import gradio as gr from PIL import Image import requests import hopsworks import joblib import pandas as pd project = hopsworks.login(project = "Scalable_ML_lab1") fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("wine_model", version=5) model_dir = model.download() model = joblib.load(model_dir + "/wine_model.pkl") print("Model downloaded") def wine(fixed_acidity, volatile_acidity, citric_acid, residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,ph,sulphates,alchohol): print("Calling function") # df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]], df = pd.DataFrame([[fixed_acidity, volatile_acidity, citric_acid, residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,ph,sulphates,alchohol]], columns=['fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar','chlorides','free_sulfur_dioxide','total_sulfur_dioxide','density','ph','sulphates','alcohol']) print("Predicting") print(df) # 'res' is a list of predictions returned as the label. res = model.predict(df) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. # print("Res: {0}").format(res) print("the whole prediction", res) print("prediction[0]",res[0]) # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" image_url = "https://raw.githubusercontent.com/GGmorello/serverless-ml/main/lab1/wine/numbers/" + str(res[0]) + ".png" resp = requests.get(image_url, stream=True) print("image request: ",resp) img = Image.open(resp.raw) newsize = (100, 100) img1 = img.resize(newsize) return img1 demo = gr.Interface( fn=wine, title="Wine Quality Predictive Analytics", description="Experiment with the wine features to predict the quality of the wine", allow_flagging="never", inputs=[ gr.Number(value=9.1, label="fixed_acidity"), gr.Number(value=0.3, label="volatile_acidity"), gr.Number(value=0.41, label="citric_acid"), gr.Number(value=2, label="residual_sugar"), gr.Number(value=0.068, label="chlorides"), gr.Number(value=10, label="free_sulfur_dioxide"), gr.Number(value=24, label="total_sulfur_dioxide"), gr.Number(value=0.99523, label="density"), gr.Number(value=3.27, label="ph"), gr.Number(value=0.85, label="sulphates"), gr.Number(value=11.7, label="alcohol") ], outputs=gr.Image(type="pil") #outputs = gr.Number(label = "quality") ) demo.launch(debug=True,share = True)