import argparse import os import os.path as osp import sys import time import warnings from collections import defaultdict from pathlib import Path import numpy as np import pandas as pd import torch from accelerate import Accelerator from accelerate.utils import gather_object from PIL import Image from tqdm import tqdm warnings.filterwarnings("ignore") # ignore warning current_file_path = Path(__file__).resolve() sys.path.insert(0, str(current_file_path.parent.parent.parent.parent)) from tools.metrics.utils import tracker def parse_args(): parser = argparse.ArgumentParser(description="DPG-Bench evaluation.") parser.add_argument("--image-root-path", type=str, default=None) parser.add_argument("--exp_name", type=str, default="Sana") parser.add_argument("--txt_path", type=str, default=None) parser.add_argument("--sample_nums", type=int, default=1065) parser.add_argument("--resolution", type=int, default=None) parser.add_argument("--csv", type=str, default="tools/metrics/dpg_bench/dpg_bench.csv") parser.add_argument("--res-path", type=str, default=None) parser.add_argument("--pic-num", type=int, default=1) parser.add_argument("--vqa-model", type=str, default="mplug") # online logging setting parser.add_argument("--log_metric", type=str, default="metric") parser.add_argument("--gpu_id", type=int, default=0) parser.add_argument("--log_dpg", action="store_true") parser.add_argument("--suffix_label", type=str, default="", help="used for image-reward online log") parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for image-reward online log") parser.add_argument( "--report_to", type=str, default=None, help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--tracker_project_name", type=str, default="t2i-evit-baseline", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) parser.add_argument( "--name", type=str, default="baseline", help=("Wandb Project Name"), ) args = parser.parse_args() return args class MPLUG(torch.nn.Module): def __init__(self, ckpt="damo/mplug_visual-question-answering_coco_large_en", device="gpu"): super().__init__() from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks self.pipeline_vqa = pipeline(Tasks.visual_question_answering, model=ckpt, device=device) def vqa(self, image, question): input_vqa = {"image": image, "question": question} result = self.pipeline_vqa(input_vqa) return result["text"] def prepare_dpg_data(args): previous_id = "" current_id = "" question_dict = dict() category_count = defaultdict(int) # 'item_id', 'text', 'keywords', 'proposition_id', 'dependency', 'category_broad', 'category_detailed', 'tuple', 'question_natural_language' data = pd.read_csv(args.csv) for i, line in data.iterrows(): if i == 0: continue current_id = line.item_id qid = int(line.proposition_id) dependency_list_str = line.dependency.split(",") dependency_list_int = [] for d in dependency_list_str: d_int = int(d.strip()) dependency_list_int.append(d_int) if current_id == previous_id: question_dict[current_id]["qid2tuple"][qid] = line.tuple question_dict[current_id]["qid2dependency"][qid] = dependency_list_int question_dict[current_id]["qid2question"][qid] = line.question_natural_language else: question_dict[current_id] = dict( qid2tuple={qid: line.tuple}, qid2dependency={qid: dependency_list_int}, qid2question={qid: line.question_natural_language}, ) category = line.question_natural_language.split("(")[0].strip() category_count[category] += 1 previous_id = current_id return question_dict def crop_image(input_image, crop_tuple=None): if crop_tuple is None: return input_image cropped_image = input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3])) return cropped_image def compute_dpg_one_sample(args, question_dict, image_path, vqa_model, resolution): generated_image = Image.open(image_path) crop_tuples_list = [ (0, 0, resolution, resolution), (resolution, 0, resolution * 2, resolution), (0, resolution, resolution, resolution * 2), (resolution, resolution, resolution * 2, resolution * 2), ] crop_tuples = crop_tuples_list[: args.pic_num] key = osp.basename(image_path).split(".")[0] value = question_dict.get(key, None) qid2tuple = value["qid2tuple"] qid2question = value["qid2question"] qid2dependency = value["qid2dependency"] qid2answer = dict() qid2scores = dict() qid2validity = dict() scores = [] for crop_tuple in crop_tuples: cropped_image = crop_image(generated_image, crop_tuple) for id, question in qid2question.items(): answer = vqa_model.vqa(cropped_image, question) qid2answer[id] = answer qid2scores[id] = float(answer == "yes") with open(args.res_path.replace(".txt", "_detail.txt"), "a") as f: f.write(image_path + ", " + str(crop_tuple) + ", " + question + ", " + answer + "\n") qid2scores_orig = qid2scores.copy() for id, parent_ids in qid2dependency.items(): # zero-out scores if parent questions are answered 'no' any_parent_answered_no = False for parent_id in parent_ids: if parent_id == 0: continue if qid2scores[parent_id] == 0: any_parent_answered_no = True break if any_parent_answered_no: qid2scores[id] = 0 qid2validity[id] = False else: qid2validity[id] = True score = sum(qid2scores.values()) / len(qid2scores) scores.append(score) average_score = sum(scores) / len(scores) with open(args.res_path, "a") as f: f.write(image_path + ", " + ", ".join(str(i) for i in scores) + ", " + str(average_score) + "\n") return average_score, qid2tuple, qid2scores_orig def main(): accelerator = Accelerator() question_dict = prepare_dpg_data(args) txt_path = args.txt_path if args.txt_path is not None else args.image_root_path args.image_root_path = osp.join(args.image_root_path, args.exp_name) sample_nums = args.sample_nums args.res_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results.txt") save_txt_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results_simple.txt") if os.path.exists(save_txt_path): with open(save_txt_path) as f: dpg_value = f.readlines()[0].strip() print(f"DPG-Bench: {dpg_value}: {args.exp_name}") return {args.exp_name: float(dpg_value)} if accelerator.is_main_process: with open(args.res_path, "w") as f: pass with open(args.res_path.replace(".txt", "_detail.txt"), "w") as f: pass device = str(accelerator.device) if args.vqa_model == "mplug": vqa_model = MPLUG(device=device) else: raise NotImplementedError vqa_model = accelerator.prepare(vqa_model) vqa_model = getattr(vqa_model, "module", vqa_model) filename_list = os.listdir(args.image_root_path) num_each_rank = len(filename_list) / accelerator.num_processes local_rank = accelerator.process_index local_filename_list = filename_list[round(local_rank * num_each_rank) : round((local_rank + 1) * num_each_rank)] local_scores = [] local_category2scores = defaultdict(list) model_id = osp.basename(args.image_root_path) print(f"Start to conduct evaluation of {model_id}") for fn in tqdm(local_filename_list): image_path = osp.join(args.image_root_path, fn) try: # compute score of one sample score, qid2tuple, qid2scores = compute_dpg_one_sample( args=args, question_dict=question_dict, image_path=image_path, vqa_model=vqa_model, resolution=args.resolution, ) local_scores.append(score) # summarize scores by categoris for qid in qid2tuple.keys(): category = qid2tuple[qid].split("(")[0].strip() qid_score = qid2scores[qid] local_category2scores[category].append(qid_score) except Exception as e: print("Failed filename:", fn, e) continue accelerator.wait_for_everyone() global_dpg_scores = gather_object(local_scores) mean_dpg_score = np.mean(global_dpg_scores) global_categories = gather_object(list(local_category2scores.keys())) global_categories = set(global_categories) global_category2scores = dict() global_average_scores = [] for category in global_categories: local_category_scores = local_category2scores.get(category, []) global_category2scores[category] = gather_object(local_category_scores) global_average_scores.extend(gather_object(local_category_scores)) global_category2scores_l1 = defaultdict(list) for category in global_categories: l1_category = category.split("-")[0].strip() global_category2scores_l1[l1_category].extend(global_category2scores[category]) time.sleep(3) if accelerator.is_main_process: output = f"Model: {model_id}\n" output += "L1 category scores:\n" for l1_category in global_category2scores_l1.keys(): output += f"\t{l1_category}: {np.mean(global_category2scores_l1[l1_category]) * 100}\n" output += "L2 category scores:\n" for category in sorted(global_categories): output += f"\t{category}: {np.mean(global_category2scores[category]) * 100}\n" output += f"Image path: {args.image_root_path}\n" output += f"Save results to: {args.res_path}\n" output += f"DPG-Bench score: {mean_dpg_score * 100}" with open(args.res_path, "a") as f: f.write(output + "\n") print(output) if accelerator.is_main_process: with open(save_txt_path, "w") as file: file.write(str(mean_dpg_score * 100)) return {args.exp_name: mean_dpg_score * 100} if __name__ == "__main__": args = parse_args() args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name) dpg_result = main() if args.log_dpg: tracker(args, dpg_result, args.suffix_label, pattern=args.tracker_pattern, metric="DPG")