File size: 8,658 Bytes
9d8ea22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""

Byte-Level Tokenizer V6 - Pure Learning Based

No vocabulary, no language rules - just bytes

"""

import torch
from typing import List, Dict, Union, Optional
import numpy as np


class ByteTokenizerV6:
    """

    Pure byte-level tokenizer

    - No vocabulary needed (bytes are 0-255)

    - No language-specific rules

    - Model learns all patterns from data

    """
    
    def __init__(self, max_seq_len: int = 512):
        """Initialize byte tokenizer"""
        
        self.max_seq_len = max_seq_len
        
        # Special tokens (beyond byte range 0-255)
        self.PAD = 256
        self.BOS = 257  
        self.EOS = 258
        self.MASK = 259
        
        # Total vocabulary size = 256 bytes + 4 special tokens
        self.vocab_size = 260
        
        print(f"Byte tokenizer initialized (vocab_size={self.vocab_size})")
    
    def encode(self, text: str, add_special_tokens: bool = True) -> Dict:
        """

        Encode text to byte IDs

        

        Args:

            text: Input text

            add_special_tokens: Whether to add BOS/EOS

            

        Returns:

            dict with 'input_ids', 'attention_mask', 'length'

        """
        # Convert text to UTF-8 bytes (pure bytes, no rules)
        byte_sequence = list(text.encode('utf-8'))
        
        # Truncate if necessary
        max_len = self.max_seq_len - 2 if add_special_tokens else self.max_seq_len
        if len(byte_sequence) > max_len:
            byte_sequence = byte_sequence[:max_len]
        
        # Add special tokens
        if add_special_tokens:
            input_ids = [self.BOS] + byte_sequence + [self.EOS]
        else:
            input_ids = byte_sequence
        
        # Create attention mask (1 for real tokens, 0 for padding)
        attention_mask = [1] * len(input_ids)
        
        return {
            'input_ids': input_ids,
            'attention_mask': attention_mask,
            'length': len(input_ids)
        }
    
    def encode_batch(self, texts: List[str], add_special_tokens: bool = True) -> Dict:
        """

        Encode multiple texts with padding

        

        Args:

            texts: List of input texts

            add_special_tokens: Whether to add special tokens

            

        Returns:

            Batched tensors with padding

        """
        encoded_texts = []
        max_length = 0
        
        # Encode each text
        for text in texts:
            encoded = self.encode(text, add_special_tokens)
            encoded_texts.append(encoded)
            max_length = max(max_length, encoded['length'])
        
        # Limit to max sequence length
        max_length = min(max_length, self.max_seq_len)
        
        # Initialize batch tensors
        batch_size = len(texts)
        input_ids = np.full((batch_size, max_length), self.PAD, dtype=np.int64)
        attention_mask = np.zeros((batch_size, max_length), dtype=np.float32)
        
        # Fill batch tensors
        for i, encoded in enumerate(encoded_texts):
            seq_len = min(encoded['length'], max_length)
            input_ids[i, :seq_len] = encoded['input_ids'][:seq_len]
            attention_mask[i, :seq_len] = 1.0
        
        return {
            'input_ids': torch.tensor(input_ids, dtype=torch.long),
            'attention_mask': torch.tensor(attention_mask, dtype=torch.float32),
            'lengths': torch.tensor([e['length'] for e in encoded_texts], dtype=torch.long)
        }
    
    def decode(self, input_ids: Union[List[int], torch.Tensor, np.ndarray], 

               skip_special_tokens: bool = True) -> str:
        """

        Decode byte IDs back to text

        

        Args:

            input_ids: Byte ID sequence

            skip_special_tokens: Whether to skip special tokens

            

        Returns:

            Decoded text string

        """
        # Convert to list if needed
        if isinstance(input_ids, torch.Tensor):
            input_ids = input_ids.cpu().numpy().tolist()
        elif isinstance(input_ids, np.ndarray):
            input_ids = input_ids.tolist()
        
        # Filter special tokens if requested
        if skip_special_tokens:
            # Only keep actual bytes (0-255)
            input_ids = [b for b in input_ids if 0 <= b <= 255]
        else:
            # Replace special tokens with readable markers
            processed = []
            for b in input_ids:
                if b == self.PAD:
                    continue  # Skip padding
                elif b == self.BOS:
                    processed.append(ord('['))  # Use [ for BOS
                elif b == self.EOS:
                    processed.append(ord(']'))  # Use ] for EOS
                elif b == self.MASK:
                    processed.append(ord('*'))  # Use * for MASK
                elif 0 <= b <= 255:
                    processed.append(b)
            input_ids = processed
        
        # Convert bytes to text
        try:
            # Try UTF-8 decoding
            byte_array = bytes(input_ids)
            text = byte_array.decode('utf-8', errors='replace')
            return text
        except Exception as e:
            # Fallback: convert directly to chars
            return "".join([chr(b) if b < 128 else '?' for b in input_ids])
    
    def decode_batch(self, input_ids: torch.Tensor, skip_special_tokens: bool = True) -> List[str]:
        """

        Decode a batch of byte sequences

        

        Args:

            input_ids: Batch of byte IDs (batch_size, seq_len)

            skip_special_tokens: Whether to skip special tokens

            

        Returns:

            List of decoded texts

        """
        texts = []
        for i in range(input_ids.shape[0]):
            text = self.decode(input_ids[i], skip_special_tokens)
            texts.append(text)
        return texts
    
    def tokenize(self, text: str) -> List[int]:
        """

        Simple tokenization to byte IDs (no special tokens)

        

        Args:

            text: Input text

            

        Returns:

            List of byte IDs

        """
        return list(text.encode('utf-8'))
    
    def detokenize(self, byte_ids: List[int]) -> str:
        """

        Simple detokenization from byte IDs

        

        Args:

            byte_ids: List of byte IDs

            

        Returns:

            Decoded text

        """
        try:
            return bytes(byte_ids).decode('utf-8', errors='replace')
        except:
            return "".join([chr(b) if b < 128 else '?' for b in byte_ids])
    
    def get_vocab_size(self) -> int:
        """Get vocabulary size"""
        return self.vocab_size
    
    def get_special_tokens(self) -> Dict[str, int]:
        """Get special token IDs"""
        return {
            'pad_id': self.PAD,
            'bos_id': self.BOS,
            'eos_id': self.EOS,
            'mask_id': self.MASK
        }


# Test code
if __name__ == "__main__":
    # Initialize tokenizer
    tokenizer = ByteTokenizerV6()
    
    # Test texts in multiple languages
    test_texts = [
        "Hello World!",
        "안녕하세요",
        "你好世界",
        "こんにちは",
        "مرحبا بالعالم",
        "Здравствуй мир"
    ]
    
    print("=" * 50)
    print("Single Text Encoding/Decoding Test")
    print("=" * 50)
    
    for text in test_texts:
        print(f"\nOriginal: {text}")
        
        # Encode
        encoded = tokenizer.encode(text)
        print(f"Encoded length: {encoded['length']}")
        print(f"First 10 bytes: {encoded['input_ids'][:10]}")
        
        # Decode
        decoded = tokenizer.decode(encoded['input_ids'])
        print(f"Decoded: {decoded}")
        print(f"Match: {decoded == text}")
    
    print("\n" + "=" * 50)
    print("Batch Encoding/Decoding Test")
    print("=" * 50)
    
    # Batch test
    batch_result = tokenizer.encode_batch(test_texts)
    print(f"Batch shape: {batch_result['input_ids'].shape}")
    print(f"Attention mask shape: {batch_result['attention_mask'].shape}")
    
    # Decode batch
    decoded_texts = tokenizer.decode_batch(batch_result['input_ids'])
    print("\nBatch decoding results:")
    for orig, dec in zip(test_texts, decoded_texts):
        print(f"Original: {orig}")
        print(f"Decoded:  {dec}")
        print(f"Match: {orig == dec}")
        print()