#https://huggingface.co/spaces/gianb/PDF_Summarized_TTS # Here are the imports import gradio as gr import PyPDF2 from transformers import pipeline, AutoProcessor, AutoModel, AutoTokenizer from PyPDF2 import PdfReader import torch import soundfile as sf from IPython.display import Audio from datasets import load_dataset from pdfminer.high_level import extract_pages, extract_text from io import BytesIO #Here is the code summarization = pipeline('summarization', model='pszemraj/long-t5-tglobal-base-16384-book-summary') synthesiser = pipeline("text-to-speech", model='facebook/mms-tts-eng') def abstract_extract(uploaded_file): pdf_bytes = BytesIO(uploaded_file) pdf_reader = PyPDF2.PdfReader(pdf_bytes) abstract = "" for page_number in range(len(pdf_reader.pages)): text = pdf_reader.pages[page_number].extract_text() if "abstract" in text.lower(): start_index = text.lower().find("abstract") end_index = text.lower().find("introduction") abstract = text[start_index:end_index] break return abstract def summarize_and_speech(pdf_file): abstract_text = abstract_extract(pdf_file) summary = summarization(abstract_text, max_length=15, min_length=10)[0]['summary_text'] tts_output = synthesiser(summary) audio_data = tts_output[0]["audio"] return summary, audio_data iface = gr.Interface( fn=summarize_and_speech, inputs=gr.File(label="Upload PDF", type="binary"), outputs=[gr.Textbox(label="Abstract Summary:"), gr.Audio(type="filepath", label="Summary Speech")], live=True, title="Abstract Research Paper Summarizer", description="Upload a Research Paper PDF File. The model will generate a one line summary of the Abstract section and a speech audio." ) iface.launch()