from openai import OpenAI import os import time # from dotenv import dotenv_values # Load model and API endpoint from environment variables # config = dotenv_values(".env") # model = config.get("MODEL") # api_endpoint = config.get("API_ENDPOINT") model = "casperhansen/mixtral-instruct-awq" api_endpoint = "https://irlgzb4izhczxt-8000.proxy.runpod.net" openai_api_base = api_endpoint + '/v1' # Initialize the OpenAI client client = OpenAI( api_key="EMPTY", # Replace with your actual API key if required base_url=openai_api_base, ) def chat_completion_request(input): messages = [ {"role": "user", "content": f"{input}"}, ] # Create chat completions using the OpenAI client chat_response = client.chat.completions.create( model=model, messages=messages, temperature=0, max_tokens=500 ) # Extract the completion text from the response if chat_response.choices: completion_text = chat_response.choices[0].message.content else: completion_text = None return completion_text # # Test the function # messages = [ # {"role": "user", "content": "Write a long essay on the topic of spring."} # ] # chat_response = chat_completion_request_openai(messages, client) # messages.append({"role": "assistant", "content": chat_response})