import glob import io import numpy as np import re import os import random from io import BytesIO from uuid import uuid4 import sqlite3 import h5py import torch from PIL import Image from torch.utils.data import Dataset from torchvision.transforms import RandomCrop from torchvision.transforms.functional import to_tensor class ImageH5Data(Dataset): def __init__(self, h5py_file, folder_name): self.data = h5py.File(h5py_file, "r")[folder_name] self.data_hr = self.data["train_hr"] self.data_lr = self.data["train_lr"] self.len_imgs = len(self.data_hr) self.h5py_file = h5py_file self.folder_name = folder_name def __len__(self): # with h5py.File(self.h5py_file, 'r') as f: # return len(f[self.folder_name]['train_lr']) return self.len_imgs def __getitem__(self, index): # with h5py.File(self.h5py_file, 'r') as f: # data_lr = f[self.folder_name]['train_lr'][index] # data_hr = f[self.folder_name]['train_lr'][index] # # return data_lr, data_hr return self.data_lr[index], self.data_hr[index] class ImageData(Dataset): def __init__( self, img_folder, patch_size=96, shrink_size=2, noise_level=1, down_sample_method=None, color_mod="RGB", dummy_len=None, ): self.img_folder = img_folder all_img = glob.glob(self.img_folder + "/**", recursive=True) self.img = list( filter( lambda x: x.endswith("png") or x.endswith("jpg") or x.endswith("jpeg"), all_img, ) ) self.total_img = len(self.img) self.dummy_len = dummy_len if dummy_len is not None else self.total_img self.random_cropper = RandomCrop(size=patch_size) self.color_mod = color_mod self.img_augmenter = ImageAugment(shrink_size, noise_level, down_sample_method) def get_img_patches(self, img_file): img_pil = Image.open(img_file).convert("RGB") img_patch = self.random_cropper(img_pil) lr_hr_patches = self.img_augmenter.process(img_patch) return lr_hr_patches def __len__(self): return self.dummy_len # len(self.img) def __getitem__(self, index): idx = random.choice(range(0, self.total_img)) img = self.img[idx] patch = self.get_img_patches(img) if self.color_mod == "RGB": lr_img = patch[0].convert("RGB") hr_img = patch[1].convert("RGB") elif self.color_mod == "YCbCr": lr_img, _, _ = patch[0].convert("YCbCr").split() hr_img, _, _ = patch[1].convert("YCbCr").split() else: raise KeyError("Either RGB or YCbCr") return to_tensor(lr_img), to_tensor(hr_img) class Image2Sqlite(ImageData): def __getitem__(self, item): img = self.img[item] lr_hr_patch = self.get_img_patches(img) if self.color_mod == "RGB": lr_img = lr_hr_patch[0].convert("RGB") hr_img = lr_hr_patch[1].convert("RGB") elif self.color_mod == "YCbCr": lr_img, _, _ = lr_hr_patch[0].convert("YCbCr").split() hr_img, _, _ = lr_hr_patch[1].convert("YCbCr").split() else: raise KeyError("Either RGB or YCbCr") lr_byte = self.convert_to_bytevalue(lr_img) hr_byte = self.convert_to_bytevalue(hr_img) return [lr_byte, hr_byte] @staticmethod def convert_to_bytevalue(pil_img): img_byte = io.BytesIO() pil_img.save(img_byte, format="png") return img_byte.getvalue() class ImageDBData(Dataset): def __init__( self, db_file, db_table="images", lr_col="lr_img", hr_col="hr_img", max_images=None, ): self.db_file = db_file self.db_table = db_table self.lr_col = lr_col self.hr_col = hr_col self.total_images = self.get_num_rows(max_images) # self.lr_hr_images = self.get_all_images() def __len__(self): return self.total_images # def get_all_images(self): # with sqlite3.connect(self.db_file) as conn: # cursor = conn.cursor() # cursor.execute(f"SELECT * FROM {self.db_table} LIMIT {self.total_images}") # return cursor.fetchall() def get_num_rows(self, max_images): with sqlite3.connect(self.db_file) as conn: cursor = conn.cursor() cursor.execute(f"SELECT MAX(ROWID) FROM {self.db_table}") db_rows = cursor.fetchone()[0] if max_images: return min(max_images, db_rows) else: return db_rows def __getitem__(self, item): # lr, hr = self.lr_hr_images[item] # lr = Image.open(io.BytesIO(lr)) # hr = Image.open(io.BytesIO(hr)) # return to_tensor(lr), to_tensor(hr) # note sqlite rowid starts with 1 with sqlite3.connect(self.db_file) as conn: cursor = conn.cursor() cursor.execute( f"SELECT {self.lr_col}, {self.hr_col} FROM {self.db_table} WHERE ROWID={item + 1}" ) lr, hr = cursor.fetchone() lr = Image.open(io.BytesIO(lr)).convert("RGB") hr = Image.open(io.BytesIO(hr)).convert("RGB") # lr = np.array(lr) # use scale [0, 255] instead of [0,1] # hr = np.array(hr) return to_tensor(lr), to_tensor(hr) class ImagePatchData(Dataset): def __init__(self, lr_folder, hr_folder): self.lr_folder = lr_folder self.hr_folder = hr_folder self.lr_imgs = glob.glob(os.path.join(lr_folder, "**")) self.total_imgs = len(self.lr_imgs) def __len__(self): return self.total_imgs def __getitem__(self, item): lr_file = self.lr_imgs[item] hr_path = re.sub("lr", "hr", os.path.dirname(lr_file)) filename = os.path.basename(lr_file) hr_file = os.path.join(hr_path, filename) return to_tensor(Image.open(lr_file)), to_tensor(Image.open(hr_file)) class ImageAugment: def __init__(self, shrink_size=2, noise_level=1, down_sample_method=None): # noise_level (int): 0: no noise; 1: 75-95% quality; 2:50-75% if noise_level == 0: self.noise_level = [0, 0] elif noise_level == 1: self.noise_level = [5, 25] elif noise_level == 2: self.noise_level = [25, 50] else: raise KeyError("Noise level should be either 0, 1, 2") self.shrink_size = shrink_size self.down_sample_method = down_sample_method def shrink_img(self, hr_img): if self.down_sample_method is None: resample_method = random.choice( [Image.BILINEAR, Image.BICUBIC, Image.LANCZOS] ) else: resample_method = self.down_sample_method img_w, img_h = tuple(map(lambda x: int(x / self.shrink_size), hr_img.size)) lr_img = hr_img.resize((img_w, img_h), resample_method) return lr_img def add_jpeg_noise(self, hr_img): quality = 100 - round(random.uniform(*self.noise_level)) lr_img = BytesIO() hr_img.save(lr_img, format="JPEG", quality=quality) lr_img.seek(0) lr_img = Image.open(lr_img) return lr_img def process(self, hr_patch_pil): lr_patch_pil = self.shrink_img(hr_patch_pil) if self.noise_level[1] > 0: lr_patch_pil = self.add_jpeg_noise(lr_patch_pil) return lr_patch_pil, hr_patch_pil def up_sample(self, img, resample): width, height = img.size return img.resize( (self.shrink_size * width, self.shrink_size * height), resample=resample )