import gradio as gr import os from gpt4all import GPT4All """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ model = GPT4All(model_name='strela-q4_k_m.gguf', model_path=os.getcwd()) def stop_on_token_callback(token_id, token_string): print(token_string, end='') if '#' in token_string: return False else: return True def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): chat = f"""### System: {system_message} """ for group in history: chat += f"""### Human: {group[0]} ### Assistant: {group[1]}""" chat += f"""### Human: {message} ### Assistant: """ tokens = "" for token in model.generate(chat, temp=temperature, callback=stop_on_token_callback, streaming=True): tokens += token yield tokens """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()