import gradio as gr import pickle # Load trained model and vectorizer model = pickle.load(open("spam_mail_model.pkl", "rb")) vectorizer = pickle.load(open("vectorizer.pkl", "rb")) # Prediction function def predict_mail(text): input_data = vectorizer.transform([text]) prediction = model.predict(input_data)[0] return "✅ Ham Mail" if prediction == 1 else "🚫 Spam Mail" # Gradio interface demo = gr.Interface( fn=predict_mail, inputs=gr.Textbox(lines=3, placeholder="Enter your email text here..."), outputs="text", title="📧 Spam Mail Classifier", description="Detect if an email is Spam 🚫 or Ham ✅ using Logistic Regression." ) demo.launch()