import cv2 input_video = "sample/car.mp4" # video Inference def vid_inf(vid_path): # Create a VideoCapture object cap = cv2.VideoCapture(vid_path) # get the video frames' width and height for proper saving of videos frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) fps = int(cap.get(cv2.CAP_PROP_FPS)) frame_size = (frame_width, frame_height) fourcc = cv2.VideoWriter_fourcc(*"mp4v") output_video = "output_recorded.mp4" # create the `VideoWriter()` object out = cv2.VideoWriter(output_video, fourcc, fps, frame_size) # Create Background Subtractor MOG2 object backSub = cv2.createBackgroundSubtractorMOG2() # Check if camera opened successfully if not cap.isOpened(): print("Error opening video file") count = 0 # Read until video is completed while cap.isOpened(): # Capture frame-by-frame ret, frame = cap.read() if ret: # Apply background subtraction fg_mask = backSub.apply(frame) # apply global threshol to remove shadows retval, mask_thresh = cv2.threshold(fg_mask, 180, 255, cv2.THRESH_BINARY) # set the kernal kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) # Apply erosion mask_eroded = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel) # Find contours contours, hierarchy = cv2.findContours(mask_eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) min_contour_area = 500 # Define your minimum area threshold # filtering contours using list comprehension large_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area] frame_out = frame.copy() for cnt in large_contours: x, y, w, h = cv2.boundingRect(cnt) frame_out = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 200), 3) # saving the video file out.write(frame_out) # Display the resulting frame cv2.imshow("Frame_final", frame_out) # Press Q on keyboard to exit if cv2.waitKey(30) & 0xFF == ord("q"): break else: break # When everything done, release the video capture and writer object cap.release() out.release() # Closes all the frames cv2.destroyAllWindows() vid_inf(input_video)