import gradio as gr import torch import cv2 import numpy as np from torchvision import transforms from PIL import Image from scipy.interpolate import Rbf # Load MiDaS depth estimation model midas_model = torch.hub.load("intel-isl/MiDaS", "DPT_Hybrid") midas_model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") midas_model.to(device) midas_transform = torch.hub.load("intel-isl/MiDaS", "transforms").default_transform def estimate_depth(image): image = image.convert("RGB") image_np = np.array(image) / 255.0 # Convert PIL image to NumPy and normalize image_tensor = torch.tensor(image_np, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(device) with torch.no_grad(): depth = midas_model(image_tensor).squeeze().cpu().numpy() depth = cv2.resize(depth, (image.size[0], image.size[1])) depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255 return depth.astype(np.uint8) def compute_optical_flow(depth): depth_blurred = cv2.GaussianBlur(depth, (5, 5), 0) flow = cv2.calcOpticalFlowFarneback(depth_blurred, depth, None, 0.5, 3, 15, 3, 5, 1.2, 0) displacement_x = cv2.normalize(flow[..., 0], None, -5, 5, cv2.NORM_MINMAX) displacement_y = cv2.normalize(flow[..., 1], None, -5, 5, cv2.NORM_MINMAX) return displacement_x, displacement_y def apply_tps_interpolation(design, depth): h, w = depth.shape grid_x, grid_y = np.meshgrid(np.arange(w), np.arange(h)) edges = cv2.Canny(depth.astype(np.uint8), 50, 150) points = np.column_stack(np.where(edges > 0)) tps_x = Rbf(points[:, 1], points[:, 0], grid_x[points[:, 0], points[:, 1]], function="thin_plate") tps_y = Rbf(points[:, 1], points[:, 0], grid_y[points[:, 0], points[:, 1]], function="thin_plate") map_x = tps_x(grid_x, grid_y).astype(np.float32) map_y = tps_y(grid_x, grid_y).astype(np.float32) return cv2.remap(design, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT) def compute_adaptive_alpha(depth): grad_x = cv2.Sobel(depth, cv2.CV_32F, 1, 0, ksize=3) grad_y = cv2.Sobel(depth, cv2.CV_32F, 0, 1, ksize=3) grad_magnitude = np.sqrt(grad_x**2 + grad_y**2) alpha = cv2.normalize(grad_magnitude, None, 0, 1, cv2.NORM_MINMAX) return alpha def blend_design(cloth_img, design_img): cloth_img = cloth_img.convert("RGB") design_img = design_img.convert("RGBA") cloth_np = np.array(cloth_img) design_np = np.array(design_img) h, w, _ = cloth_np.shape dh, dw, _ = design_np.shape scale_factor = min(w / dw, h / dh) * 0.4 new_w, new_h = int(dw * scale_factor), int(dh * scale_factor) design_np = cv2.resize(design_np, (new_w, new_h), interpolation=cv2.INTER_AREA) alpha_channel = design_np[:, :, 3] / 255.0 design_np = design_np[:, :, :3] x_offset = (w - new_w) // 2 y_offset = int(h * 0.35) design_canvas = np.zeros_like(cloth_np) design_canvas[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = design_np depth_map = estimate_depth(cloth_img) warped_design = apply_tps_interpolation(design_canvas, depth_map) adaptive_alpha = compute_adaptive_alpha(depth_map) cloth_np = (cloth_np * (1 - adaptive_alpha) + warped_design * adaptive_alpha).astype(np.uint8) return Image.fromarray(cloth_np) def main(cloth, design): global midas_model if midas_model is None: midas_model = torch.hub.load("intel-isl/MiDaS", "MiDaS_small").to(device).eval() return blend_design(cloth, design) iface = gr.Interface( fn=main, inputs=[gr.Image(type="pil"), gr.Image(type="pil")], outputs=gr.Image(type="pil"), title="AI Cloth Design Warping", description="Upload a clothing image and a design to blend it naturally, ensuring it stays centered and follows fabric folds." ) if __name__ == "__main__": iface.launch(share=False)