import gradio as gr from PIL import Image import hopsworks project = hopsworks.login(project = "Scalable_ML_lab1") fs = project.get_feature_store() dataset_api = project.get_dataset_api() dataset_api.download("Resources/images/latest_quality.png",overwrite = True) dataset_api.download("Resources/images/actual_quality.png",overwrite = True) dataset_api.download("Resources/images/wine_df_recent.png",overwrite = True) dataset_api.download("Resources/images/wine_confusion_matrix.png",overwrite = True) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Label("Today's Predicted Qualtiy") input_img = gr.Image("latest_quality.png", elem_id="predicted-img") with gr.Column(): gr.Label("Today's Actual Quality") input_img = gr.Image("actual_quality.png", elem_id="actual-img") with gr.Row(): with gr.Column(): gr.Label("Recent Prediction History") input_img = gr.Image("wine_df_recent.png", elem_id="recent-predictions") with gr.Column(): gr.Label("Confusion Maxtrix with Historical Prediction Performance") input_img = gr.Image("wine_confusion_matrix.png", elem_id="confusion-matrix") demo.launch(share=True)