import streamlit as st import pandas as pd import numpy as np from datetime import datetime, timedelta import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go st.set_page_config(layout="wide") st.markdown(""" """, unsafe_allow_html=True) df = pd.read_csv('last_results_9.csv') temp_data = pd.read_csv('temp_data(2).csv') temp_data['Data_Completa'] = pd.to_datetime(temp_data['Data_Completa']) temp_data.sort_values(['Instituição', 'Conta', 'Data_Completa'], inplace=True) temp_data['Últimos 12 meses'] = temp_data.groupby(['Instituição', 'Conta'])['Valor'].transform(lambda x: x.rolling(window=12, min_periods=1).sum()) last_dates = temp_data.groupby(['Instituição', 'Conta'])['Data_Completa'].transform(max) last_rows = temp_data[temp_data['Data_Completa'] == last_dates] ultimo_ano = last_rows[['Instituição', 'Conta', 'Últimos 12 meses']] image1 = 'images/rs_pmpa.PNG' title_html = """ PREVISÕES DE RECEITAS """ # Set a fixed width for the sidebar st.markdown( """ """, unsafe_allow_html=True ) with st.sidebar: st.image(image1, use_column_width=True) #st.markdown(title_html, unsafe_allow_html=True) selected_instituicao = st.selectbox('Seleciona Instituição', df['Instituição'].unique()) selected_conta = st.selectbox('Seleciona Conta', df['Conta'].unique()) # Filter the DataFrame based on selected values #filtered_df = df[(df['Instituição'] == selected_instituicao) & (df['Conta'] == selected_conta)] # Initial filtering based on selected 'Instituição' instituicao_df = df[df['Instituição'] == selected_instituicao] # Container for adjusted DataFrame rows adjusted_rows = [] # Iterate through each unique 'Conta' within the selected 'Instituição' for conta in instituicao_df['Conta'].unique(): conta_df = instituicao_df[instituicao_df['Conta'] == selected_conta] # Check if 'Linear Regression' is available for this 'Conta' if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique(): lr_rows = conta_df[conta_df['Modelo'] == 'Linear Regression'] adjusted_rows.append(lr_rows) else: # If not, include all models' results for this 'Conta' adjusted_rows.append(conta_df) # Combine all adjusted rows back into a single DataFrame filtered_df = pd.concat(adjusted_rows) # Set custom width for columns tab1, tab2, tab3, tab4 = st.tabs(["Composição RLIT", "Valores Previstos", "Tabela Resumo", "Comparativo - Saúde e Eduacação"]) tab_df = df[df['Instituição'] == selected_instituicao] data = [] ultimo_ano = last_rows[['Instituição', 'Conta', 'Últimos 12 meses']] print(ultimo_ano) with tab1: municipio = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao] labels = municipio['Conta'] total_sum = municipio['Últimos 12 meses'].sum() sizes = [(i / total_sum) * 100 for i in municipio['Últimos 12 meses']] #fig1, ax1 = plt.subplots() #ax1.pie(sizes, labels=labels, autopct='%1.1f%%',) #ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. fig = go.Figure(data=[go.Pie(labels=labels, values=sizes)]) #st.pyplot(fig1) #st.plotly_chart(fig, theme=None, use_container_width=True) st.plotly_chart(fig, theme=None) with tab2: #col1, col2= st.columns(2) #if not filtered_df.empty: #data_string = filtered_df['Forecasts'].iloc[0] # Split the string into lines #lines = data_string.split('\n') #mes = 0 # Iterate through the lines and extract the values #for line in lines[:-1]: # Skip the last two lines which might not contain forecast data #period, value = line.split() #num_float = float(value) #monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator #mes += 1 #col1.write(f"Mês {mes}: {monetary_value}") #else: #col1.warning('No data available for the selected filters.') # Display the Forecasts values as line plots in the second column if not filtered_df.empty: data_string = filtered_df['Forecasts'].iloc[0] # Create a list to store data for each period data = [] # Split the string into lines lines = data_string.split('\n') mes = 0 # Iterate through the lines and extract the values for line in lines[:-1]: period, value = line.split() num_float = float(value) monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator mes += 1 data.append({'Período': int(mes), 'Valores Previstos': num_float}) # Create a DataFrame from the list chart_data = pd.DataFrame(data) # Sort the DataFrame by 'Período' chart_data = chart_data.sort_values(by='Período') # Display line chart with "period" on X-axis and "Monetary Value" on Y-axis #col2.line_chart(chart_data.set_index('Period')) fig = px.line(chart_data, x="Período", y="Valores Previstos") #st.plotly_chart(fig, theme=None, use_container_width=True) st.plotly_chart(fig, theme=None) else: st.warning('Sem dados para os filtros selecionados.') with tab3: if not filtered_df.empty: # Filter the DataFrame for the selected institution tab_df = df[df['Instituição'] == selected_instituicao] # Create an empty list to store data data = [] # Iterate through each unique 'Conta' in the filtered DataFrame for conta in tab_df['Conta'].unique(): # Filter the DataFrame for the current 'Conta' conta_df = tab_df[tab_df['Conta'] == conta] if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique(): conta_df = conta_df[conta_df['Modelo'] == "Linear Regression"] # Initialize a variable to store the sum for the current 'Conta' conta_sum = 0.0 # Take the first 'Modelo' for simplicity modelo = conta_df['Modelo'].iloc[0] # Iterate over each row in the filtered DataFrame for the current 'Conta' for _, row in conta_df.iterrows(): lines = row['Forecasts'].split('\n') for line in lines[:-1]: # Skip the summary line if line.strip(): parts = line.split() value = parts[-1] try: conta_sum += float(value) except ValueError: print(f"Skipping line unable to convert to float: {line}") # Format the sum as a monetary value monetary_value = f'R$ {conta_sum:,.2f}' # Append the data to the list data.append({'Conta': conta, 'Modelo': modelo, 'Próximos 12 meses': monetary_value}) # Convert the list to a DataFrame table_data = pd.DataFrame(data) last_df = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao] last_df.drop(['Instituição'], axis=1, inplace=True) print(last_df) last_sum = last_df.iloc[:,-1].sum() def format_currency(x): return "R${:,.2f}".format(x) last_df['Últimos 12 meses'] = last_df['Últimos 12 meses'].apply(format_currency) table_data = pd.merge(table_data, last_df) print(table_data) try: # Calculate the grand total sum of 'Próximos 12 meses' and 'Últimos 12 meses' values total_sum = sum(float(row['Próximos 12 meses'].replace('R$ ', '').replace(',', '')) for row in data) total_sum_prev = last_sum # Append the "Total" row total_row = pd.DataFrame({ 'Conta': ['TOTAL (RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {total_sum:,.2f}'], 'Últimos 12 meses': [f'R$ {total_sum_prev:,.2f}'] }) table_data = pd.concat([table_data, total_row], ignore_index=True) # Additional rows calculations and appending # Assuming percentages for health and education as previously mentioned saude_value = total_sum * 0.15 educacao_value = total_sum * 0.25 saude_value_prev = total_sum_prev * 0.15 educacao_value_prev = total_sum_prev * 0.25 saude_row = pd.DataFrame({'Conta': ['Saúde (15% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {saude_value:,.2f}'], 'Últimos 12 meses': [f'R$ {saude_value_prev:,.2f}']}) educacao_row = pd.DataFrame({'Conta': ['Educação (25% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {educacao_value:,.2f}'], 'Últimos 12 meses': [f'R$ {educacao_value_prev:,.2f}']}) # Append these rows to the table data table_data = pd.concat([table_data, saude_row, educacao_row], ignore_index=True) table_data.fillna('-', inplace=True) # Display the table using Streamlit st.table(table_data) except Exception as e: st.error(f"Error in processing data: {str(e)}") else: st.warning('Sem dados para os filtros selecionados.') st.markdown(""" Observação: Previsões realizadas com dados extraídos do Relatório Resumido de Execução Orçamentária (RREO) até o 6º bimestre de 2023 no Sistema de Informações Contábeis e Fiscais do Setor Público Brasileiro (SICONFI). [Link](https://siconfi.tesouro.gov.br/) """, unsafe_allow_html=True) with tab4: data = { "Últimos 12 meses": [saude_value_prev, educacao_value_prev], # Placeholder data for 'Last 12 Months' "Próximos 12 meses": [saude_value, educacao_value] # Placeholder data for 'Next 12 Months' } # Define the index names index_names = ["Saúde", "Educação"] # 'Health' and 'Education' df = pd.DataFrame(data, index=index_names).reset_index().melt(id_vars='index', var_name='Period', value_name='Value') # Create the bar chart fig = px.bar(df, x='index', y='Value', color='Period', barmode='group') st.write(fig)