# Plug&Play Feature Injection import torch from typing import Any, Callable, Dict, List, Optional, Tuple, Union from random import randrange import PIL import numpy as np from tqdm import tqdm from torch.cuda.amp import custom_bwd, custom_fwd import torch.nn.functional as F from diffusers import ( StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, DDIMScheduler, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import ( rescale_noise_cfg, StableDiffusionXLPipelineOutput, retrieve_timesteps, PipelineImageInput ) from src.eunms import Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type from src.inversion_utils import noise_regularization def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt): """ let a = alpha_t, b = alpha_{t - 1} We have a > b, x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1}) From https://arxiv.org/pdf/2105.05233.pdf, section F. """ a, b = alpha_t, alpha_tm1 sa = a**0.5 sb = b**0.5 return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt) class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline): # @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, image: PipelineImageInput = None, strength: float = 0.3, num_inversion_steps: int = 50, timesteps: List[int] = None, denoising_start: Optional[float] = None, denoising_end: Optional[float] = None, guidance_scale: float = 1.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Tuple[int, int] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Tuple[int, int] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, aesthetic_score: float = 6.0, negative_aesthetic_score: float = 2.5, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], opt_lr: float = 0.001, opt_iters: int = 1, opt_none_inference_steps: bool = False, opt_loss_kl_lambda: float = 10.0, num_inference_steps: int = 50, num_aprox_steps: int = 100, **kwargs, ): callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, strength, num_inversion_steps, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, ) denoising_start_fr = 1.0 - denoising_start denoising_start = 0.0 if self.cfg.noise_friendly_inversion else denoising_start self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._denoising_end = denoising_end self._denoising_start = denoising_start # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt text_encoder_lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, ) # 4. Preprocess image image = self.image_processor.preprocess(image) # 5. Prepare timesteps def denoising_value_valid(dnv): return isinstance(self.denoising_end, float) and 0 < dnv < 1 timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps) timesteps_num_inference_steps, num_inference_steps = retrieve_timesteps(self.scheduler_inference, num_inference_steps, device, None) timesteps, num_inversion_steps = self.get_timesteps( num_inversion_steps, strength, device, denoising_start=self.denoising_start if denoising_value_valid else None, ) # latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # add_noise = True if self.denoising_start is None else False # 6. Prepare latent variables with torch.no_grad(): latents = self.prepare_latents( image, None, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, False, ) # 7. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) height, width = latents.shape[-2:] height = height * self.vae_scale_factor width = width * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 8. Prepare added time ids & embeddings if negative_original_size is None: negative_original_size = original_size if negative_target_size is None: negative_target_size = target_size add_text_embeds = pooled_prompt_embeds if self.text_encoder_2 is None: text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim add_time_ids, add_neg_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device) if ip_adapter_image is not None: image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) if self.do_classifier_free_guidance: image_embeds = torch.cat([negative_image_embeds, image_embeds]) image_embeds = image_embeds.to(device) # 9. Denoising loop num_warmup_steps = max(len(timesteps) - num_inversion_steps * self.scheduler.order, 0) prev_timestep = None self._num_timesteps = len(timesteps) self.prev_z = torch.clone(latents) self.prev_z4 = torch.clone(latents) self.z_0 = torch.clone(latents) g_cpu = torch.Generator().manual_seed(7865) self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype) # Friendly inversion params timesteps_for = timesteps if self.cfg.noise_friendly_inversion else reversed(timesteps) noise = randn_tensor(latents.shape, generator=g_cpu, device=latents.device, dtype=latents.dtype) latents = self.scheduler.add_noise(self.z_0, noise, timesteps_for[0].view((1))).detach() if self.cfg.noise_friendly_inversion else latents z_T = latents.clone() all_latents = [latents.clone()] with self.progress_bar(total=num_inversion_steps) as progress_bar: for i, t in enumerate(timesteps_for): added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} if ip_adapter_image is not None: added_cond_kwargs["image_embeds"] = image_embeds z_tp1 = self.inversion_step(latents, t, prompt_embeds, added_cond_kwargs, prev_timestep=prev_timestep, num_aprox_steps=num_aprox_steps) prev_timestep = t latents = z_tp1 all_latents.append(latents.clone()) if self.cfg.noise_friendly_inversion and t.item() > 1000 * denoising_start_fr: z_T = latents.clone() if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if self.cfg.noise_friendly_inversion: latents = z_T image = latents # Offload all models self.maybe_free_model_hooks() return StableDiffusionXLPipelineOutput(images=image), all_latents # @torch.no_grad() def inversion_step( self, z_t: torch.tensor, t: torch.tensor, prompt_embeds, added_cond_kwargs, prev_timestep: Optional[torch.tensor] = None, num_aprox_steps: int = 100 ) -> torch.tensor: extra_step_kwargs = {} avg_range = self.cfg.gradient_averaging_first_step_range if t.item() < 250 else self.cfg.gradient_averaging_step_range num_aprox_steps = min(self.cfg.max_num_aprox_steps_first_step, num_aprox_steps) if t.item() < 250 else num_aprox_steps nosie_pred_avg = None z_tp1_forward = self.scheduler.add_noise(self.z_0, self.noise, t.view((1))).detach() noise_pred_optimal = None approximated_z_tp1 = z_t.clone() for i in range(num_aprox_steps + 1): with torch.no_grad(): if self.cfg.num_reg_steps > 0 and i == 0: approximated_z_tp1 = torch.cat([z_tp1_forward, approximated_z_tp1]) prompt_embeds_in = torch.cat([prompt_embeds, prompt_embeds]) added_cond_kwargs_in = {} added_cond_kwargs_in['text_embeds'] = torch.cat([added_cond_kwargs['text_embeds'], added_cond_kwargs['text_embeds']]) added_cond_kwargs_in['time_ids'] = torch.cat([added_cond_kwargs['time_ids'], added_cond_kwargs['time_ids']]) else: prompt_embeds_in = prompt_embeds added_cond_kwargs_in = added_cond_kwargs noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds_in, added_cond_kwargs_in) if self.cfg.num_reg_steps > 0 and i == 0: noise_pred_optimal, noise_pred = noise_pred.chunk(2) noise_pred_optimal = noise_pred_optimal.detach() # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # Calculate average noise if i >= avg_range[0] and i < avg_range[1]: j = i - avg_range[0] if nosie_pred_avg is None: nosie_pred_avg = noise_pred.clone() else: nosie_pred_avg = j * nosie_pred_avg / (j + 1) + noise_pred / (j + 1) if i >= avg_range[0] or (self.cfg.gradient_averaging_type == Gradient_Averaging_Type.NONE and i > 0): noise_pred = noise_regularization(noise_pred, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls) approximated_z_tp1 = self.backward_step(noise_pred, t, z_t, prev_timestep) if self.cfg.gradient_averaging_type == Gradient_Averaging_Type.ON_END and nosie_pred_avg is not None: nosie_pred_avg = noise_regularization(nosie_pred_avg, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls) approximated_z_tp1 = self.backward_step(nosie_pred_avg, t, z_t, prev_timestep) if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE: noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds, added_cond_kwargs) # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) self.scheduler.step_and_update_noise(noise_pred, t, approximated_z_tp1, z_t, return_dict=False, update_epsilon_type=self.cfg.update_epsilon_type) return approximated_z_tp1 @torch.no_grad() def unet_pass(self, z_t, t, prompt_embeds, added_cond_kwargs): latent_model_input = torch.cat([z_t] * 2) if self.do_classifier_free_guidance else z_t latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) return self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=None, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] @torch.no_grad() def backward_step(self, nosie_pred, t, z_t, prev_timestep): extra_step_kwargs = {} if self.cfg.scheduler_type == Scheduler_Type.EULER or self.cfg.scheduler_type == Scheduler_Type.LCM: return self.scheduler.inv_step(nosie_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach() else: alpha_prod_t = self.scheduler.alphas_cumprod[t] alpha_prod_t_prev = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep is not None else self.scheduler.final_alpha_cumprod ) return _backward_ddim( x_tm1=z_t, alpha_t=alpha_prod_t, alpha_tm1=alpha_prod_t_prev, eps_xt=nosie_pred, )