File size: 8,229 Bytes
526927a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python3
"""
Lily LLM API ์„œ๋ฒ„
ํŒŒ์ธํŠœ๋‹๋œ Mistral-7B ๋ชจ๋ธ์„ RESTful API๋กœ ์„œ๋น™
"""

from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import logging
import time
import torch
from typing import Optional, List

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# FastAPI ์•ฑ ์ƒ์„ฑ
app = FastAPI(
    title="Lily LLM API",
    description="Hearth Chat์šฉ ํŒŒ์ธํŠœ๋‹๋œ Mistral-7B ๋ชจ๋ธ API",
    version="1.0.0"
)

# CORS ์„ค์ •
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # ๊ฐœ๋ฐœ์šฉ, ํ”„๋กœ๋•์…˜์—์„œ๋Š” ํŠน์ • ๋„๋ฉ”์ธ๋งŒ ํ—ˆ์šฉ
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Pydantic ๋ชจ๋ธ๋“ค
class GenerateRequest(BaseModel):
    prompt: str
    max_length: Optional[int] = 100
    temperature: Optional[float] = 0.7
    top_p: Optional[float] = 0.9
    do_sample: Optional[bool] = True

class GenerateResponse(BaseModel):
    generated_text: str
    processing_time: float
    model_name: str = "Lily LLM (Mistral-7B)"

class HealthResponse(BaseModel):
    status: str
    model_loaded: bool
    model_name: str

# ์ „์—ญ ๋ณ€์ˆ˜
model = None
tokenizer = None
model_loaded = False

@app.on_event("startup")
async def startup_event():
    """์„œ๋ฒ„ ์‹œ์ž‘ ์‹œ ๋ชจ๋ธ ๋กœ๋“œ"""
    global model, tokenizer, model_loaded
    
    logger.info("๐Ÿš€ Lily LLM API ์„œ๋ฒ„ ์‹œ์ž‘ ์ค‘...")
    logger.info("๐Ÿ“ API ๋ฌธ์„œ: http://localhost:8001/docs")
    logger.info("๐Ÿ” ํ—ฌ์Šค ์ฒดํฌ: http://localhost:8001/health")
    
    try:
        # ๋ชจ๋ธ ๋กœ๋”ฉ (๋น„๋™๊ธฐ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ์„œ๋ฒ„ ์‹œ์ž‘ ์†๋„ ํ–ฅ์ƒ)
        await load_model_async()
        model_loaded = True
        logger.info("โœ… ๋ชจ๋ธ ๋กœ๋”ฉ ์™„๋ฃŒ!")
    except Exception as e:
        logger.error(f"โŒ ๋ชจ๋ธ ๋กœ๋”ฉ ์‹คํŒจ: {e}")
        model_loaded = False

async def load_model_async():
    """๋น„๋™๊ธฐ ๋ชจ๋ธ ๋กœ๋”ฉ"""
    global model, tokenizer
    
    # ๋ชจ๋ธ ๋กœ๋”ฉ์€ ๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ ์‹คํ–‰
    import asyncio
    import concurrent.futures
    
    def load_model_sync():
        from transformers import AutoTokenizer, AutoModelForCausalLM
        from peft import PeftModel
        import torch
        
        logger.info("๋ชจ๋ธ ๋กœ๋”ฉ ์ค‘...")
        
        # ๋กœ์ปฌ ๋ชจ๋ธ ๊ฒฝ๋กœ ์‚ฌ์šฉ
        local_model_path = "./lily_llm_core/models/polyglot-ko-1.3b"
        
        try:
            # ๋กœ์ปฌ ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
            tokenizer = AutoTokenizer.from_pretrained(local_model_path, use_fast=True)
            
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token
            
            # ๋ชจ๋ธ ๋กœ๋“œ (CPU์—์„œ)
            model = AutoModelForCausalLM.from_pretrained(
                local_model_path,
                torch_dtype=torch.float32,
                device_map="cpu",
                low_cpu_mem_usage=True
            )
            
            logger.info("โœ… polyglot-ko-1.3b ๋ชจ๋ธ ๋กœ๋“œ ์„ฑ๊ณต!")
            return model, tokenizer
            
        except Exception as e:
            logger.error(f"๋กœ์ปฌ ๋ชจ๋ธ ๋กœ๋“œ ์‹คํŒจ: {e}")
            logger.info("ํ…Œ์ŠคํŠธ์šฉ ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ ๋กœ๋“œ ์ค‘...")
            
            # DialoGPT-medium์œผ๋กœ ๋Œ€์ฒด (๋” ์ž‘์€ ๋ชจ๋ธ)
            test_model_name = "microsoft/DialoGPT-medium"
            tokenizer = AutoTokenizer.from_pretrained(test_model_name)
            model = AutoModelForCausalLM.from_pretrained(test_model_name)
            
            return model, tokenizer
    
    # ๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ ๋ชจ๋ธ ๋กœ๋”ฉ
    loop = asyncio.get_event_loop()
    with concurrent.futures.ThreadPoolExecutor() as executor:
        model, tokenizer = await loop.run_in_executor(executor, load_model_sync)

@app.get("/", response_model=dict)
async def root():
    """๋ฃจํŠธ ์—”๋“œํฌ์ธํŠธ"""
    return {
        "message": "Lily LLM API ์„œ๋ฒ„",
        "version": "1.0.0",
        "model": "Mistral-7B-Instruct-v0.2 (Fine-tuned)",
        "docs": "/docs"
    }

@app.get("/health", response_model=HealthResponse)
async def health_check():
    """ํ—ฌ์Šค ์ฒดํฌ ์—”๋“œํฌ์ธํŠธ"""
    return HealthResponse(
        status="healthy",
        model_loaded=model_loaded,
        model_name="Lily LLM (Mistral-7B)"
    )

@app.post("/generate", response_model=GenerateResponse)
async def generate_text(request: GenerateRequest):
    """ํ…์ŠคํŠธ ์ƒ์„ฑ ์—”๋“œํฌ์ธํŠธ"""
    global model, tokenizer
    
    if not model_loaded or model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="๋ชจ๋ธ์ด ๋กœ๋“œ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค")
    
    start_time = time.time()
    
    try:
        logger.info(f"ํ…์ŠคํŠธ ์ƒ์„ฑ ์‹œ์ž‘: '{request.prompt}'")
        
        # polyglot ๋ชจ๋ธ์— ๋งž๋Š” ํ”„๋กฌํ”„ํŠธ ํ˜•์‹์œผ๋กœ ์ˆ˜์ •
        formatted_prompt = f"์งˆ๋ฌธ: {request.prompt}\n๋‹ต๋ณ€:"
        logger.info(f"ํฌ๋งท๋œ ํ”„๋กฌํ”„ํŠธ: '{formatted_prompt}'")
        
        # ์ž…๋ ฅ ํ† ํฌ๋‚˜์ด์ง• - padding ์ œ๊ฑฐํ•˜๊ณ  ํŒจ๋”ฉ ํ† ํฐ ์„ค์ •
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            
        inputs = tokenizer(formatted_prompt, return_tensors="pt", truncation=True)
        logger.info(f"์ž…๋ ฅ ํ† ํฐ ์ˆ˜: {inputs['input_ids'].shape[1]}")
        
        # ํ…์ŠคํŠธ ์ƒ์„ฑ - ๋” ๊ฐ•๋ ฅํ•œ ์„ค์ •์œผ๋กœ ์ˆ˜์ •
        with torch.no_grad():
            outputs = model.generate(
                inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                max_new_tokens=request.max_length,
                do_sample=True,
                temperature=0.9,  # ๋” ๋†’์€ temperature
                top_k=50,         # top_k ์ถ”๊ฐ€
                top_p=0.95,       # top_p ์ถ”๊ฐ€
                repetition_penalty=1.2,  # ๋ฐ˜๋ณต ๋ฐฉ์ง€
                no_repeat_ngram_size=2,  # n-gram ๋ฐ˜๋ณต ๋ฐฉ์ง€
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
        
        logger.info(f"์ƒ์„ฑ๋œ ํ† ํฐ ์ˆ˜: {outputs.shape[1]}")
        
        # ๊ฒฐ๊ณผ ๋””์ฝ”๋”ฉ
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        logger.info(f"๋””์ฝ”๋”ฉ๋œ ์ „์ฒด ํ…์ŠคํŠธ: '{generated_text}'")
        
        # polyglot ์‘๋‹ต ๋ถ€๋ถ„๋งŒ ์ถ”์ถœ
        if "๋‹ต๋ณ€:" in generated_text:
            response = generated_text.split("๋‹ต๋ณ€:")[-1].strip()
            logger.info(f"๋‹ต๋ณ€ ์ถ”์ถœ: '{response}'")
        else:
            # ๊ธฐ์กด ๋ฐฉ์‹์œผ๋กœ ํ”„๋กฌํ”„ํŠธ ์ œ๊ฑฐ
            if formatted_prompt in generated_text:
                response = generated_text.replace(formatted_prompt, "").strip()
            else:
                response = generated_text.strip()
            logger.info(f"ํ”„๋กฌํ”„ํŠธ ์ œ๊ฑฐ ํ›„: '{response}'")
        
        # ๋นˆ ์‘๋‹ต ์ฒ˜๋ฆฌ
        if not response.strip():
            logger.warning("์ƒ์„ฑ๋œ ํ…์ŠคํŠธ๊ฐ€ ๋น„์–ด์žˆ์Œ, ๊ธฐ๋ณธ ์‘๋‹ต ์‚ฌ์šฉ")
            response = "์•ˆ๋…•ํ•˜์„ธ์š”! ๋ฌด์—‡์„ ๋„์™€๋“œ๋ฆด๊นŒ์š”?"
        
        processing_time = time.time() - start_time
        
        logger.info(f"์ƒ์„ฑ ์™„๋ฃŒ: {processing_time:.2f}์ดˆ, ํ…์ŠคํŠธ ๊ธธ์ด: {len(response)}")
        
        return GenerateResponse(
            generated_text=response,
            processing_time=processing_time
        )
        
    except Exception as e:
        logger.error(f"ํ…์ŠคํŠธ ์ƒ์„ฑ ์˜ค๋ฅ˜: {e}")
        raise HTTPException(status_code=500, detail=f"ํ…์ŠคํŠธ ์ƒ์„ฑ ์‹คํŒจ: {str(e)}")

@app.get("/models")
async def list_models():
    """์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋ชจ๋ธ ๋ชฉ๋ก"""
    return {
        "models": [
            {
                "id": "lily-llm",
                "name": "Lily LLM",
                "description": "Hearth Chat์šฉ ํŒŒ์ธํŠœ๋‹๋œ Mistral-7B ๋ชจ๋ธ",
                "base_model": "mistralai/Mistral-7B-Instruct-v0.2",
                "fine_tuned": True
            }
        ]
    }

if __name__ == "__main__":
    uvicorn.run(
        app,
        host="0.0.0.0",
        port=8001,
        reload=False,
        log_level="info"
    )