# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import numpy as np import pandas as pd from tqdm import tqdm from transformers import BertModel, BertTokenizer def encode_query(text, tokenizer, model, device='cpu'): max_length = 36 # hardcode for now inputs = tokenizer( '[CLS] [Q] ' + text + ' [MASK]' * max_length, max_length=max_length, truncation=True, add_special_tokens=False, return_tensors='pt' ) inputs.to(device) outputs = model(**inputs) embeddings = outputs.last_hidden_state.detach().cpu().numpy() return np.average(embeddings[:, 4:, :], axis=-2).flatten() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--encoder', type=str, help='encoder name or path', required=True) parser.add_argument('--input', type=str, help='query file to be encoded.', required=True) parser.add_argument('--output', type=str, help='path to store query embeddings', required=True) parser.add_argument('--device', type=str, help='device cpu or cuda [cuda:0, cuda:1...]', default='cpu', required=False) args = parser.parse_args() tokenizer = BertTokenizer.from_pretrained(args.encoder) model = BertModel.from_pretrained(args.encoder) model.to(args.device) embeddings = {'id': [], 'text': [], 'embedding': []} for line in tqdm(open(args.input, 'r').readlines()): qid, text = line.rstrip().split('\t') qid = qid.strip() text = text.strip() embeddings['id'].append(qid) embeddings['text'].append(text) embeddings['embedding'].append(encode_query(text, tokenizer, model, args.device)) embeddings = pd.DataFrame(embeddings) embeddings.to_pickle(args.output)