summarization ============================== T5 Summarisation Using Pytorch Lightning Instructions ------------ 1. Clone the repo. 1. Run `make dirs` to create the missing parts of the directory structure described below. 1. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager. 1. Run `source env/bin/activate` to activate the virtualenv. 1. Run `make requirements` to install required python packages. 1. Put the raw data in `data/raw`. 1. To save the raw data to the DVC cache, run `dvc commit raw_data.dvc` 1. Edit the code files to your heart's desire. 1. Process your data, train and evaluate your model using `dvc repro eval.dvc` or `make reproduce` 1. When you're happy with the result, commit files (including .dvc files) to git. Project Organization ------------ ├── LICENSE ├── Makefile <- Makefile with commands like `make dirs` or `make clean` ├── README.md <- The top-level README for developers using this project. ├── data │ ├── processed <- The final, canonical data sets for modeling. │ └── raw <- The original, immutable data dump. │ ├── eval.dvc <- The end of the data pipeline - evaluates the trained model on the test dataset. │ ├── models <- Trained and serialized models, model predictions, or model summaries │ ├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering), │ the creator's initials, and a short `-` delimited description, e.g. │ `1.0-jqp-initial-data-exploration`. │ ├── process_data.dvc <- Process the raw data and prepare it for training. ├── raw_data.dvc <- Keeps the raw data versioned. │ ├── references <- Data dictionaries, manuals, and all other explanatory materials. │ ├── reports <- Generated analysis as HTML, PDF, LaTeX, etc. │ └── figures <- Generated graphics and figures to be used in reporting │ └── metrics.txt <- Relevant metrics after evaluating the model. │ └── training_metrics.txt <- Relevant metrics from training the model. │ ├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g. │ generated with `pip freeze > requirements.txt` │ ├── setup.py <- makes project pip installable (pip install -e .) so src can be imported ├── src <- Source code for use in this project. │ ├── __init__.py <- Makes src a Python module │ │ │ ├── data <- Scripts to download or generate data │ │ └── make_dataset.py │ │ │ ├── models <- Scripts to train models and then use trained models to make │ │ │ predictions │ │ ├── predict_model.py │ │ └── train_model.py │ │ │ └── visualization <- Scripts to create exploratory and results oriented visualizations │ └── visualize.py │ ├── tox.ini <- tox file with settings for running tox; see tox.testrun.org └── train.dvc <- Traing a model on the processed data. --------
Project based on the cookiecutter data science project template. #cookiecutterdatascience