""" utils.py Functions: - get_script: Get the dialogue from the LLM. - call_llm: Call the LLM with the given prompt and dialogue format. - get_audio: Get the audio from the TTS model from HF Spaces. """ import os import requests from gradio_client import Client from openai import OpenAI from pydantic import ValidationError from bark import SAMPLE_RATE, generate_audio, preload_models from scipy.io.wavfile import write as write_wav MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct" JINA_URL = "https://r.jina.ai/" client = OpenAI( base_url="https://api.fireworks.ai/inference/v1", api_key=os.getenv("FIREWORKS_API_KEY"), ) # hf_client = Client("mrfakename/MeloTTS") # download and load all models preload_models() def generate_script(system_prompt: str, input_text: str, output_model): """Get the dialogue from the LLM.""" # Load as python object try: response = call_llm(system_prompt, input_text, output_model) dialogue = output_model.model_validate_json(response.choices[0].message.content) except ValidationError as e: error_message = f"Failed to parse dialogue JSON: {e}" system_prompt_with_error = f"{system_prompt}\n\nPlease return a VALID JSON object. This was the earlier error: {error_message}" response = call_llm(system_prompt_with_error, input_text, output_model) dialogue = output_model.model_validate_json(response.choices[0].message.content) # Call the LLM again to improve the dialogue system_prompt_with_dialogue = f"{system_prompt}\n\nHere is the first draft of the dialogue you provided:\n\n{dialogue}." response = call_llm( system_prompt_with_dialogue, "Please improve the dialogue.", output_model ) improved_dialogue = output_model.model_validate_json( response.choices[0].message.content ) return improved_dialogue def call_llm(system_prompt: str, text: str, dialogue_format): """Call the LLM with the given prompt and dialogue format.""" response = client.chat.completions.create( messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": text}, ], model=MODEL_ID, max_tokens=16_384, temperature=0.1, response_format={ "type": "json_object", "schema": dialogue_format.model_json_schema(), }, ) return response def parse_url(url: str) -> str: """Parse the given URL and return the text content.""" full_url = f"{JINA_URL}{url}" response = requests.get(full_url, timeout=60) return response.text def generate_podcast_audio(text: str, speaker: str, language: str) -> str: audio_array = generate_audio(text, history_prompt=f"v2/{language}_speaker_{'1' if speaker == 'Host (Jane)' else '3'}") file_path = f"audio_{language}_{speaker}.mp3" # save audio to disk write_wav(file_path, SAMPLE_RATE, audio_array) return file_path # """Get the audio from the TTS model from HF Spaces and adjust pitch if necessary.""" # if speaker == "Guest": # accent = "EN-US" if language == "EN" else language # speed = 0.9 # else: # host # accent = "EN-Default" if language == "EN" else language # speed = 1 # if language != "EN" and speaker != "Guest": # speed = 1.1 # # Generate audio # result = hf_client.predict( # text=text, # language=language, # speaker=accent, # speed=speed, # api_name="/synthesize", # ) # return result