start_time = self._get_time() prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs) batch_prompt_embeds, batch_pooled_prompt_embeds = ( prompt_embeds.repeat(num_images, 1, 1), pooled_prompt_embeds.repeat(num_images, 1, 1) ) unet_added_conditions = { "time_ids": add_time_ids, "text_embeds": batch_pooled_prompt_embeds.squeeze(1) } print(f'noise: {noise.dtype}') print(f'prompt: {batch_prompt_embeds.dtype}') print(unet_added_conditions['time_ids'].dtype) print(unet_added_conditions['text_embeds'].dtype) print("________") eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode) end_time = self._get_time() output_image_list = [] for image in eval_images: output_image_list.append(PIL.Image.fromarray(image.cpu().numpy())) return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds" @spaces.GPU() def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep): alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) beta_prod_t = 1 - alpha_prod_t pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) return pred_original_sample class SDXLTextEncoder(torch.nn.Module): def __init__(self, model_id, revision, accelerator, dtype=torch.float32): super().__init__() self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(0).to(dtype=dtype) self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(0).to(dtype=dtype) self.accelerator = accelerator def forward(self, batch): text_input_ids_one = batch['text_input_ids_one'].to(0).squeeze(1) text_input_ids_two = batch['text_input_ids_two'].to(0).squeeze(1) prompt_embeds_list = [] for text_input_ids, text_encoder in zip([text_input_ids_one, text_input_ids_two], [self.text_encoder_one, self.text_encoder_two]): prompt_embeds = text_encoder(text_input_ids.to(0), output_hidden_states=True) pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.cat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1) return prompt_embeds, pooled_prompt_embeds def create_demo(): TITLE = "# DMD2-SDXL Demo" model_id = "stabilityai/stable-diffusion-xl-base-1.0" checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename) precision = "float16" image_resolution = 1024 latent_resolution = 128 num_train_timesteps = 1000 conditioning_timestep = 999 num_step = 4 revision = None torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True accelerator = Accelerator() model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator) with gr.Blocks() as demo: gr.Markdown(TITLE) with gr.Row(): with gr.Column(): prompt = gr.Text(value="An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original.", label="Prompt") run_button = gr.Button("Run") with gr.Accordion(label="Advanced options", open=True): seed = gr.Slider(label="Seed", minimum=-1, maximum=1000000, step=1, value=0) num_images = gr.Slider(label="Number of generated images", minimum=1, maximum=16, step=1, value=1) fast_vae_decode = gr.Checkbox(label="Use Tiny VAE for faster decoding", value=True) height = gr.Slider(label="Image Height", minimum=512, maximum=1536, step=64, value=512) width = gr.Slider(label="Image Width", minimum=512, maximum=1536, step=64, value=512) with gr.Column(): result = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=1024) error_message = gr.Text(label="Job Status") inputs = [prompt, seed, height, width, num_images, fast_vae_decode] run_button.click(fn=model.inference, inputs=inputs, outputs=[result, error_message], concurrency_limit=1) return demo if __name__ == "__main__": demo = create_demo() demo.queue(api_open=False) demo.launch(show_error=True)