Physics Batch 01 - Classical Mechanics - Programming Framework Analysis

This document presents classical mechanics processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.

1. Newtonian Dynamics Process

graph TD A1[System Definition] --> B1[Force Analysis] C1[Mass Distribution] --> D1[Inertia Calculation] E1[Initial Conditions] --> F1[Boundary Conditions] B1 --> G1[Newton First Law] D1 --> H1[Newton Second Law] F1 --> I1[Newton Third Law] G1 --> J1[Inertial Reference Frame] H1 --> K1[Force Equals Mass Times Acceleration] I1 --> L1[Action Reaction Pairs] J1 --> M1[Equilibrium Analysis] K1 --> L1 L1 --> N1[Momentum Conservation] M1 --> O1[Static Equilibrium] N1 --> P1[Angular Momentum] O1 --> Q1[Newtonian Dynamics Process] P1 --> R1[Torque Analysis] Q1 --> S1[Energy Conservation] R1 --> T1[Newtonian Dynamics Result] S1 --> U1[Kinetic Energy] T1 --> V1[Potential Energy] U1 --> W1[Newtonian Dynamics Output] V1 --> X1[Newtonian Dynamics Analysis] W1 --> Y1[Newtonian Dynamics Final Result] X1 --> Z1[Newtonian Dynamics Analysis Complete] style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#ffd43b,color:#000 style N1 fill:#ffd43b,color:#000 style O1 fill:#ffd43b,color:#000 style P1 fill:#ffd43b,color:#000 style Q1 fill:#ffd43b,color:#000 style R1 fill:#ffd43b,color:#000 style S1 fill:#ffd43b,color:#000 style T1 fill:#ffd43b,color:#000 style U1 fill:#ffd43b,color:#000 style V1 fill:#ffd43b,color:#000 style W1 fill:#ffd43b,color:#000 style X1 fill:#ffd43b,color:#000 style Y1 fill:#ffd43b,color:#000 style Z1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#51cf66,color:#fff style Z1 fill:#b197fc,color:#fff
Triggers & Inputs
Newtonian Methods
Dynamics Operations
Intermediates
Products
Figure 1. Newtonian Dynamics Process. This classical mechanics process visualization demonstrates Newton's laws of motion and force analysis. The flowchart shows system definition and initial conditions, Newtonian methods and laws, dynamics operations and energy analysis, intermediate results, and final Newtonian dynamics outputs.

2. Lagrangian Mechanics Process

graph TD A2[Generalized Coordinates] --> B2[Configuration Space] C2[Constraint Analysis] --> D2[Virtual Displacement] E2[Kinetic Energy] --> F2[Potential Energy] B2 --> G2[Lagrangian Function] D2 --> H2[Generalized Forces] F2 --> I2[Conservative Forces] G2 --> J2[L equals T minus V] H2 --> K2[Non Conservative Forces] I2 --> L2[Euler Lagrange Equations] J2 --> M2[Action Integral] K2 --> L2 L2 --> N2[Variational Principle] M2 --> O2[Principle of Least Action] N2 --> P2[Generalized Momentum] O2 --> Q2[Lagrangian Mechanics Process] P2 --> R2[Canonical Coordinates] Q2 --> S2[Symmetry Analysis] R2 --> T2[Lagrangian Mechanics Result] S2 --> U2[Noether Theorem] T2 --> V2[Conservation Laws] U2 --> W2[Lagrangian Mechanics Output] V2 --> X2[Lagrangian Mechanics Analysis] W2 --> Y2[Lagrangian Mechanics Final Result] X2 --> Z2[Lagrangian Mechanics Analysis Complete] style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#ffd43b,color:#000 style N2 fill:#ffd43b,color:#000 style O2 fill:#ffd43b,color:#000 style P2 fill:#ffd43b,color:#000 style Q2 fill:#ffd43b,color:#000 style R2 fill:#ffd43b,color:#000 style S2 fill:#ffd43b,color:#000 style T2 fill:#ffd43b,color:#000 style U2 fill:#ffd43b,color:#000 style V2 fill:#ffd43b,color:#000 style W2 fill:#ffd43b,color:#000 style X2 fill:#ffd43b,color:#000 style Y2 fill:#ffd43b,color:#000 style Z2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#51cf66,color:#fff style Z2 fill:#b197fc,color:#fff
Triggers & Inputs
Lagrangian Methods
Variational Operations
Intermediates
Products
Figure 2. Lagrangian Mechanics Process. This classical mechanics process visualization demonstrates variational principles and generalized coordinates. The flowchart shows generalized coordinates and constraint analysis, Lagrangian methods and variational principles, variational operations and symmetry analysis, intermediate results, and final Lagrangian mechanics outputs.

3. Hamiltonian Mechanics Process

graph TD A3[Phase Space] --> B3[Canonical Variables] C3[Legendre Transform] --> D3[Hamiltonian Function] E3[Poisson Brackets] --> F3[Canonical Equations] B3 --> G3[Position Momentum Pairs] D3 --> H3[H equals T plus V] F3 --> I3[Hamilton Equations] G3 --> J3[Canonical Transformations] H3 --> K3[Energy Conservation] I3 --> L3[Phase Space Evolution] J3 --> M3[Action Angle Variables] K3 --> L3 L3 --> N3[Liouville Theorem] M3 --> O3[Integrable Systems] N3 --> P3[Phase Space Volume] O3 --> Q3[Hamiltonian Mechanics Process] P3 --> R3[Chaotic Dynamics] Q3 --> S3[Canonical Perturbation Theory] R3 --> T3[Hamiltonian Mechanics Result] S3 --> U3[Adiabatic Invariants] T3 --> V3[Canonical Quantization] U3 --> W3[Hamiltonian Mechanics Output] V3 --> X3[Hamiltonian Mechanics Analysis] W3 --> Y3[Hamiltonian Mechanics Final Result] X3 --> Z3[Hamiltonian Mechanics Analysis Complete] style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#ffd43b,color:#000 style N3 fill:#ffd43b,color:#000 style O3 fill:#ffd43b,color:#000 style P3 fill:#ffd43b,color:#000 style Q3 fill:#ffd43b,color:#000 style R3 fill:#ffd43b,color:#000 style S3 fill:#ffd43b,color:#000 style T3 fill:#ffd43b,color:#000 style U3 fill:#ffd43b,color:#000 style V3 fill:#ffd43b,color:#000 style W3 fill:#ffd43b,color:#000 style X3 fill:#ffd43b,color:#000 style Y3 fill:#ffd43b,color:#000 style Z3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#51cf66,color:#fff style Z3 fill:#b197fc,color:#fff
Triggers & Inputs
Hamiltonian Methods
Canonical Operations
Intermediates
Products
Figure 3. Hamiltonian Mechanics Process. This classical mechanics process visualization demonstrates phase space dynamics and canonical transformations. The flowchart shows phase space and canonical variables, Hamiltonian methods and transformations, canonical operations and perturbation theory, intermediate results, and final Hamiltonian mechanics outputs.