# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Optional from transformers import PreTrainedModel, RobertaConfig, RobertaModel from transformers.file_utils import is_torch_available, requires_backends if is_torch_available(): import torch class AnceEncoder(PreTrainedModel): config_class = RobertaConfig base_model_prefix = 'ance_encoder' load_tf_weights = None _keys_to_ignore_on_load_missing = [r'position_ids'] _keys_to_ignore_on_load_unexpected = [r'pooler', r'classifier'] def __init__(self, config: RobertaConfig): requires_backends(self, 'torch') super().__init__(config) self.config = config self.roberta = RobertaModel(config) self.embeddingHead = torch.nn.Linear(config.hidden_size, 768) self.norm = torch.nn.LayerNorm(768) self.init_weights() # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, torch.nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, torch.nn.Linear) and module.bias is not None: module.bias.data.zero_() def init_weights(self): self.roberta.init_weights() self.embeddingHead.apply(self._init_weights) self.norm.apply(self._init_weights) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ): input_shape = input_ids.size() device = input_ids.device if attention_mask is None: attention_mask = ( torch.ones(input_shape, device=device) if input_ids is None else (input_ids != self.roberta.config.pad_token_id) ) outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask) sequence_output = outputs.last_hidden_state pooled_output = sequence_output[:, 0, :] pooled_output = self.norm(self.embeddingHead(pooled_output)) return pooled_output