import numpy as np from PIL import Image from io import BytesIO def compression_jpeg(img, severity=1): """ JPEG compression on a NumPy array. severity=[1,2,3,4,5] corresponding to quality=[25,18,15,10,7]. from https://github.com/bethgelab/imagecorruptions/blob/master/imagecorruptions/corruptions.py @param img: Input image as NumPy array, H x W x C, value range [0, 255] @param severity: Severity of distortion, [1, 5] @return: Degraded image as NumPy array, H x W x C, value range [0, 255] """ assert img.dtype == np.uint8, "Image array should have dtype of np.uint8" assert severity in [1, 2, 3, 4, 5], 'Severity must be an integer between 1 and 5.' quality = [25, 18, 12, 8, 5][severity - 1] output = BytesIO() gray_scale = False if img.shape[2] == 1: # Check if the image is grayscale gray_scale = True # Convert NumPy array to PIL Image img = Image.fromarray(img) if gray_scale: img = img.convert('L') else: img = img.convert('RGB') # Save image to a bytes buffer using JPEG compression img.save(output, 'JPEG', quality=quality) output.seek(0) # Load the compressed image from the bytes buffer img_lq = Image.open(output) # Convert PIL Image back to NumPy array if gray_scale: img_lq = np.array(img_lq.convert('L')) img_lq = img_lq.reshape((img_lq.shape[0], img_lq.shape[1], 1)) # Maintaining the original shape (H, W, 1) else: img_lq = np.array(img_lq.convert('RGB')) return img_lq def compression_jpeg_2000(img, severity=1): """ JPEG2000 compression on a NumPy array. severity=[1,2,3,4,5] corresponding to quality=[29,27.5,26,24.5,23], quality_mode='dB'. @param x: Input image as NumPy array, H x W x C, value range [0, 255] @param severity: Severity of distortion, [1, 5] @return: Degraded image as NumPy array, H x W x C, value range [0, 255] """ assert img.dtype == np.uint8, "Image array should have dtype of np.uint8" assert severity in [1, 2, 3, 4, 5], 'Severity must be an integer between 1 and 5.' quality = [29, 27.5, 26, 24.5, 23][severity - 1] output = BytesIO() gray_scale = False if img.shape[2] == 1: # Check if the image is grayscale gray_scale = True # Convert NumPy array to PIL Image img = Image.fromarray(img) if gray_scale: img = img.convert('L') else: img = img.convert('RGB') # Save image to a bytes buffer using JPEG compression img.save(output, 'JPEG2000', quality_mode='dB', quality_layers=[quality]) output.seek(0) # Load the compressed image from the bytes buffer img_lq = Image.open(output) # Convert PIL Image back to NumPy array if gray_scale: img_lq = np.array(img_lq.convert('L')) img_lq = img_lq.reshape((img_lq.shape[0], img_lq.shape[1], 1)) # Maintaining the original shape (H, W, 1) else: img_lq = np.array(img_lq.convert('RGB')) return img_lq