import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes: int): | |
"""Creates an EfficientNetB2 model.""" | |
# Create model and transforms | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_b2(weights=weights) | |
# Freeze layers | |
for param in model.parameters(): | |
param.requires_grad = False | |
# Change classifier | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes) | |
) | |
return model, transforms | |