import streamlit as st
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
st.set_page_config(layout="wide")
st.markdown("""
""", unsafe_allow_html=True)
df = pd.read_csv('last_results_9.csv')
temp_data = pd.read_csv('temp_data(2).csv')
temp_data['Data_Completa'] = pd.to_datetime(temp_data['Data_Completa'])
temp_data.sort_values(['Instituição', 'Conta', 'Data_Completa'], inplace=True)
temp_data['Últimos 12 meses'] = temp_data.groupby(['Instituição', 'Conta'])['Valor'].transform(lambda x: x.rolling(window=12, min_periods=1).sum())
last_dates = temp_data.groupby(['Instituição', 'Conta'])['Data_Completa'].transform(max)
last_rows = temp_data[temp_data['Data_Completa'] == last_dates]
ultimo_ano = last_rows[['Instituição', 'Conta', 'Últimos 12 meses']]
image1 = 'images/rs_pmpa.PNG'
title_html = """
PREVISÕES DE RECEITAS
"""
# Set a fixed width for the sidebar
st.markdown(
"""
""",
unsafe_allow_html=True
)
with st.sidebar:
st.image(image1, use_column_width=True)
#st.markdown(title_html, unsafe_allow_html=True)
selected_instituicao = st.selectbox('Seleciona Instituição', df['Instituição'].unique())
selected_conta = st.selectbox('Seleciona Conta', df['Conta'].unique())
# Filter the DataFrame based on selected values
#filtered_df = df[(df['Instituição'] == selected_instituicao) & (df['Conta'] == selected_conta)]
# Initial filtering based on selected 'Instituição'
instituicao_df = df[df['Instituição'] == selected_instituicao]
# Container for adjusted DataFrame rows
adjusted_rows = []
# Iterate through each unique 'Conta' within the selected 'Instituição'
for conta in instituicao_df['Conta'].unique():
conta_df = instituicao_df[instituicao_df['Conta'] == selected_conta]
# Check if 'Linear Regression' is available for this 'Conta'
if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
lr_rows = conta_df[conta_df['Modelo'] == 'Linear Regression']
adjusted_rows.append(lr_rows)
else:
# If not, include all models' results for this 'Conta'
adjusted_rows.append(conta_df)
# Combine all adjusted rows back into a single DataFrame
filtered_df = pd.concat(adjusted_rows)
# Set custom width for columns
tab1, tab2, tab3, tab4 = st.tabs(["Composição RLIT", "Valores Previstos", "Tabela Resumo", "Comparativo - Saúde e Eduacação"])
tab_df = df[df['Instituição'] == selected_instituicao]
data = []
ultimo_ano = last_rows[['Instituição', 'Conta', 'Últimos 12 meses']]
print(ultimo_ano)
with tab1:
municipio = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao]
labels = municipio['Conta']
total_sum = municipio['Últimos 12 meses'].sum()
sizes = [(i / total_sum) * 100 for i in municipio['Últimos 12 meses']]
#fig1, ax1 = plt.subplots()
#ax1.pie(sizes, labels=labels, autopct='%1.1f%%',)
#ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
fig = go.Figure(data=[go.Pie(labels=labels, values=sizes)])
#st.pyplot(fig1)
#st.plotly_chart(fig, theme=None, use_container_width=True)
st.plotly_chart(fig, theme=None)
with tab2:
#col1, col2= st.columns(2)
#if not filtered_df.empty:
#data_string = filtered_df['Forecasts'].iloc[0]
# Split the string into lines
#lines = data_string.split('\n')
#mes = 0
# Iterate through the lines and extract the values
#for line in lines[:-1]: # Skip the last two lines which might not contain forecast data
#period, value = line.split()
#num_float = float(value)
#monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator
#mes += 1
#col1.write(f"Mês {mes}: {monetary_value}")
#else:
#col1.warning('No data available for the selected filters.')
# Display the Forecasts values as line plots in the second column
if not filtered_df.empty:
data_string = filtered_df['Forecasts'].iloc[0]
# Create a list to store data for each period
data = []
# Split the string into lines
lines = data_string.split('\n')
mes = 0
# Iterate through the lines and extract the values
for line in lines[:-1]:
period, value = line.split()
num_float = float(value)
monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator
mes += 1
data.append({'Período': int(mes), 'Valores Previstos': num_float})
# Create a DataFrame from the list
chart_data = pd.DataFrame(data)
# Sort the DataFrame by 'Período'
chart_data = chart_data.sort_values(by='Período')
# Display line chart with "period" on X-axis and "Monetary Value" on Y-axis
#col2.line_chart(chart_data.set_index('Period'))
fig = px.line(chart_data, x="Período", y="Valores Previstos")
#st.plotly_chart(fig, theme=None, use_container_width=True)
st.plotly_chart(fig, theme=None)
else:
st.warning('Sem dados para os filtros selecionados.')
with tab3:
if not filtered_df.empty:
# Filter the DataFrame for the selected institution
tab_df = df[df['Instituição'] == selected_instituicao]
# Create an empty list to store data
data = []
# Iterate through each unique 'Conta' in the filtered DataFrame
for conta in tab_df['Conta'].unique():
# Filter the DataFrame for the current 'Conta'
conta_df = tab_df[tab_df['Conta'] == conta]
if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
conta_df = conta_df[conta_df['Modelo'] == "Linear Regression"]
# Initialize a variable to store the sum for the current 'Conta'
conta_sum = 0.0
# Take the first 'Modelo' for simplicity
modelo = conta_df['Modelo'].iloc[0]
# Iterate over each row in the filtered DataFrame for the current 'Conta'
for _, row in conta_df.iterrows():
lines = row['Forecasts'].split('\n')
for line in lines[:-1]: # Skip the summary line
if line.strip():
parts = line.split()
value = parts[-1]
try:
conta_sum += float(value)
except ValueError:
print(f"Skipping line unable to convert to float: {line}")
# Format the sum as a monetary value
monetary_value = f'R$ {conta_sum:,.2f}'
# Append the data to the list
data.append({'Conta': conta, 'Modelo': modelo, 'Próximos 12 meses': monetary_value})
# Convert the list to a DataFrame
table_data = pd.DataFrame(data)
last_df = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao]
last_df.drop(['Instituição'], axis=1, inplace=True)
print(last_df)
last_sum = last_df.iloc[:,-1].sum()
def format_currency(x):
return "R${:,.2f}".format(x)
last_df['Últimos 12 meses'] = last_df['Últimos 12 meses'].apply(format_currency)
table_data = pd.merge(table_data, last_df)
print(table_data)
try:
# Calculate the grand total sum of 'Próximos 12 meses' and 'Últimos 12 meses' values
total_sum = sum(float(row['Próximos 12 meses'].replace('R$ ', '').replace(',', '')) for row in data)
total_sum_prev = last_sum
# Append the "Total" row
total_row = pd.DataFrame({
'Conta': ['TOTAL (RLIT)'],
'Modelo': [''],
'Próximos 12 meses': [f'R$ {total_sum:,.2f}'],
'Últimos 12 meses': [f'R$ {total_sum_prev:,.2f}']
})
table_data = pd.concat([table_data, total_row], ignore_index=True)
# Additional rows calculations and appending
# Assuming percentages for health and education as previously mentioned
saude_value = total_sum * 0.15
educacao_value = total_sum * 0.25
saude_value_prev = total_sum_prev * 0.15
educacao_value_prev = total_sum_prev * 0.25
saude_row = pd.DataFrame({'Conta': ['Saúde (15% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {saude_value:,.2f}'], 'Últimos 12 meses': [f'R$ {saude_value_prev:,.2f}']})
educacao_row = pd.DataFrame({'Conta': ['Educação (25% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {educacao_value:,.2f}'], 'Últimos 12 meses': [f'R$ {educacao_value_prev:,.2f}']})
# Append these rows to the table data
table_data = pd.concat([table_data, saude_row, educacao_row], ignore_index=True)
table_data.fillna('-', inplace=True)
# Display the table using Streamlit
st.table(table_data)
except Exception as e:
st.error(f"Error in processing data: {str(e)}")
else:
st.warning('Sem dados para os filtros selecionados.')
st.markdown("""
Observação: Previsões realizadas com dados extraídos do Relatório Resumido de Execução Orçamentária (RREO) até o 6º bimestre de 2023 no Sistema de Informações Contábeis e Fiscais do Setor Público Brasileiro (SICONFI).
[Link](https://siconfi.tesouro.gov.br/)
""", unsafe_allow_html=True)
with tab4:
data = {
"Últimos 12 meses": [saude_value_prev, educacao_value_prev], # Placeholder data for 'Last 12 Months'
"Próximos 12 meses": [saude_value, educacao_value] # Placeholder data for 'Next 12 Months'
}
# Define the index names
index_names = ["Saúde", "Educação"] # 'Health' and 'Education'
df = pd.DataFrame(data, index=index_names).reset_index().melt(id_vars='index', var_name='Period', value_name='Value')
# Create the bar chart
fig = px.bar(df, x='index', y='Value', color='Period', barmode='group')
st.write(fig)