#!/bin/bash DATA_DIR=$1 TASK=$2 DISP=False echo "Generating dataset... Folder: $DATA_DIR" # sh scripts/generate_gpt_datasets.sh data "align-rope assembling-kits-seq-seen-colors assembling-kits-seq-unseen-colors packing-shapes packing-boxes-pairs-seen-colors packing-boxes-pairs-unseen-colors packing-seen-google-objects-seq packing-unseen-google-objects-seq packing-seen-google-objects-group packing-unseen-google-objects-group put-block-in-bowl-seen-colors put-block-in-bowl-unseen-colors stack-block-pyramid-seq-seen-colors stack-block-pyramid-seq-unseen-colors separating-piles-seen-colors separating-piles-unseen-colors towers-of-hanoi-seq-seen-colors towers-of-hanoi-seq-unseen-colors # sh scripts/generate_gpt_datasets.sh data "assemble-single-car stack-color-coordinated-blocks color-structured-block-tower insert-blocks-into-fixture construct-corner-building colored-cylinder-in-square color-coordinated-block-tower build-house align-pair-colored-blocks-along-line insert-sphere-into-container build-wheel build-two-circles build-car build-bridge manipulating-two-ropes rainbow-stack mix-piles stack-blocks-in-container" # You can parallelize these depending on how much resources you have ############################# ## Language-Conditioned Tasks # LANG_TASKS='align-rope assembling-kits-seq-seen-colors' trap "kill 0" SIGINT LANG_TASKS=$2 for task in $LANG_TASKS do python cliport/demos.py n=200 task=$task mode=train data_dir=$DATA_DIR disp=$DISP record.save_video=False +regenerate_data=True & python cliport/demos.py n=50 task=$task mode=val data_dir=$DATA_DIR disp=$DISP record.save_video=False +regenerate_data=True & python cliport/demos.py n=100 task=$task mode=test data_dir=$DATA_DIR disp=$DISP record.save_video=False +regenerate_data=True & done wait echo "Finished Language Tasks."