import streamlit as st import pandas as pd import pickle import joblib st.title("Prediction of Death Event") # import model model = pickle.load(open("boosted.pkl", "rb")) st.write('Insert feature below to predict') # user input age = st.number_input(label='Age', min_value=40, max_value=95, value=40, step=1) anaemia = st.selectbox(label='Anaemia', options=[0,1]) creatinine_phosphokinase = st.number_input(label='Creatinine Phosphokinase', min_value=23.0, max_value=1954.5, value=23.0, step=0.1) diabetes = st.selectbox(label='Diabetes', options=[0,1]) ejection_fraction = st.number_input(label='Ejection Fraction', min_value=14.0, max_value=73.4, value=14.0, step=0.1) high_blood_pressure = st.selectbox(label='High Blood Pressure', options=[0,1]) platelets = st.number_input(label='Platelets', min_value=25100, max_value=543000, value=26000, step=10) serum_creatinine = st.number_input(label='Serum Creatinine', min_value=0.5, max_value=4.2, value=1.5, step=0.1) smoking = st.selectbox(label='Smoking', options=[0,1]) time = st.number_input(label='Time', min_value=4, max_value=285, value=10, step=1) # convert into dataframe data = pd.DataFrame({'Age': [age], 'Anaemia': [anaemia], 'Creatinine Phosphokinas': [creatinine_phosphokinase], 'Diabetes':[diabetes], 'Ejection Fraction': [ejection_fraction], 'High Blood Pressure': [high_blood_pressure], 'Platelets': [platelets], 'Serum Creatinine': [serum_creatinine], 'Smoking': [smoking], 'Time': [time]}) # model predict clas = model.predict(data).tolist()[0] # interpretation st.write('Classification Result: ') if clas == 1: st.text('Die') else: st.text('Alive')