import diffusers from diffusers.utils import load_image from diffusers.models import ControlNetModel from .style_template import styles import os import cv2 import torch import numpy as np from PIL import Image import folder_paths from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from .pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps current_directory = os.path.dirname(os.path.abspath(__file__)) device = "cuda" if torch.cuda.is_available() else "cpu" STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "Neon" def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) return p.replace("{prompt}", positive), n + ' ' + negative def resize_img(input_image, max_side=1280, min_side=1024, size=None, pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): image_np = (255. * input_image.cpu().numpy().squeeze()).clip(0, 255).astype(np.uint8) input_image = Image.fromarray(image_np) w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio*w), round(ratio*h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) input_image = Image.fromarray(res) return input_image class InsightFaceLoader_Node_Zho: @classmethod def INPUT_TYPES(s): return { "required": { "provider": (["CUDA", "CPU"], ), }, } RETURN_TYPES = ("INSIGHTFACEMODEL",) FUNCTION = "load_insight_face_antelopev2" CATEGORY = "📷InstantID" def load_insight_face_antelopev2(self, provider): model = FaceAnalysis(name="antelopev2", root=current_directory, providers=[provider + 'ExecutionProvider',]) model.prepare(ctx_id=0, det_size=(640, 640)) return (model,) class IDControlNetLoaderNode_Zho: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "controlnet_path": ("STRING", {"default": "enter your path"}), } } RETURN_TYPES = ("MODEL",) RETURN_NAMES = ("controlnet",) FUNCTION = "load_idcontrolnet" CATEGORY = "📷InstantID" def load_idcontrolnet(self, controlnet_path): controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) return [controlnet] class IDBaseModelLoader_fromhub_Node_Zho: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "base_model_path": ("STRING", {"default": "wangqixun/YamerMIX_v8"}), "controlnet": ("MODEL",) } } RETURN_TYPES = ("MODEL",) RETURN_NAMES = ("pipe",) FUNCTION = "load_model" CATEGORY = "📷InstantID" def load_model(self, base_model_path, controlnet): # Code to load the base model pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( base_model_path, controlnet=controlnet, torch_dtype=torch.float16, local_dir="./checkpoints" ).to(device) return [pipe] class IDBaseModelLoader_local_Node_Zho: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), "controlnet": ("MODEL",) } } RETURN_TYPES = ("MODEL",) RETURN_NAMES = ("pipe",) FUNCTION = "load_model" CATEGORY = "📷InstantID" def load_model(self, ckpt_name, controlnet): # Code to load the base model if not ckpt_name: raise ValueError("Please provide the ckpt_name parameter with the name of the checkpoint file.") ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) if not os.path.exists(ckpt_path): raise FileNotFoundError(f"Checkpoint file {ckpt_path} not found.") pipe = StableDiffusionXLInstantIDPipeline.from_single_file( pretrained_model_link_or_path=ckpt_path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" ).to(device) return [pipe] class Ipadapter_instantidLoader_Node_Zho: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "Ipadapter_instantid_path": ("STRING", {"default": "enter your path"}), "filename": ("STRING", {"default": "ip-adapter.bin"}), "pipe": ("MODEL",), } } RETURN_TYPES = ("MODEL",) FUNCTION = "load_ip_adapter_instantid" CATEGORY = "📷InstantID" def load_ip_adapter_instantid(self, pipe, Ipadapter_instantid_path, filename): # 使用hf_hub_download方法获取PhotoMaker文件的路径 face_adapter = os.path.join(Ipadapter_instantid_path, filename) # load adapter pipe.load_ip_adapter_instantid(face_adapter) return [pipe] class ID_Prompt_Style_Zho: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "prompt": ("STRING", {"default": "a woman, retro futurism, retro game", "multiline": True}), "negative_prompt": ("STRING", {"default": "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly", "multiline": True}), "style_name": (STYLE_NAMES, {"default": DEFAULT_STYLE_NAME}) } } RETURN_TYPES = ('STRING','STRING',) RETURN_NAMES = ('positive_prompt','negative_prompt',) FUNCTION = "id_prompt_style" CATEGORY = "📷InstantID" def id_prompt_style(self, style_name, prompt, negative_prompt): prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) return prompt, negative_prompt class IDGenerationNode_Zho: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "face_image": ("IMAGE",), "pipe": ("MODEL",), "insightface": ("INSIGHTFACEMODEL",), "positive": ("STRING", {"multiline": True, "forceInput": True}), "negative": ("STRING", {"multiline": True, "forceInput": True}), "ip_adapter_scale": ("FLOAT", {"default": 0.8, "min": 0, "max": 1.0, "display": "slider"}), "controlnet_conditioning_scale": ("FLOAT", {"default": 0.8, "min": 0, "max": 1.0, "display": "slider"}), "steps": ("INT", {"default": 50, "min": 1, "max": 100, "step": 1, "display": "slider"}), "guidance_scale": ("FLOAT", {"default": 5, "min": 0, "max": 10, "display": "slider"}), "enhance_face_region": ("BOOLEAN", {"default": True}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), }, "optional": { "pose_image_optional": ("IMAGE",), } } RETURN_TYPES = ("IMAGE",) FUNCTION = "id_generate_image" CATEGORY = "📷InstantID" def id_generate_image(self, insightface, positive, negative, face_image, pipe, ip_adapter_scale, controlnet_conditioning_scale, steps, guidance_scale, seed, enhance_face_region, pose_image_optional=None): face_image = resize_img(face_image) # prepare face emb face_info = insightface.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) if not face_info: return "No face detected" face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1] face_emb = face_info['embedding'] face_kps = draw_kps(face_image, face_info['kps']) width, height = face_kps.size if pose_image_optional is not None: pose_image = resize_img(pose_image_optional) face_info = insightface.get(cv2.cvtColor(np.array(pose_image), cv2.COLOR_RGB2BGR)) if len(face_info) == 0: raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image") face_info = face_info[-1] face_kps = draw_kps(pose_image, face_info['kps']) width, height = face_kps.size if enhance_face_region: control_mask = np.zeros([height, width, 3]) x1, y1, x2, y2 = face_info['bbox'] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) control_mask[y1:y2, x1:x2] = 255 control_mask = Image.fromarray(control_mask.astype(np.uint8)) else: control_mask = None generator = torch.Generator(device=device).manual_seed(seed) pipe.set_ip_adapter_scale(ip_adapter_scale) output = pipe( prompt=positive, negative_prompt=negative, image_embeds=face_emb, image=face_kps, control_mask=control_mask, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=steps, generator=generator, guidance_scale=guidance_scale, width=width, height=height, return_dict=False ) # 检查输出类型并相应处理 if isinstance(output, tuple): # 当返回的是元组时,第一个元素是图像列表 images_list = output[0] else: # 如果返回的是 StableDiffusionXLPipelineOutput,需要从中提取图像 images_list = output.images # 转换图像为 torch.Tensor,并调整维度顺序为 NHWC images_tensors = [] for img in images_list: # 将 PIL.Image 转换为 numpy.ndarray img_array = np.array(img) # 转换 numpy.ndarray 为 torch.Tensor img_tensor = torch.from_numpy(img_array).float() / 255. # 转换图像格式为 CHW (如果需要) if img_tensor.ndim == 3 and img_tensor.shape[-1] == 3: img_tensor = img_tensor.permute(2, 0, 1) # 添加批次维度并转换为 NHWC img_tensor = img_tensor.unsqueeze(0).permute(0, 2, 3, 1) images_tensors.append(img_tensor) if len(images_tensors) > 1: output_image = torch.cat(images_tensors, dim=0) else: output_image = images_tensors[0] return (output_image,) NODE_CLASS_MAPPINGS = { "InsightFaceLoader_Zho": InsightFaceLoader_Node_Zho, "IDControlNetLoader": IDControlNetLoaderNode_Zho, "IDBaseModelLoader_fromhub": IDBaseModelLoader_fromhub_Node_Zho, "IDBaseModelLoader_local": IDBaseModelLoader_local_Node_Zho, "Ipadapter_instantidLoader": Ipadapter_instantidLoader_Node_Zho, "ID_Prompt_Styler": ID_Prompt_Style_Zho, "IDGenerationNode": IDGenerationNode_Zho } NODE_DISPLAY_NAME_MAPPINGS = { "InsightFaceLoader_Zho": "📷InsightFace Loader", "IDControlNetLoader": "📷ID ControlNet Loader", "IDBaseModelLoader_fromhub": "📷ID Base Model Loader from hub 🤗", "IDBaseModelLoader_local": "📷ID Base Model Loader locally", "Ipadapter_instantidLoader": "📷Ipadapter_instantid Loader", "ID_Prompt_Styler": "📷ID Prompt_Styler", "IDGenerationNode": "📷InstantID Generation" }