import gradio as gr import torch import requests from PIL import Image import numpy as np from spectro import wav_bytes_from_spectrogram_image from io import BytesIO from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionImg2ImgPipeline from share_btn import community_icon_html, loading_icon_html, share_js device = "cuda" MODEL_ID = "spaceinvader/fb" pipe = StableDiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16) pipe = pipe.to(device) pipe2 = StableDiffusionImg2ImgPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16) pipe2 = pipe2.to(device) # spectro_from_wav = gr.Interface.load("spaces/fffiloni/audio-to-spectrogram") def dummy_checker(images, **kwargs): return images, False def predict(prompt, negative_prompt, audio_input, duration): # if audio_input == None : return classic(prompt, negative_prompt, duration) # else : # return style_transfer(prompt, negative_prompt, audio_input) def classic(prompt, negative_prompt, duration): pipe2.safety_checker = dummy_checker url = "https://huggingface.co/spaces/gfartenstein/text2fart/resolve/main/rootfart-1.jpg" response = requests.get(url) im = Image.open(BytesIO(response.content)).convert("RGB") # spec = pipe(prompt, negative_prompt=negative_prompt, height=512, width=512).images[0] spec = pipe2(prompt=prompt, negative_prompt=negative_prompt, image=im, strength=0.5, guidance_scale=7).images print(spec) # wav = wav_bytes_from_spectrogram_image(spec) wav = wav_bytes_from_spectrogram_image(spec[0]) with open("output.wav", "wb") as f: f.write(wav[0].getbuffer()) return spec, 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) # def style_transfer(prompt, negative_prompt, audio_input): # pipe.safety_checker = dummy_checker # url = "https://huggingface.co/spaces/gfartenstein/text2fart/resolve/main/rootfart-1.jpg" # response = requests.get(url) # init_image = Image.open(BytesIO(response.content)).convert("RGB") # images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images # spec = spectro_from_wav(audio_input) # Open the image # im = Image.open('rootfart-1.jpg') # im = Image.open(spec) # Open the image # im = image_from_spectrogram(im, 1) # new_spectro = pipe2(prompt=prompt, image=im, strength=0.5, guidance_scale=7).images # wav = wav_bytes_from_spectrogram_image(new_spectro[0]) # with open("output.wav", "wb") as f: # f.write(wav[0].getbuffer()) # return new_spectro[0], 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) # def image_from_spectrogram( # spectrogram: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25 # ) -> Image.Image: # """ # Compute a spectrogram image from a spectrogram magnitude array. # """ # # Apply the power curve # data = np.power(spectrogram, power_for_image) # # Rescale to 0-255 # data = data * 255 / max_volume # # Invert # data = 255 - data # # Convert to a PIL image # image = Image.fromarray(data.astype(np.uint8)) # # Flip Y # image = image.transpose(Image.FLIP_TOP_BOTTOM) # # Convert to RGB # image = image.convert("RGB") # return image title = """

text2fart

by fartbook.ai

""" article = """

About the model: Riffusion is a latent text-to-image diffusion model capable of generating spectrogram images given any text input. These spectrograms can be converted into audio clips.

The Riffusion model was created by fine-tuning the Stable-Diffusion-v1-5 checkpoint.

The model is intended for research purposes only. Possible research areas and tasks include generation of artworks, audio, and use in creative processes, applications in educational or creative tools, research on generative models.

Do you need faster results ? You can skip the queue by duplicating this space: Duplicate Space

""" css = ''' #col-container, #col-container-2 {max-width: 510px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} div#record_btn > .mt-6 { margin-top: 0!important; } div#record_btn > .mt-6 button { width: 100%; height: 40px; } .footer { margin-bottom: 45px; margin-top: 10px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) prompt_input = gr.Textbox(placeholder="describe your fart", label="Prompt", elem_id="prompt-in") audio_input = gr.Audio(source="upload", type="filepath", visible=False) with gr.Row(): negative_prompt = gr.Textbox(label="Negative prompt") duration_input = gr.Slider(label="Duration in seconds", minimum=5, maximum=10, step=1, value=8, elem_id="duration-slider", visible=False) send_btn = gr.Button(value="Generate fart! ", elem_id="submit-btn") with gr.Column(elem_id="col-container-2"): spectrogram_output = gr.Image(label="spectrogram image result", elem_id="img-out") sound_output = gr.Audio(type='filepath', label="spectrogram sound", elem_id="music-out") with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=False) loading_icon = gr.HTML(loading_icon_html, visible=False) share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) gr.HTML(article) send_btn.click(predict, inputs=[prompt_input, negative_prompt, audio_input, duration_input], outputs=[spectrogram_output, sound_output, share_button, community_icon, loading_icon]) share_button.click(None, [], [], _js=share_js) demo.queue(max_size=250).launch(debug=True)