import json from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor from mmcv.runner import get_dist_info def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.patch_embed"): return 0 elif var_name.startswith("backbone.blocks"): layer_id = int(var_name.split('.')[2]) return layer_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LayerDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate') print("Build LayerDecayOptimizerConstructor %f - %d" % (layer_decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or 'pos_embed' in name: group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay layer_id = get_num_layer_for_vit(name, num_layers) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_groups: scale = layer_decay_rate ** (num_layers - layer_id - 1) parameter_groups[group_name] = { "weight_decay": this_weight_decay, "params": [], "param_names": [], "lr_scale": scale, "group_name": group_name, "lr": scale * self.base_lr, } parameter_groups[group_name]["params"].append(param) parameter_groups[group_name]["param_names"].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { "param_names": parameter_groups[key]["param_names"], "lr_scale": parameter_groups[key]["lr_scale"], "lr": parameter_groups[key]["lr"], "weight_decay": parameter_groups[key]["weight_decay"], } print("Param groups = %s" % json.dumps(to_display, indent=2)) params.extend(parameter_groups.values())