Spaces:
Sleeping
Sleeping
File size: 8,229 Bytes
526927a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#!/usr/bin/env python3
"""
Lily LLM API ์๋ฒ
ํ์ธํ๋๋ Mistral-7B ๋ชจ๋ธ์ RESTful API๋ก ์๋น
"""
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import logging
import time
import torch
from typing import Optional, List
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# FastAPI ์ฑ ์์ฑ
app = FastAPI(
title="Lily LLM API",
description="Hearth Chat์ฉ ํ์ธํ๋๋ Mistral-7B ๋ชจ๋ธ API",
version="1.0.0"
)
# CORS ์ค์
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # ๊ฐ๋ฐ์ฉ, ํ๋ก๋์
์์๋ ํน์ ๋๋ฉ์ธ๋ง ํ์ฉ
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Pydantic ๋ชจ๋ธ๋ค
class GenerateRequest(BaseModel):
prompt: str
max_length: Optional[int] = 100
temperature: Optional[float] = 0.7
top_p: Optional[float] = 0.9
do_sample: Optional[bool] = True
class GenerateResponse(BaseModel):
generated_text: str
processing_time: float
model_name: str = "Lily LLM (Mistral-7B)"
class HealthResponse(BaseModel):
status: str
model_loaded: bool
model_name: str
# ์ ์ญ ๋ณ์
model = None
tokenizer = None
model_loaded = False
@app.on_event("startup")
async def startup_event():
"""์๋ฒ ์์ ์ ๋ชจ๋ธ ๋ก๋"""
global model, tokenizer, model_loaded
logger.info("๐ Lily LLM API ์๋ฒ ์์ ์ค...")
logger.info("๐ API ๋ฌธ์: http://localhost:8001/docs")
logger.info("๐ ํฌ์ค ์ฒดํฌ: http://localhost:8001/health")
try:
# ๋ชจ๋ธ ๋ก๋ฉ (๋น๋๊ธฐ๋ก ์ฒ๋ฆฌํ์ฌ ์๋ฒ ์์ ์๋ ํฅ์)
await load_model_async()
model_loaded = True
logger.info("โ
๋ชจ๋ธ ๋ก๋ฉ ์๋ฃ!")
except Exception as e:
logger.error(f"โ ๋ชจ๋ธ ๋ก๋ฉ ์คํจ: {e}")
model_loaded = False
async def load_model_async():
"""๋น๋๊ธฐ ๋ชจ๋ธ ๋ก๋ฉ"""
global model, tokenizer
# ๋ชจ๋ธ ๋ก๋ฉ์ ๋ณ๋ ์ค๋ ๋์์ ์คํ
import asyncio
import concurrent.futures
def load_model_sync():
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
logger.info("๋ชจ๋ธ ๋ก๋ฉ ์ค...")
# ๋ก์ปฌ ๋ชจ๋ธ ๊ฒฝ๋ก ์ฌ์ฉ
local_model_path = "./lily_llm_core/models/polyglot-ko-1.3b"
try:
# ๋ก์ปฌ ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋
tokenizer = AutoTokenizer.from_pretrained(local_model_path, use_fast=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# ๋ชจ๋ธ ๋ก๋ (CPU์์)
model = AutoModelForCausalLM.from_pretrained(
local_model_path,
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True
)
logger.info("โ
polyglot-ko-1.3b ๋ชจ๋ธ ๋ก๋ ์ฑ๊ณต!")
return model, tokenizer
except Exception as e:
logger.error(f"๋ก์ปฌ ๋ชจ๋ธ ๋ก๋ ์คํจ: {e}")
logger.info("ํ
์คํธ์ฉ ๊ฐ๋จํ ๋ชจ๋ธ ๋ก๋ ์ค...")
# DialoGPT-medium์ผ๋ก ๋์ฒด (๋ ์์ ๋ชจ๋ธ)
test_model_name = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(test_model_name)
model = AutoModelForCausalLM.from_pretrained(test_model_name)
return model, tokenizer
# ๋ณ๋ ์ค๋ ๋์์ ๋ชจ๋ธ ๋ก๋ฉ
loop = asyncio.get_event_loop()
with concurrent.futures.ThreadPoolExecutor() as executor:
model, tokenizer = await loop.run_in_executor(executor, load_model_sync)
@app.get("/", response_model=dict)
async def root():
"""๋ฃจํธ ์๋ํฌ์ธํธ"""
return {
"message": "Lily LLM API ์๋ฒ",
"version": "1.0.0",
"model": "Mistral-7B-Instruct-v0.2 (Fine-tuned)",
"docs": "/docs"
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""ํฌ์ค ์ฒดํฌ ์๋ํฌ์ธํธ"""
return HealthResponse(
status="healthy",
model_loaded=model_loaded,
model_name="Lily LLM (Mistral-7B)"
)
@app.post("/generate", response_model=GenerateResponse)
async def generate_text(request: GenerateRequest):
"""ํ
์คํธ ์์ฑ ์๋ํฌ์ธํธ"""
global model, tokenizer
if not model_loaded or model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="๋ชจ๋ธ์ด ๋ก๋๋์ง ์์์ต๋๋ค")
start_time = time.time()
try:
logger.info(f"ํ
์คํธ ์์ฑ ์์: '{request.prompt}'")
# polyglot ๋ชจ๋ธ์ ๋ง๋ ํ๋กฌํํธ ํ์์ผ๋ก ์์
formatted_prompt = f"์ง๋ฌธ: {request.prompt}\n๋ต๋ณ:"
logger.info(f"ํฌ๋งท๋ ํ๋กฌํํธ: '{formatted_prompt}'")
# ์
๋ ฅ ํ ํฌ๋์ด์ง - padding ์ ๊ฑฐํ๊ณ ํจ๋ฉ ํ ํฐ ์ค์
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
inputs = tokenizer(formatted_prompt, return_tensors="pt", truncation=True)
logger.info(f"์
๋ ฅ ํ ํฐ ์: {inputs['input_ids'].shape[1]}")
# ํ
์คํธ ์์ฑ - ๋ ๊ฐ๋ ฅํ ์ค์ ์ผ๋ก ์์
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=request.max_length,
do_sample=True,
temperature=0.9, # ๋ ๋์ temperature
top_k=50, # top_k ์ถ๊ฐ
top_p=0.95, # top_p ์ถ๊ฐ
repetition_penalty=1.2, # ๋ฐ๋ณต ๋ฐฉ์ง
no_repeat_ngram_size=2, # n-gram ๋ฐ๋ณต ๋ฐฉ์ง
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
logger.info(f"์์ฑ๋ ํ ํฐ ์: {outputs.shape[1]}")
# ๊ฒฐ๊ณผ ๋์ฝ๋ฉ
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"๋์ฝ๋ฉ๋ ์ ์ฒด ํ
์คํธ: '{generated_text}'")
# polyglot ์๋ต ๋ถ๋ถ๋ง ์ถ์ถ
if "๋ต๋ณ:" in generated_text:
response = generated_text.split("๋ต๋ณ:")[-1].strip()
logger.info(f"๋ต๋ณ ์ถ์ถ: '{response}'")
else:
# ๊ธฐ์กด ๋ฐฉ์์ผ๋ก ํ๋กฌํํธ ์ ๊ฑฐ
if formatted_prompt in generated_text:
response = generated_text.replace(formatted_prompt, "").strip()
else:
response = generated_text.strip()
logger.info(f"ํ๋กฌํํธ ์ ๊ฑฐ ํ: '{response}'")
# ๋น ์๋ต ์ฒ๋ฆฌ
if not response.strip():
logger.warning("์์ฑ๋ ํ
์คํธ๊ฐ ๋น์ด์์, ๊ธฐ๋ณธ ์๋ต ์ฌ์ฉ")
response = "์๋
ํ์ธ์! ๋ฌด์์ ๋์๋๋ฆด๊น์?"
processing_time = time.time() - start_time
logger.info(f"์์ฑ ์๋ฃ: {processing_time:.2f}์ด, ํ
์คํธ ๊ธธ์ด: {len(response)}")
return GenerateResponse(
generated_text=response,
processing_time=processing_time
)
except Exception as e:
logger.error(f"ํ
์คํธ ์์ฑ ์ค๋ฅ: {e}")
raise HTTPException(status_code=500, detail=f"ํ
์คํธ ์์ฑ ์คํจ: {str(e)}")
@app.get("/models")
async def list_models():
"""์ฌ์ฉ ๊ฐ๋ฅํ ๋ชจ๋ธ ๋ชฉ๋ก"""
return {
"models": [
{
"id": "lily-llm",
"name": "Lily LLM",
"description": "Hearth Chat์ฉ ํ์ธํ๋๋ Mistral-7B ๋ชจ๋ธ",
"base_model": "mistralai/Mistral-7B-Instruct-v0.2",
"fine_tuned": True
}
]
}
if __name__ == "__main__":
uvicorn.run(
app,
host="0.0.0.0",
port=8001,
reload=False,
log_level="info"
)
|