Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
# blz ------------------------- | |
import time | |
app_start_time = time.time() | |
""" | |
import builtins | |
# Global counter for file openings | |
file_open_count = 0 | |
def log_file_access(file_name): | |
global file_open_count | |
file_open_count += 1 | |
print(f"File '{file_name}' opened for reading. Total count: {file_open_count}") | |
# Patch built-in open | |
original_open = builtins.open | |
def custom_open(*args, **kwargs): | |
file_name = args[0] if args else kwargs.get('file', 'Unknown') | |
log_file_access(file_name) | |
return original_open(*args, **kwargs) | |
builtins.open = custom_open | |
""" | |
import json | |
def print_first_json_content(directory): | |
for root, dirs, files in os.walk(directory): | |
for file in files: | |
if file.endswith(".json"): | |
json_file_path = os.path.join(root, file) | |
try: | |
with open(json_file_path, 'r') as json_file: | |
data = json.load(json_file) | |
print(f"Contents of {json_file_path}:") | |
print(json.dumps(data, indent=4)) | |
return True | |
except Exception as e: | |
print(f"Error reading {json_file_path}: {e}") | |
return False | |
print("No JSON file found.") | |
return False | |
import os | |
def count_files_in_directory_tree(directory): | |
file_count = 0 | |
for root, dirs, files in os.walk(directory): | |
file_count += len(files) | |
return file_count | |
from huggingface_hub import hf_hub_download, Repository | |
def download_dataset(repo_id, local_dir): | |
# Clone the repository | |
repo_id_full = f"https://huggingface.co/datasets/{repo_id}" | |
repo = Repository(local_dir=local_dir, clone_from=repo_id_full) | |
files_cnt = count_files_in_directory_tree(local_dir) | |
print(f"{local_dir}: {files_cnt}") | |
# print_first_json_content(local_dir) | |
# Alternatively, you can download specific files using hf_hub_download | |
# file_path = hf_hub_download(repo_id, filename="your_file_name") | |
# Usage | |
#download_dataset("https://huggingface.co/datasets/open-llm-leaderboard/requests", "new/requests") | |
#download_dataset("datasets/open-llm-leaderboard/results", "new/results") | |
# blz end ------------------- | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=TOKEN) | |
try: | |
print(EVAL_REQUESTS_PATH) | |
download_dataset(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH) | |
#snapshot_download( | |
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
#) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
download_dataset(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH) | |
#snapshot_download( | |
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
#) | |
except Exception: | |
restart_space() | |
print("after downloading datasets") # BLZ | |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
leaderboard_df = original_df.copy() | |
print("after get_leaderboard_df()") # BLZ | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
print("after get_evaluation_queue_df()") # BLZ | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
show_deleted: bool, | |
query: str, | |
recent7: bool, | |
recent14: bool, | |
recent21: bool | |
): | |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, recent7, recent14, recent21) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, recent7: bool, recent14: bool, recent21: bool | |
) -> pd.DataFrame: | |
# Show all models | |
if show_deleted: | |
filtered_df = df | |
else: # Show only still on the hub models | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
# blz | |
if recent7: | |
filtered_df = df[df[AutoEvalColumn.recent7.name] == True] | |
if recent14: | |
filtered_df = df[df[AutoEvalColumn.recent14.name] == True] | |
if recent21: | |
filtered_df = df[df[AutoEvalColumn.recent21.name] == True] | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(): | |
deleted_models_visibility = gr.Checkbox( | |
value=False, label="Show gated/private/deleted models", interactive=True | |
) | |
with gr.Row(): | |
filter_recent7 = gr.Checkbox( | |
value=False, label="Recent (7 days)", interactive=True | |
) | |
filter_recent14 = gr.Checkbox( | |
value=False, label="Recent (14 days)", interactive=True | |
) | |
filter_recent21 = gr.Checkbox( | |
value=False, label="Recent (21 days)", interactive=True | |
) | |
with gr.Column(min_width=320): | |
#with gr.Box(elem_id="box-filter"): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in Precision], | |
value=[i.value.name for i in Precision], | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
+ [AutoEvalColumn.dummy.name] | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
column_widths=["2%", "33%"] | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
deleted_models_visibility, | |
search_bar, | |
filter_recent7, | |
filter_recent14, | |
filter_recent21, | |
], | |
leaderboard_table, | |
) | |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, filter_recent7, filter_recent14, filter_recent21]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
deleted_models_visibility, | |
search_bar, | |
filter_recent7, | |
filter_recent14, | |
filter_recent21, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=[i.value.name for i in WeightType], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
weight_type, | |
model_type, | |
], | |
submission_result, | |
) | |
# blz -------------------- | |
with gr.Row(): | |
gr.Button("Download", link="/file=output/results.csv") | |
# end blz ------------------- | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
# blz --- | |
#import os | |
#os.makedirs('output', exist_ok=True) | |
#with open('output/results.csv', 'w') as f: | |
# f.write('hello world') | |
print(f"app start time {time.time() - app_start_time:.2f} seconds") | |
# blz end ---- | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch(allowed_paths=["output/"]) # blz allowed paths | |
print(f"app start after demo.queue {time.time() - app_start_time:.2f} seconds") | |