"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` Attributes: _out_channels (list of int): specify number of channels for each encoder feature tensor _depth (int): specify number of stages in decoder (in other words number of downsampling operations) _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) Methods: forward(self, x: torch.Tensor) produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of shape NCHW (features should be sorted in descending order according to spatial resolution, starting with resolution same as input `x` tensor). Input: `x` with shape (1, 3, 64, 64) Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) also should support number of features according to specified depth, e.g. if depth = 5, number of feature tensors = 6 (one with same resolution as input and 5 downsampled), depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ import torch.nn as nn from efficientnet_pytorch import EfficientNet from efficientnet_pytorch.utils import url_map, url_map_advprop, get_model_params from ._base import EncoderMixin class EfficientNetEncoder(EfficientNet, EncoderMixin): def __init__(self, stage_idxs, out_channels, model_name, depth=5): blocks_args, global_params = get_model_params(model_name, override_params=None) super().__init__(blocks_args, global_params) self._stage_idxs = stage_idxs self._out_channels = out_channels self._depth = depth self._in_channels = 3 del self._fc def get_stages(self): return [ nn.Identity(), nn.Sequential(self._conv_stem, self._bn0, self._swish), self._blocks[: self._stage_idxs[0]], self._blocks[self._stage_idxs[0] : self._stage_idxs[1]], self._blocks[self._stage_idxs[1] : self._stage_idxs[2]], self._blocks[self._stage_idxs[2] :], ] def forward(self, x): stages = self.get_stages() block_number = 0.0 drop_connect_rate = self._global_params.drop_connect_rate features = [] for i in range(self._depth + 1): # Identity and Sequential stages if i < 2: x = stages[i](x) # Block stages need drop_connect rate else: for module in stages[i]: drop_connect = drop_connect_rate * block_number / len(self._blocks) block_number += 1.0 x = module(x, drop_connect) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("_fc.bias", None) state_dict.pop("_fc.weight", None) super().load_state_dict(state_dict, **kwargs) def _get_pretrained_settings(encoder): pretrained_settings = { "imagenet": { "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "url": url_map[encoder], "input_space": "RGB", "input_range": [0, 1], }, "advprop": { "mean": [0.5, 0.5, 0.5], "std": [0.5, 0.5, 0.5], "url": url_map_advprop[encoder], "input_space": "RGB", "input_range": [0, 1], }, } return pretrained_settings efficient_net_encoders = { "efficientnet-b0": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b0"), "params": { "out_channels": (3, 32, 24, 40, 112, 320), "stage_idxs": (3, 5, 9, 16), "model_name": "efficientnet-b0", }, }, "efficientnet-b1": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b1"), "params": { "out_channels": (3, 32, 24, 40, 112, 320), "stage_idxs": (5, 8, 16, 23), "model_name": "efficientnet-b1", }, }, "efficientnet-b2": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b2"), "params": { "out_channels": (3, 32, 24, 48, 120, 352), "stage_idxs": (5, 8, 16, 23), "model_name": "efficientnet-b2", }, }, "efficientnet-b3": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b3"), "params": { "out_channels": (3, 40, 32, 48, 136, 384), "stage_idxs": (5, 8, 18, 26), "model_name": "efficientnet-b3", }, }, "efficientnet-b4": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b4"), "params": { "out_channels": (3, 48, 32, 56, 160, 448), "stage_idxs": (6, 10, 22, 32), "model_name": "efficientnet-b4", }, }, "efficientnet-b5": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b5"), "params": { "out_channels": (3, 48, 40, 64, 176, 512), "stage_idxs": (8, 13, 27, 39), "model_name": "efficientnet-b5", }, }, "efficientnet-b6": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b6"), "params": { "out_channels": (3, 56, 40, 72, 200, 576), "stage_idxs": (9, 15, 31, 45), "model_name": "efficientnet-b6", }, }, "efficientnet-b7": { "encoder": EfficientNetEncoder, "pretrained_settings": _get_pretrained_settings("efficientnet-b7"), "params": { "out_channels": (3, 64, 48, 80, 224, 640), "stage_idxs": (11, 18, 38, 55), "model_name": "efficientnet-b7", }, }, }